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PREFACE T0 THE FIRST EDITION

THE fact that certain bodies, after being rubbed, appear
to attract other bodies, was known to the ancients. In
modern times, a great variety of other phenomena have been
observed, and have been found to be related to these pheno-
mena of attraction. They have been classed under the name
of Electric phenomena, amber, fiAexrpov, having been the sub-
stance in which they were first described.

Other bodies, particularly the loadstone, and pieces of iron
and steel which have been subjected to certain processes, have
also been long known to exhibit phenomena of action at
a distance. These phenomena, with others related to them,
were found to differ from the electric phenomena, and have
been classed under the name of Magnetic phenomena, the
loadstone, udywms, being found in the Thessalian Magnesia.

These two classes of phenomena have since been found to be
related to each other, and the relations between the various
phenomena of both classes, so far as they are known, constitute
the science of Electromagnetism.

In the following Treatise I propose to describe the most
important of these phenomena, to shew how they may be
subjected to measurement, and to trace the mathematical
connexions of the quantities measured. Having thus obtained
the data for a mathematical theory of electromagnetism, and
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having shewn how this theory may be applied to the calcula-
tion of phenomena, I shall endeavour to place in as clear a
light as I can the relations between the mathematical form of
this theory and that of the fundamental science of Dynamics,
in order that we may be in some degree prepared to determine
the kind of dynamical phenomena among which we are to
look for illustrations or explanations of the electromagnetic
phenomena.

In describing the phenomena, I shall select those which
most clearly illustrate the fundamental ideas of the theory,
omitting others, or reserving them till the reader is more
advanced.

The most important aspect of any phenomenon from a
mathematical point of view is that of a measurable quantity.
I shall therefore consider electrical phenomena chiefly with
& view to their measurement, describing the methods of
measurement, and defining the standards on which they
depend.

In the application of mathematics to the calculation of elec-
trical quantities, I shall endeavour in the first place to deduce
the most general conclusions from the data at our disposal,
and in the next place to apply the results to the simplest
cases that can be chosen. I shall avoid, as much as I can,
those questions which, though they have elicited the skill of
mathematicians, have not enlarged our knowledge of science.
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The connexions between the different classes of phenomena
have also been investigated, and the probability of the rigorous
exactness of the expefimental laws have been greatly strength-
ened by a more extended knowledge of their relations to each
other.

Finally, some progress has been made in the reduction of
electromagnetism to a dynamical science, by shewing that no
electromagnetic phenomenon is contradictory to the suppo-
sition that it depends on purely dynamical action.

What has been hitherto done, however, has by no means
exhausted the field of electrical research. It has rather opened
up that field, by pointing out subjects of enquiry, and furnish-
ing us with means of investigation.

It is hardly necessary to enlarge upon the beneficial results
of magnetic research on navigation, and the importance of a
knowledge of the true direction of the compass, and of the
effect of the iron in a ship. But the labours of those who
have endeavoured to render navigation more secure by means
of magnetic observations have at the same time greatly ad-
vanced the progress of pure science.

Gaauss, as a member of the German Magnetic Union, brought
his powerful intellect to bear on the theory of magnetism, and
on the methods of observing it, and he not only added greatly
to our knowledge of the theory of attractions, but reconstructed
the whole of magnetic science as regards the instruments used,
the methods of observation, and the calculation of the results,
so that his memoirs on Terrestrial Magnetism may be taken as
models of physical research by all those who are engaged in
the measurement of any of the forces in nature.

The important applications of electromagnetism to tele-
graphy have also reacted on pure science by giving a com-
mercial value to accurate electrical measurements, and by
affording to electricians the use of apparatus on a scale which
greatly transcends that of any ordinary laboratory. The con-
sequences of this demand for electrical knowledge, and of
these experimental opportunities for acquiring it, have been
already very great, both in stimulating the energies of ad-
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vanced electricians, and in diffusing among practical m
a degree of accurate knowledge which is likely to condt
to the general scientific progress of tlfe whole engineeri
profession.

There are several treatises in which electrical and magne
phenomena are described in a popular way. These, howev
are not what is wanted by those who have been brought fs
to face with quantities to be measured, and whose minds
not rest satisfied with lecture-room experiments.

There is also a considerable mass of mathematical memo
which are of great importance in electrical science, but th
lie concealed in the bulky Transactions of learned societic
they do not form a connected system ; they are of very uneqt
merit, and they are for the most part beyond the comprehensi
of any but professed mathematicians.

I have therefore thought that a treatise would be use:
which should have for its principal object to take up t
whole subject in a methodical manner, and which should a
indicate how each part of the subject is brought within t
reach of methods of verification by actual measurement.

‘The general complexion of the treatise differs considerat
from that of several excellent electrical works, published, m:
of them, in Germany, and it may appear that scant justice
done to the speculations of several eminent electricians a
mathematicians. One reason of this is that before I beg
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well as to his published papers, I owe most of what I have
- learned on the subject.

As I proceeded with the study of Faraday, I perceived that
his method of conceiving the phenomena was also a mathe-
matical one, though not exhibited in the conventional form
of mathematical symbols. I also found that these methods
were capable of being expressed in the ordinary mathematical
forms, and thus compared with those of the professed ma-
thematicians.

For instance, Faraday, in his mind’s eye, saw lines of force
traversing all space where the mathematicians saw centres of
force attracting at a distance: Faraday saw a medium where
they saw nothing but distance: Faraday sought the seat of
the phenomena in real actions going on in the medium, they
were satisfied that they had found it in a power of action at a
distance impressed on the electric fluids.

‘When I had translated what I considered to be Faraday’s
ideas into a mathematical form, I found that in general the
results of the two methods coincided, so that the same phe-
nomena were accounted for, and the same laws of action de-
duced by both methods, but that Faraday’s methods resembled
those in which we begin with the whole and arrive at the
parts by analysis, while the ordinary mathematical methods
were founded on the principle of beginning with the parts
and building up the whole by synthesis.

I also found that several of the most fertile methods of
research discovered by the mathematicians could be expressed -
much better in terms of ideas derived from Faraday than in
their original form.

The whole theory, for instance, of the potential, considered
as a quantity which satisfies a certain partial differential equa-
tion, belongs essentially to the method which I have called that
of Faraday. According to the other method, the potential,
if it is to be considered at all, must be regarded as the result
of a summation of the electrified particles divided each by its
distance from a given point. Hence many of the mathematical
discoveries of Laplace, Poisson, Green and Gauss find their
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proper place in this treatise, and their appropriate expressic
in terms of conceptions mainly derived from Faraday.

Great progress has been made in elpctrical science, chie
in Germany, by cultivators of the theory of action at a ¢
tance. The valuable electrical measurements of W. Weber !
interpreted by him according to this theory, and the elect
magnetic speculation which was originated by Gauss, a
carried on by Weber, Riemann, J. and C. Neumann, Lorenz, §
is founded on the theory of action at a distance, but dependi
either directly on the relative velocity of the particles, or
the gradual propagation of something, whether potential
force, from the one particle to the other. The great succ
which these eminent men have attained in the application
mathematics to electrical phenomena, gives, as is natu
additional weight to their theoretical speculations, so t!
those who, as students of electricity, turn to them as -
greatest authorities in mathematical electricity, would proba
imbibe, along with their mathematical methods, their physi
hypotheses.

These physical hypotheses, however, are entirely alien fr
the way of looking at things which I adopt, and one obj
which I have in view is that some of those who wish to stt
electricity may, by reading this treatise, come to see t
there is another way of treating the subject, which is no !
fitted to explain the phenomena, and which, though in so
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I have therefore taken the part of an advocate rather than
that of a judge, and have rather exemplified one method than
attempted to give an impartial description of both. I have
no doubt that the method which I have called the German
one will also find its supporters, and will be expounded with
a skill worthy of its ingenuity.

I have not attempted an exhaustive account of electrical
phenomena, experiments, and apparatus. The student who
desires to read all that is known on these subjects will find
great assistance from the T'raité d Electricité of Professor A.
de la Rive, and from several German treatises, such as Wiede-
mann’s Galvanismus, Riess’ Reibungselektricitdt Beer's Einlei-
tung in die Elektrostatik, &c.

I have confined myself almost entirely to the mathematical
treatment of the subject, but I would recommend the student,
after he has learned, experimentally if possible, what are the
phenomena to be observed, to read carefully Faraday’s Experi-
mental Researches in Electricity. He will there find a strictly
contemporary historical account of some of the greatest elec-
trical discoveries and investigations, carried on in an order
and succession which could hardly have been improved if the
results had been known from the first, and expressed in the
language of a man who devoted much of his attention to
the methods of accurately describing scientific operations and
their results *.

It is of great advantage to the student of any subject to
read the original memoirs on that subject, for science is always
most completely assimilated when it is in the nascent state,
and in the case of Faraday’s Researches this is comparatively
easy, as they are published in a separate form, and may be
read consecutively. If by anything I have here written I
may assist any student in understanding Faraday's modes of
thought and expression, I shall regard it as the accomplish-
ment of one of my principal aims—to communicate to others
the same delight which I have found myself in reading Fara-
day’s Researches.

* Life and Letters of Faraday, vol. i. p. 395.
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The description of the phenomena, and the elementar
of the theory of each subject, will be found in the
chapters of each of the four Parts into which this f
is divided. The student will find in these chapters «
to give him an elementary acquaintance with the
science.

The remaining chapters of each Part are occupied w
higher parts of the theory, the processes of numerical
lation, and the instruments and methods of experi
research.

The relations between electromagnetic phenomena an
of radiation, the theory of molecular electric curren
the results of speculation on the nature of action at
tance, are treated of in the last four chapters of the
volume.

James CLERg MAXwWE

Feb. 1, 1878,



PREFACE T0 THE SECOND EDITION

WHEN I was asked toread the proof-sheets of the second

edition of the Electricity and Magnetism the work of
printing had already reached the ninth chapter, the greater
part of which had been revised by the author.

Those who are familiar with the first edition will see from a
comparison with the present how extensive were the changes
intended by Professor Maxwell both in the substance and in
the treatment of the subject, and how much this edition has
suffered from his premature death. The first nine chapters
were in some cases entirely rewritten, much new matter being
added and the former contents rearranged and simplified.

From the ninth chapter onwards the present edition is
little more than a reprint. The only liberties I have taken
have been in the insertion here and there of a step in the
mathematical reasoning where it seemed to be an advantage
to the reader and of a few foot-notes on parts of the subject
which my own experience or that of pupils attending my
classes shewed to require further elucidation. These foot-
notes are in square brackets.

There were two parts of the subject in the treatment of
which it was known to me that the Professor contemplated
considerable changes: viz. the mathematical theory of the
conduction of electricity in a network of wires, and the de-
‘termination of coefficients of induction in coils of wire. In
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these subjects I have not found myself in a position
from the Professor's notes, anything substantial to ti
a8 it stood in the former edition, with the excepti
numerical table, printed in vol. ii, pp. 317-319. This ta
be found very useful in calculating coefficients of in
in circular coils of wire.

In a work so original, and containing so many de
new results, it was impossible but that there should b
errors in the first edition. I trust that in the present
most of these will be found to have been corrected.
the greater confidence in expressing this hope as, in
some of the proofs, I have had the assistance of
friends conversant with the work, among whom I ms
tion particularly my brother Professor Charles Niw(
Mr. J. J. Thomson, Fellow of Trinity College, Cambrid

W. D. N1ve

TriNITY COLLEGE, CAMBRIDGE,
Ocl. 1, 1881,



PREFACE T0 THE THIRD EDITION

I UNDERTOOK the task of reading the proofs of this

Edition at the request of the Delegates of the Clarendon
Press, by whom I was informed, to my great regret, that Mr.
W. D. Niven found that the pressure of his official duties
prevented him from seeing another edition of this work
through the Press.

The readers of Maxwell’'s writings owe so much to the un-
tiring labour which Mr. Niven has spent upon them, that I am
sure they will regret as keenly as I do myself that anything
should have intervened to prevent this Edition from receiving
the benefit of his care.

It is now nearly twenty years since this book was written,
and during that time the sciences of Electricity and Mag-
netism have advanced with a rapidity almost unparalleled in
their previous history; this is in no small degree due to the
views introduced into these sciences by this book: many of
its paragraphs have served as the starting-points of important
investigations. 'When I began to revise this Edition it was
my intention to give in foot-notes some account of the ad-
vances made since the publication of the first edition, not
only because I thought it might be of service to the students
of Electricity, but also because all recent investigations have
tended to confirm in the most remarkable way the views ad-
vanced by Maxwell. I soon found, however, that the progress
made in the science had been so great that it was impossible
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to carry out this intention without disfiguring the book by a
disproportionate quantity of foot-notes. I therefore decided to
throw these notes into a slightly more consecutive form and
to publish them separately. They are now almost ready for
press, and will I hope appear in a few months. This volume
of notes is the one referred to as the ¢ Supplementary Volume.’
A few foot-notes relating to isolated points which could be
dealt with briefly are given. All the matter added to this
Edition is enclosed within { } brackets.

I have endeavoured to add something in expla.nn,tlon of the
argument in those passages in which I have found from my
experience as a teacher that nearly all students find consider-
able difficulties; to have added an explanation of all passages
in which I have known students find difficulties would have
required more volumes than were at my disposal.

I have attempted to verify the results which Maxwell gives
without proof; I have not in all instances succeeded in
arriving at the result given by him, and in such cases I have
indicated the difference in a foot-note.

I have reprinted from his paper on the Dynamical Theory of
the Electromagnetic Field, Maxwell’s method of determining
the self-induction of a coil. The omission of this from previous
editions has caused the method to be frequently attributed to

In preparing this edition I have received the greatest pos-



CONTENTS

PRELIMINARY.

ON THE MEASUREMENT OF QUANTITIES.
Art, Page
1. The expression of a quantity consists of two factors, the nu-

merical value, and the name of the concrete unit .. .. .. 1

2. Dimensions of derived units .. .. S |
3-5. The three fundamental units—Length, Tlme and Mass “ 2,8
6. Derived units .. .. O
7. Physical continuity and dlscontmmty v e w“ o« 6
8. Discontinuity of a function of more than one vamble . 7
9. Periodic and multiple functions.. .. .. .- 8
10. Relation of physical quantities to directions in space 9
11. Meaning of the words Scalar and Vector .. .. 10

12. Division of physical vectors into two classes, Forces a.nd Fluxes 11
13. Relation between corresponding vectors of the two classes .. 12
14. Line-integration appropriate to forces, surface-integration to

fluxes .. .. O &
15. Longitudinal and rotatlonal vectors e e e e e 13
16. Line-integrals and potentials .. .. .. . 14
17. Hamilton’s expression for the relation between a foroe and its
potential.. .. .. e e e« . 16
18. Cyclic regions and geometry of posntxon e e e w17
19. The potential in an acyclic region is single valued .. .. .. 18
20. System of values of the potential in a cyclic region .. .. .. 19
21. Surface-integrals.. .. {1
22. Surfaces, tubes, and lines of ﬁow .. o e .. 22
23. Right-handed and left-handed relations in space .. .. . 25
24. Transformation of a line-integral into a surface-integral .. .. 27

25. Effect of Hamilton’s operation V on a vector function .. .. 29
26. Nature of the operation V? - ) |
VOL. L b



xviii CONTENTS.

28.
29.
30.

31.

32.
33.
34.

35.
36.
37.
38.
39.
40.

41,

PART L

ELECTROSTATIOS.

CHAPTER L

DESCRIPTION OF PHENOMENA.

. Electrification by friction. Electrification is of two kinds, to

which the names of Vitreous and Resinous, or Positive and
Negative, have been given

Electrification by induction . o

Electrification by conduction. Conductors and msnlators

In electrification by friction the quantity of the positive elec-
trification is equal to that of the negative electrification ..

To charge a vessel with a quantity of electricity equal and
opposite to that of an excited body .. .

To discharge a conductor completely into a metalhc vesael .

Test of electrification by gold-leaf electroscope.. .. .. ..
Electrification, considered as a measurable quantlty, may be
called Electricity .. .. .. e e
Electricity may be treated as a physlcal quantlty o e e
Theory of Two fluids .. .. e

Theory of One fluid .. ..

Measurement of the force between electnﬁed bodles

Relation between this force and the quantities of electricity
Variation of the force with the distance .. .. .

42. Definition of the electrostatic unit of electnclty —Its



CONTENTS. xix

Art. Page
54. Imposesibility of an absolute charge .. .. .. .. . . 56
55. Dilruptive discharge.—Glow .. .. . . . . . &7
56. Brush . 11
57. Spark .. .. v e e e e . 60
58. Electrical phenomena of Tourmalme O T ) |
59. Plan of the treatise, and sketch of its results .. .. .. .. 62

60. Electric polarization and displacement .. .. w . 64
61. The motion of electricity analogous to that of an mcompresmble
fluid . B 14

62. Peculiarities of the theory ofthis treatise e e e e .. 68

CHAPTER IL

ELEMENTARY MATHEMATICAL THEORY OF ELECTRICITY.

63. Definition of electricity as a mathematical quantity.. .. .. 71
64. Volume-density, surface-density, and line-density .. .. .. 72
65. Definition of the electrostatic unit of electricity .. .. .. 73

6. Law of force between electrified bodies .. .. .. . . 74
67. Resultant force between two bodies .. .. .. .. .. .. 74

68. Resultant intensity at & point .. .. o e w75
69. Line-integral of electric intensity ; electromotlve force .. .. 76
70. Electric potential . e o e e e . T7

71. Resultant intensity in terts of the potentml B €
72. The potential of all points of a conductor is the same .. .. 78
73. Potential due to an electrified system.. .. .. .. . . 80
74 a. Proofof the law of the inverse square. Cavendish’s experiments 80
74 b. Cavendish’s experiments repeated in a modified form .. .. 81

74 ¢, d, e. Theory of the experiments .. .. .. .. .. 83-85
75. Surface-integral of electric induction.. .. e o 87
76. Induction through a closed surface due to a smg]e centre of
force B - 14
77. Poisson’s extonslon of Laplace 8 equatlon . w . 89
78 a, b, ¢. Conditions to be fulfilled at an electrified aurfaoe .  90-92
79. Resultant force on an electrified surface .. .. .. 93

80. The electrification of a conductor is entirely on the surface . 95
81. A distribution of electricity on lines or points is physically
impossible .. .. . . . . . . . . 96

82. Lines of electric indaction.. .. .. . . . . . 97
83 a. Specific inductive capacity .. .. .. . . . . 99
83 5. Apparent distribution of electricity e e e w99

Appendix to Chap. II T 11§

b2



xx CONTENTS.

CHAPTER III

ON ELECTRICAL WORK AND ENERGY IN A SYSTEM OF CONDUCTORE
Art, )
84. On the superposition of electrified systems. Expression for the

energy of a system of conductors .. .. . .. |
85 a Change of the energy in passing from one state to another w1
85 b. Relations between the potentials and the charges .. .. 1
86. Theorems of reciprocity .. .. 1
87. Theory of a system of conductors. Coeﬂiclents of potentml Ca-

pacity. Coefficients of induction .. .. .. .. . .1
88. Dimensions of the coefficients .. .. .

89 a. Necessary relations among the coeﬂiclents of potentml 1
89 b. Relations derived from physical considerations .. .. .. 1
89 o. Relations among coefficients of capacity and induction .. .. 1
89 d. Approximation to capacity of one conductor.. .. |
89 e. The coefficients of potential changed by a second condnctor 1
90 a. Approximate determination of the coefficients of capacity and

induction of two conductors .. .. . . .. .1

90 b. Similar determination for two condensers .. .. .- .. 1

91. Relative magnitudes of coefficients of potential .. .. .. 1

92. And of induction . o o 1
93 a. Mechanical force on a conductor expressed in terms of the

charges of the different conductors of the system.. .. .. 1

93 5. Theorem in quadratic functions 1

93 0. Work done by the electric forces during the dlsplacement of a
system when the potentials are maintained constant .. .. 1



CONTENTS. xxi

Art. Page

99 b. Proof of unique solution for the potential when its value is
given at every point of a closed surface .. .. . .. 136

100 a—e. Thomson’s Theorem .. .. e e . 138-141

101 a-h. Expression for the energy when the dielectric constants
are different in different directions. Extension of Green's
Theorem to a heterogeneous medium .. .. .. . 142-147
102 a. Method of finding limiting values of electrical coefficients .. 148
102 4. Approximation to the solution of problems of the distribution

of electricity on conductors at given potentials .. .. .. 150
102 ¢. Application to the case of a condenser with slightly curved
plates .. . . . . . w e e . . 152
CHAPTER V.

MECHANICAL ACTION BETWEEN TWO ELECTRICAL SYSTEMS.

103. Expression for the force at any point of the medium in terms
of the potentials arising from the presence of the two systems 155
104. In terms of the potential arising from both systems .. .. 156
105. Nature of the stress in the medium which would produce the
same force .. .. e e e e 157
106. Further determination of the type of stresa e o . 159
107. Modification of the expressions at the surface of a conductor.. 161
108. Discussion of the integral of Art. 104 expressing the force
when taken over all space .. .. .. e . 163
109. Statements of Faraday relative to the longltudlnal temnon and
lateral pressure of the lines of force e .. 164
110. Objections to stress in a fluid considered oo e .. 165
111. Statement of the theory of electric polarization .. .. .. 166

CHAPTER VI
POINTS AND LINES OF EQUILIBRIUM.

112. Conditions for a point of equilibrium .. .. .. .. . 169
113. Number of points of equilibrium .. .. e . . 170
114. At a point or line of equilibrium there is a comcal point or a

line of self-intersection of the equipotential surface .. .. 172
115. Angles at which an equipotential surface intersects itself .. 172
116. The equilibrium of an electrified body cannot be stable.. .. 174



xxii CONTENTS.

CHAPTER VIL

FORMS OF EQUIPOTENTIAL SURFACES AND LINES OF FLOW.
Art.
117. Practical importance of a knowledge of these forms in simple
118. Two electnﬁed pomts, ratio 4 : l (Fig. n . . o
119. Two electrified points, ratio 4 : — 1. (Fig. II) .. .. .. ]
120. An electrified point in a uniform field of force. (Fig. IIT) .
121. Three electrified points. Two spherical eqmpotentml sur-

faces. (Fig. IV) .. .. . o 1
122. Faraday’s use of the oonceptxon of lines of force |
123. Method employed in drawing the diagrams .. .. .. . 1

CHAPTER VIIL
SIMPLE CASES OF ELECTRIFICATION.

124. Two parallel planes .. .. .. .. .. . . . .1
125. Two concentric spherical surfaces .. .. .. . . .1
126. Two coaxal cylindric surfaces .. .. 1
127. Longitudinal force on a cylinder, the ends of wlnch are sur-

rounded by cylinders at different potentials.. .. .. .. 1

CHAPTER IX.
SPHERICAL HARMONICS.

128. Heine, Todhunter, Ferrers .. .. .. .. .. . . 1



CONTENTS. xxiii
Art Page
134. Value of /' ¥, Yds, whenm=n .. .. . .. . . 204
135 a. Special case when Y , is a zonal harmonic .. .. .. .. 205
135 5. Laplace’s expansion of a surface harmonic .. .. .. .. 206
136. Conjugate harmonics . 1Y
137. Standard harmonics of any order . .. 208
138. Zonal harmonics . . 209
139. Laplace’s coefficient or Blaxal lmrmomc . « .. 210
140 a. Tesseral harmonics. Their trigonometrical expansion . 210
140 . Notations used by various authors o . . 213
140 c. Forms of the tesseral and sectorial harmomca .. 214
141. Surface integral of the square of a tesseral harmonic .. 214

142 a. Determination of a given tesseral harmonic in the expansion

of a function .. .. e e . 215
142 b. The same in terms of dlﬂ'erentml coefficients of the functxon 215
143. Figures of various harmonics .. .. .. e . . 218
144 a. Spherical conductor in a given field of force o e e 217

144 b. Spherical conductor in a field for which Green's function is
known .. .. - 218
145 a. Distribution of electnclty ona nea.rly sphencal conductor 220
145 b. When acted on by external electrical force .. .. 222

145 c. When enclosed in a nearly spherical and nearly concentnc
vessel .. .. .. . .. 223
146. Equilibrium of electnclty on two spherwal conductors .. 224

CHAPTER X.
CONFOCAL SURFACES OF THE SECOND DEGREE.

147. The lines of intersection of two systems and their intercepts
by the third system 232

148. The characteristic equation of V in terms of ellxpeondal co-
ordinates o . . 233
149. Expression of q, B, yin terms of elliptic functlons 234

150. Particular solutions of electrical distribution on the confocal
surfaces and their limiting forms .. .. . .. 235

151. Continuous transformation into a ﬁg'nre of revolutnon about
the axis of z .. .. 238
162. Transformation into a ﬁg‘ure of revolutxon about. t.he axis of x.. 239
153. Transformation into a system of cones and spheres .. .. 240
154. Confocal paraboloids.. .. .. .. .. . . . . 240



_xxiv

Art.
155.
156.

157.
158.
159.
160.
161.
162.
163.
164.
165.

166.
167.

168.
169.
170.
171.
172.
173.

OONTENTS.

CHAPTER XI.
THEORY OF ELECTRIC IMAGES.
Page
Thomson’s method of electric images .. .. .. .. 244
When two points are oppositely and unequally electrified, the
surface for which the potential is zero is a sphere .. .. 245
Electric images.. .. . .. 246
Distribution of electnclty on the mrfm of the sphere . 248
Image of any given distribution of electricity.. .. .. .. 249
Resultant force between an electrified point and sphere.. .. 250 -
Images in an infinite plane conducting surface .. .. .. 252
Electric inversion .. .. .. e e we e .. 253
Geometrical theorems about inversion .. .. . 254
Application of the method to the problem of Art. 158 - e 255
Finite systems of successive images.. .. . 257
Case of two spherical surfaces intersecting at an angleg . 258
Enumeration of the cases in which the number of images is
finite .. .. . o« . .. 259
Case of two spheres mtersect.mg orthogonally e e 261
Case of three spheres intersecting orthogonally . .. 263
Case of four spheres intersecting orthogonally e e e 265
Infinite series of images. Case of two concentric spheres .. 266
Any two spheres not intersecting each other .. .. .. .. 268
Calculation of the coefficients of capacity and induction .. .. 270



CONTENTS. XXV

CHAPTER XII,

CONJUGATE FUNCTIONS IN TWO DIMENSIONS.

Art. Page
182. Cases in which the quantities are functions of # and y
only v e e e e e e e . 284
183. Conjugate fnnctlons o 1.1
184. Conjugate functions may be a.dded or subtracted o 286
185. Conjugate functions of conjugate functions are themselves
conjugate o~ e ee e ee e s .. 287

186. Transformation of Pomsons equatlon e e e . .. 289
187. Additional theorems on conjugate functions .. .. .. .. 290

188. Inversion in two dimensions .. .. .. .. .. . .. 290
189. Electric images in two dimensions .. .. .. .. .. . 291
190. Neumann's transformation of this case .. .. .. 292
191. Distribution of electricity near the edge of & conductor formed

by two plane surfaces .. .. e e e . 294
192. Ellipees and hyperbolas. (Fig. X) e e e ae .. 296

193. Transformation of this case. (Fig. XI) .. .. .. . . 297
194. Application to two cases of the flow of electricity in a con-

ducting sheet .. .. .. e e e 299
195. Application to two cases of electneal mductlon e e .. 299
196. Capacity of a condenser consisting of a circular disk between

two infinite planes .. .. .. 300
197. Case of a series of equidistant planes cut oﬂ' by a plane at nght

angles to them - 1}
198. Case of a furrowed surface .. .. .. . . . . 303
199. Case of a single straight groove - .. o .. 304
200. Modification of the results when the groove is cu'culm' .. 305
201. Application to Sir W. Thomson’s guard-ring .. .. 308
202. Case of two parallel plates cut off by a perpendxcular plane

(Fig XII) .. .. . o 309

203. Case of a grating of parallel wires. (F‘lg XIII) - . 310
204. Case of a single electrified wire transformed into that of the

grating .. .. 311
205. The grating used ah a shleld to protect a body from electncal
influence . .. 312

06. Method of appronmatxon apphed to the case of the gratmg .. 314



xxvi

207.
208.
209.

210.
211.
212.
213.
214.

215.
216.

217.

218.
219.
220.
221.
222.

CONTENTS.

CHAPTER XIIL
ELECTROSTATIO INSTRUMENTS.

The frictional electrical machine .. .. .. .. .,

The electrophorus of Volta .. ..

Production of electrification by mechamcal work —Nncho]
Revolving Doubler .

Principle of Varley’s and Thomson’s electncal macbmes

Thomson’s water-dropping machine e

Holtz's electrical machine e

Theory of regenerators applied to electncal mchmes

On electrometers and electroscopes. Indicating instrun
and null methods. Difference between registmtion and
surement . o

Coulomb’s Torsion Balance for measunng chsrges e

Electrometers for measuring potentlals Snow-Harris's

Thomson’s . .. .
Principle of the guard—rmg. Thomsons Absolute Ele
meter .. e oo we wh e we e e e

Heterostatic method.. .. ..

Self-acting electrometers. —Thomson 8 Quudrant Electron
Measurement of the electric potential of a small body
Measurement of the potential at a point in the air
Measurement of the potential of a conductor without tc



OONTENTS. xxvii

PART II
ELECTROKINEMATIOS,

CHAPTER L

THE ELECTRIC CURRENT,

Art Page
230. Current produced when conductors are dxscharged - . 354
231. Transference of electrification .. .. .. e . . 354
232. Description of the voltaic battery .. .. .. .. .. .. 355
233. Electromotive force .. .. .. . . . . . . 356
234. Production of a steady current S 1.1
235. Properties of the current .. .. . .. . . . . 3857
236. Electrolytic action .. .. w . .. 357
237. Explanation of terms connected mth electrolysm « .. . 3858
238. Different modes of passage of the current .. .. .. .. 359
239. Magnetic action of the current e e ee e . .. 360
240. The Galvanometer .. .. .. .. . . . . .. 360
CHAPTER II.

CONDUCTION AND RESISTANCE.

241. Ohm’s Law .. .. o e e . 362
242. Generation of heat by the current Joule 8 Law e 363
243. Analogy between the conduction of electricity and that of heat 364
244. Differences between the two classes of phenomena .. .. 365

245. Faraday’s doctrine of the impossibility of an absolute charge 365

CHAPTER III.

ELECTROMOTIVE FORCE BETWEEN BODIES IN CONTACT.

246. Volta’s law of the contact force between different metals at the
same temperature .. .. .. .. . . . . . 367
247. Effect of electrolytes . . .. 368
248. Thomson's voltaic current in whlch gravxty perform.s the part
of chemical action .. .. .. . .. e« .. 368



xxviii CONTENTS.

Art.

249. Peltier's phenomenon. Deduction of the thermoelectric e
tromotive force at a junction . o e e

250. Seebeck’s discovery of thermoelectric currenta e

251. Magnus’s law of a circuit of one metal .. .. . ..

252. Cumming’s discovery of thermoelectric inversions ..

253. Thomson’s deductions from these facts, and discovery of
reversible thermal effects of electric currents in copper 1
iniron .. . .

254. Tait’s law of the electromotlve force of a thermoelectﬂc pml

CHAPTER 1IV.
ELECTROLYSIS.

255. Faraday’s law of electrochemical equivalents .. .. ..
256. Clausius’s theory of molecular agitation .. .. ..

257. Electrolytic polarization .. .. o e e
258. Test of an electrolyte by pola.rnzatlon e e
259. Difficulties in the theory of electrolysis .. .. .. ..
260. Molecular charges .. .. o e e
261. Secondary actions observed at the electrodes .
262. Conservation of energy in electrolysis .. .. .. ..

263. Measurement of chemical affinity as an electromotive force

CHAPTER V.



CONTENTS. xxix

CHAPTER VL
MATHEMATICAL THEORY OF THE DISTRIBUTION OF ELECTRIC
CURRENTS.
Art. Page
273. Linear conductors .. .. .. . . . . . . 399
274. Ohm’s Law ve  ee  ee ee ee  se e ee e . 899
275. Linear conductors in series .. .. .. . .. .. .. 399
276. Linear conductors in multipleare .. .. .. .. .. .. 400
277. Resistance of conductors of uniform section .. .. .. .. 401

278. Dimensions of the quantities involved in Ohm’s law .. .. 402
279. Specific resistance and conductivity in electromagnetic measure 403

280. Linear systems of conductors in general .. .. .. .. 403

281. Reciprocal property of any two conductors of the system .. 405

282. a, b. Conjugate conductors e ee e e e e .. 406

283. Heat genemted in the system .. .. 407
284. The heat is & minimum when the current is dlstnbuted ac-

cording to Ohm’slaw .. .. .. . . . . . 408

Appendix to Chap. VI  .." ... .. . .. . . . 409

CHAPTER VII.

CONDUCTION IN THREE DIMENSIONS.

285. Notation .. .. P 3 §
286. Composition and msolutlon of electnc currents e . 411
287. Determination of the quantity which flows through any

surface .. . e e e e e 412
288. Equation of a surﬁwe of ﬁow o - . 413
289. Relation between any three systems of surfscen of ﬂow . 413
290. Tubes of flow .. .. . e . .. 413
291. Expression for the components of the flow in terms of surfaces

of low .. .. 414
292, Simplification of thm expresswn by a proper chowe of para-

meters .. .. - . 414
293. Unit tubes of flow used as 8 complete method of determlmng

the current .. .. o e e e . 414
294. Current-sheets and current-functlons e e e . .. 415
295. Equation of ‘ continuity’ .. .. . . 415

296. Quantity of electricity which flows through a given surface . 417



Art.

207.
298.
299.
300.
301.
302.
303.
304.
305.
306.

307.
308.
309.

310.
311.

CONTENTS.
CHAPTER VIIL )
BESISTANCE ARD CONDUCTIVITY IN THREE DIMENSIONS.
Equations of resistance .. .. .. .. .. . .
Equations of conduction .. .. .. . . .
Rate of generation of heat e e e e e
Conditions of stability ..

Equation of continuity in a homogeneous medmm o
Solution of the equation .. .. o
Theory of the coefficient 7. It probably does not exlst

Generalized form of Thomson’s theorem .. .. .. ..

Proof without symbols .. .. o

Lord Rayleigh’s method applied to a wire of va.rmble sect:ox
Lower limit of the value of the resistance .. .. ..

Higher limit .. .. . o

Lower limit for the oorrectxon for the ends of the wire ..

Higher limit .. .. . . . o o . .

CHAPTER IX.

CONDUCTION THROUGH HETEROGENEOUS MEDIA.

Surface-conditions .. .. .. . . . .
Spherical surface .. .. . . . L .



CONTENTS. xxxi

Art. . Page
322. Medium containing parallelepipeds of another medium .. .. 447
323. The rotatory property cannot be introduced by means of con-
ducting channels .. .. . .. 448
324. Construction of an artificial sohd havmg given coeﬂiclenta of .
longitudinal and transverse conductivity .. .. .. .. 449

CHAPTER X.
CONDUCTION 1N DIELECTRICS.

325. In a strictly homogeneous medium there can be no internal

charge .. .. . . w e o o e o . 450
326. Theory of a condenser in which the dielectric is not a perfect

insulator e e e e .. 451
327. No residual charge due to mmple conduct.lon e e e .. 452
328. Theory of a composite accumulator .. .. .. .. .. . 452
329. Residual charge and electrical absorption e e . . 454
330. Total discharge . e ee e e .. 456
331. Comparison with the conductxon of heat o e . 458

332. Theory of telegraph cables and comparison of the eqnatnons
with those of the conduction of heat .. .. .. .. .. 460

333. Opinion of Ohm on this subject ... .. .. 461

334. Mechanical illustration of the properties of a dleloctnc . . 461

CHAPTER XI.
MEASUREMENT OF THE ELECTRIC RESISTANCE OF CONDUCTORS.

335. Advantage of using material standards of resistance in electrical

measurements . o 465

336. Different standards which have been used and dlﬁ'erent systems
which have been proposed .. .. .. .. .. . . 466
337. The electromagnetic system of units . .. 466

338. Weber's unit, and the British Association umt or Ohm e« .. 466
339. Professed value of the Ohm 10,000,000 metres per second .. 466

340. Reproduction of standards . Y4
341. Forms of resistance coils .. .. .. . .. . . . 468
342. Coils of great resistance .. .. .. .. . . . .. 469
343. Arrangement of coils in series .. .. .. .. .. . . 470

344. Arrangement in multiplearc .. .. . . . .. . 470



xxxii

345.
346.
347.
348,

349.
350.
351.

352.
353.
354.
356.
356.
367.

358.

359.
360.
361.
362.
363.
364.
365.
366.

CONTENTS.

On the comparison of resistances. (1) Ohm’s method ..
(2) By the differential galvanometer .. .. .. .
(8) By Wheatstone’s Bridge .. .. .. . ..
Estimation of limits of error in the determination ..

Best arrangement of the conductors to be compared

On the use of Wheatstone’s Bridge .. .. .. . ..
Thomson’s method for small resistances .. .. .
Matthiessen and Hockin’s method for small resmtances .
Comparison of great resistances by the electrometer ..
By accumulation in a condenser .. .. .. .. .
Direct electrostatic method . .
Thomson’s method for the resistance of a galvanometer .
Mance’s method of determining the resistance of a battery
Comparison of electromotive forces .. .. .. .. ..

CHAPTER XII.
ELECTRIC RESISTANCE OF SUBSTANOES

Metals, electrolytes, and dielectrics .. .. .. .. ..
Resistance of metals .. .. .. .. . . . .
Resistance of mercury .. .. .. .. . .
Table of resistance of metals .. .. .. .. ..
Resistance of electrolytes o

Experiments of Paalzow .. .. e
Experiments of Kohlrausch and N lppoldt o e e
Resistance of dielectrics .. .. .. . . . ..



ELECTRICITY AND MAGNETISM.

PRELIMINARY.
ON THE MEASUREMENT OF QUANTITIES.

1.] EvVERY expression of a Quantity consists of two factors or
components. One of these is the name of a certain known quan-
tity of the same kind as the quantity to be expressed, which is
taken as a standard of reference. The other component is the
number of times the standard is to be taken in order to make up
the required quantity. The standard quantity is technically
called the Unit, and the number is called the Numerical Value
of the quantity.

There must be as many different units as there are different
kinds of quantities to be measured, but in all dynamical sciences
it is possible to define these units in terms of the three funda-
mental units of Length, Time, and Mass. Thus the units of area
and of volume are defined respectively as the square and the
cube whose sides are the unit of length.

Sometimes, however, we find several units of the same kind
founded on independent considerations. Thus the gallon, or the
volume of ten pounds of water, is used as a unit of capacity as
well as the cubic foot. The gallon may be a convenient measure
id some cases, but it is not a systematic one, since its numerical
relation to the cubic foot is not a round integral number.

2.] In framing a mathematical system we suppose the funda-
mental units of length, time, and mass to be given, and deduce
all the derivative units from these by the simplest attainable
definitions.

The formulae at which we arrive must be such that a person
of any nation, by substituting for the different symbols the

VOL. I. B



2 PRELIMINARY.

numerical values of the quantities as measured by ]
pational units, would arrive at a true result.

Hence, in all scientific studies it is of the greatest imf
to employ units belonging to a properly defined system.
know the relations of these units to the fundamental 1
that we may be able at once to transform our results f
system to another.

This is most conveniently done by ascertaining the din
of every unit in terms of the three fundamental units.
given unit varies as the nth power of one of these un
said to be of n dimensions as regards that unit. -

For instance, the scientific unit of volume is always {
whose side is the unit of length. If the unit of lengtl
the unit of volume will vary as its third power, and the
volume is said to be of three dimensions with respect to
of length.

A knowledge of the dimensions of units furnishes a te:
ought to be applied to the equations resulting from any len
investigation. The dimensions of every term of such &
tion, with respect to each of the three fundamental uni
be the same. If not, the equation is absurd, and contai
error, a8 its interpretation would be different according
arbitrary system of units which we adopt *.

The Three Fundamental Units.
8.] (1) Length. The standard of length for scientific |



5.] THE THREE FUNDAMENTAL UNITS. 3

In astronomy the mean distance of the earth from the sun is
sometimes taken as a unit of length,

In the present state of science the most universal standard of
length which we could assume would be the wave length in
vacuum of a particular kind of light, emitted by some widely
diffused substance such as sodium, which has well-defined lines
in its spectrum. Such a standard would be independent of any
changes in the dimensions of the earth, and should be adopted
by those who expect their writings to be more permanent than
that body. '

In treating of the dimensions of units we shall call the unit of
length [L]. If! is the numerical value of a length, it is under-
stood to be expressed in terms of the concrete unit [L], so that
the actual length would be fully expressed by {[L].

4.] (2) Time. The standard unit of time in all civilized
countries is deduced from the time of rotation of the earth
about its axis. The sidereal day, or the true period of rotation
of the earth, can be ascertained with great exactness by the
ordinary observations of astronomers; and the mean solar day
can be deduced from this by our knowledge of the length of
the year.

The unit of time adopted in all physical researches is one
second of mean solar time.

In astronomy a year is sometimes used as a unit of time. A
more universal unit of time might be found by taking the
periodic time of vibration of the particular kind of light whose
wave length is the unit of length.

We shall call the concrete unit of time [7'], and the numerical
measure of time 2. :

5.] (3) Mass. The standard unit of mass is in this country
the avoirdupois pound preserved in the Exchequer Chambers.
The grain, which is often used as a unit, is defin~d + >v ¢

7000th of this pound. . .
In thep:,r:o.;...x sysg)m it is the gramme, which is theoretically

«ne mass of & cubic centimdtre of distilled water at standard
temperature and pressure, but practically it is the thousandth
part of the standard kilogramme preserved in Paris.

The accuracy with which the masses of bodies can be com-
pared by weighing. is far greater than that hitherto attained in
the measurement of lengths, so that all masses ought, if possible,

" B2



4 “ PRELIMINARY,

to be compared directly with the standard, and not deduc
experiments on water.

In descriptive astronomy the mass of the sun or tha
earth is sometimes taken as a unit, but in the dynamica
of astronomy the unit of maass is deduced from the units
and length, combined with the fact of universal gravitati
astronomical unit of mass is that mass which attracts
body placed at the unit of distance so as to produce in tl
the unit of acceleration.

In framing a universal system of units we may eithe
the unit of mass in this way from those of length a
already defined, and this we can do to a rough approxim
the present state of soience; ar, if we expect * soon to b
determine the mass of a single molecule of a standard su
we may wait for this determination before fixing a v
standard of mass.

We shall denote the concrete unit of mass by the sym
in treating of the dimensions of other units. The unit
will be taken as one of the three fundamental units. V
in the French system, a particular substance, water, is -
a standard of density, then the unit of mass is no long
pendent, but varies as the unit of volume, or as [L].

If, as in the astronomical system, the unit of mass is
with respect to its attractive power, the dimensions of
[Z3T-3%).

For the acceleration due to the attraction of a mass

m.
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tion in which the mass of a body appears in some but not in all
of the terms *.

Derived Units.

6.] The unit of Velocity is that velocity in which unit of length
is described in unit of time. Its dimensions are [LT-'].

If we adopt the units of length and time derived from the
vibrations of light, then the unit of velocity is the velocity of
light. : :

The unit of Acceleration is that acceleration in which the
velocity increases by unity in unit of time. Its dimensions are
[LT-%].

The unit of Density is the density of a substance which con-
tains unit of mass in unit of volume. Its dimensions are [ML-3].

The unit of Momentum is the momentum of unit of mass
moving with unit of velocity. Its dimensions are [MLT-!].

The unit of Force is the force which produces unit of momentum
in unit of time. Its dimensions are [ MLT-?].

This is the absolute unit of force, and this definition of it is
implied in every equation in Dynamics. Nevertheless, in many
text books in which these equations are given, a different unit of
force is adopted, namely, the weight of the national unit of mass;
and then, in order to satisfy the equations, the national unit of
mass is itself abandoned, and an artificial unit is adopted as the
dynamical unit, equal to the national unit divided by the
numerical value of the intensity of gravity at the place. In this
way both the unit of force and the unit of mass are made to
depend on the value of the intensity of gravity, which varies
from place,to place, so that statements involving these quantities
are not complete without a knowledge of the intensity of gravity
in the places where these statements were found to be true.

The abolition, for all scientific purposes, of this method of
measuring forces is mainly due to the introduction by Gauss of

¢ If a centimetre and a second nre taken as units, the astronomical unit of mass
would be about 1.587 x 10" grammes, or 15.37 tonnes, according to Baily's repetition
of Cavendish’s experiment. Baily adopts 5.6604 as the mean result of all his experi-
ments for the mean density of the earth, and this, with the values used by Baily for
the dimensions of the earth and the intensity of gravity at its surface, gives the
above value as the direct result of his experiments.

{Cornn’s recalculation of Baily’s results gives 5.55 as the mean density of the
earth, and therefore 1.50 x 10’ grammes as the astronomical unit of mass; while

Cornu’s own experiments give 5.50 as the mean density of the earth, and 1.49 x 107
grammes 88 the astronomical unit of mass. }
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a general system of making observations of magnetic
countries in which the intensity of gravity is different.
forces are now measured according to the strictly d
method deduced from our definitions, and the numerie:
are the same in whatever country the experiments are 1

The unit of Work is the work done by the unit of for
through the unit of length measured in its own direct
dimensions are [ML*T-?].

The Energy of a system, being its capacity of performi
is measured by the work which the aystem is capabl
forming by the expenditure of its whole energy.

The definitions of other quantities, and of the units
they are referred, will be given when we require them.

In transforming the values of physical quantities deter
terms of one unit, 80 as to express them in terms of &
unit of the same kind, we have only to remember that (
pression for the quantity consists of two factors, the uni
numerical part which expresses how often the unit is to
Hence the numerical part of the expression varies inv
the magnitude of the unit, that is, inversely as the variou
of the fundamental units which are indicated by the di
of the derived unit.

On Physical Continuity and Discontinuity.

7.] A quantity is said to vary continuously if, when
from one value to another, it assumes all the intermedia
We may obtain the conception of continuity from a ¢



8.] CONTINUITY AND DISCONTINUITY. 7

from z, to 2,, u passes continuously from u, to u,, but when «
pesses from z, to z,, u passes from u,” to u,, u,” being different
from u,, then w is said to have a discontinuity in its variation
with respect to  for the value « = z,, because it passes abruptly
from u, to u,” while & passes continuously through z,.

If we consider the differential coefficient of » with respect to

for the value 2 = «, as the limit of the fraction

Uy —Uy

Zy—%Ty .
when z; and z, are both made to approach x, without limit, then,
if z, and =, are always on opposite sides of z;, the ultimate value
of the numerator will be u,"—u,, and that of the denominator
will be zero. If u is a quantity physically continuous, the dis-
continuity can exist only with respect to particular values of the
variable z. We must in this case admit that it has an infinite
differential coefficient when # = #,. If u is not physically con-
tinuous, it cannot be differentiated at all.

It is possible in physical questions to get rid of the idea of .
discontinuity without sensibly altering the conditions of the
case. If x, is a very little less than x,, and z, a very little
greater than z,, then u, will be very nearly equal to %, and u,
to u,. We may now suppose % to vary in any arbitrary but
continuous manner from u, to u, between the limits «, and ;.
In many physical questions we may begin with a hypothesis of
this kind, and then investigate the result when the values of
z, and z, are made to approach that of z, and ultimately to reach
it, If the result is independent of the arbitrary manner in
which we have supposed « to vary between the limits, we may
assume that it is true when w is discontinuous.

Discontinuity of a Function of more than One Variable.

8] If we suppose the values of all the variables except z to be
. eomstant, the discontinuity of the function will occur for particular
Smlnes of o, and these will be connected with the values of the
i by an equation ‘which we may write
I,&O.) =0.
& =0. When ¢ is positive
+ ¥ % &c.). When ¢ is




8 PRELIMINARY.

negative it will have the form F, (z, y, 2, &ec.). There ne«
necessary relation between the forms F, and F,. -

To express this discontinuity in a mathematical form,
of the variables, say «, be expressed as a function of ¢ :
other variables, and let F, and F; be expressed as func
¢,Y,2,&c. We may now express the general form of the {
by any formula which is sensibly equal to F, when ¢ is |
and to F; when ¢ is negative. Such a formula is the follc

pfitetFy
1+e*¢

As long as n is a finite quantity, however great, F w
continuous function, but if we make = infinite ' will be
F; when ¢ is positive, and equal to F, when ¢ is negativ

Discontinuity of the Derivatives of a Continuous Fun

The first derivatives of a continuous function may be
tinuous. Let the values of the variables for which the
tinuity of the derivatives occurs be connected by the equ

¢=¢(x,9,2..)=0,
and let F; and F; be expressed in terms of ¢ and n—
variables, say (y, z...).

Then, when ¢ is negative, F; is to be taken, and wt
positive F, is to be taken, and, since F is itself continuot
¢ is zero, F; = F,.

dF,

. . .« . AR
Hence, when ¢ is zero, the derivatives rry and a9
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multiples of @. In this case « is called a multiple function of u,
and a is called its cyclic constant.

The differential coefficient g—: has only a finite number of
values corresponding to a given value of u.

On the Relation of Physical Quantities to Directions in Space.

10.] In distinguishing the kinds of physical quantities, it is of
great importance to know how they are related to the directions
of those coordinate axes which we usually employ in defining the
positions of things. The introduction of coordinate axes into
geometry by Des Cartes was one of the greatest steps in mathe-
matical progress, for it reduced the methods of geometry to
calculations performed on numerical quantities. The position
of a point is made to depend on the lengths of three lines which
are always drawn in determinate directions, and the line joining
two points is in like manner considered as the resultant of three
lines.

But for many purposes of physical reasoning, as distinguished
from calculation, it is desirable to avoid explicitly introducing
the Cartesian coordinates, and to fix the mind at once on a point
of space instead of its three coordinates,and on the magnitude
and direction of a force instead of its three components. This
mode of contemplating geometrical and physical quantities is
more primitive and more natural than the other, although the
ideas connected with it did not receive their full development
till Hamilton made the next great step in dealing with space, by
the invention of his Calculus of Quaternions *.

As the methods of Des Cartes are still the most familiar to
students of science, and as they are really the most useful for
purposes of calculation, we shall express all our results in the
Cartesian form. I am convinced, however, that the introduction
of the ideas, as distinguished from the operations and methods of
Quaternions, will be of great use to us in the study of all parts
of our subject, and especially in electrodynamics, where we have
to deal with a number of physical quantities, the relations of
which to each other can be expressed far more simply by a few
expressions of Hamilton’s, than by the ordinary equations.

® {¥or an elementary acovunt of Quaternions, the reader may be referred to Kel-
land and Tait's ‘Introduction to Quaternions,” Tait's ¢ Elementary Treatise on
Quaternions,’” and Hamilton’s ¢ Elements of Quaternions.’}
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11.] One of the most important features of Hamilton’s
is the division of quantities into Scalars and Vectors.

A Scalar quantity is capable of being completely defi
single numerical specification. Its numerical value dos
any way depend on the directions we assume for the e«
axes.

A Vector, or Directed quantity, requires for its definiti
numerical specifications, and these may most simply b
stood as having reference to the directions of the coordin

Scalar quantities do not involve direction. The vol
geometrical figure, the mass and the energy of a materi
the hydrostatical pressure at a point in a fluid, and the :
at a point in space, are examples of scalar quantities.

A vectar quantity has direction as well as magnitud
such that a reversal of its direction reverses its sign.
placement of a point, represented by a straight line dra
its original to its final position, may be taken as the
vector quantity, from which indeed the name of Y
derived.

The velocity of a body, its momentum, the force acti
an electric current, the magnetization of a particle of
instances of vector quantities.

There are physical quantities of another kind which a
to directions in space, but which are not vectors. Stre
strains in solid bodies are examples of these, and so ar
the properties of bodies considered in the theory of elast
in the theory of double refraction. Quantities of t!
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In the calculus of quaternions, the position of a point in space
is defined by the vector drawn from a fixed point, called the
origin, to that point. If we have to consider any physical
quantity whose value depends on the position of the point, that
quantity is treated as a function of the vector drawn from the
origin. The function may be itself either scalar or vector. The
density of a body, its temperature, its hydrostatical pressure, the
potential at a point, are examples of scalar functions. The
resultant force at a point, the velocity of a fluid at a point, the
velocity of rotation of an element of the fluid, and the couple
producing rotation, are examples of vector functions.

12.] Physical vector quantities may be divided into two classes,
in one of which the quantity is defined with reference to a line,
. while in the other the quantity is defined with reference to an
area.

For instance, the resultant of an attractive force in any direction
may be measured by finding the work which it would do on a
body if the body were moved a short distance in that direction
and dividing it by that short distance. Here the attractive force
is defined with reference to a line.

On the other hand, the flux of heat in any direction at any
point of a solid body may be defined as the quantity of heat
which croeses a small area drawn perpendicular to that direction
divided by that area and by the time. Here the flux is defined .
with reference to an area. .

There are certain cases in which a quantity may be measured
with reference to a line as well as with reference to an area.

Thus, in treating of the displacements of elastic solids, we may
direct our attention either to the original and the actual positions
of a particle, in which case the displacement of the particle is
measured by the line drawn from the first position to the second,
or we may consider a small area fixed in space, and determine
what quantity of the solid passes across that area during the
displacement.

In the same way the velocity of a fluid may be investigated
either with respect to the actual velocity of the individual
particles, or with respect to the quantity of the fluid which flows
through any fixed area.

But in these cases we require to know separately the density
of the body as well as the displacement or velocity, in order to
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apply the first method, and whenever we attempt t
molecular theory we have to use the second method.

In the case of the flow of electricity we do not know
of its density or its velocity in the conductor, we only ]
value of what, on the fluid theory, would correspon
product of the density and the velocity. Hence in all 8
wo must apply the more general method of measureme
flux across an area.

In clectrical science, clectromotive and magnetic
belong to the first class, being defined with reference
When wo wish to indicate this fact, we may refer to
Intensities.

On the other hand, electric and magnetic induct
clectric currents, belong to the second class, being defi
reference to areas. When we wish to indicate this fact,
refer to them as Fluxes.

Each of these intensities may be considered as prod
tending to produce, its corresponding flux. Thus, eleci
intensity produces electric currents in conductors, and
produce them in diclectrics. It produces electric ind:
diclectrics, and probably in conductors also. In the sa
magnetic intensity produces magnetic induction.

13.] In some oases the flux is simply proportional to t
- sity and in the same direction, but in other cases we
affimm that the direction and magnitude of the flux are
of the direction and magnitude of the intensity.

The case in which the components of the flux a



15.] LINE-INTEGRALS. 13

intensity. In all cases, however, the product of the intensity
and the flux resolved in its direction, gives a result of scientific
importance, and this is always a scalar quantity.

14.] There are two mathematical operations of frequent occur-
rence which are appropriate to these two classes of veotors, or
directed quantities.

In the case of intensity, we have to take the integral along a
line of the product of an element of the line, and the resolved
part of the intensity along that element. The result of this
operation is called the Line-integral of the intensity. It repre-
sents the work done on a body carried along the line. In certain
cases in which the line-integral does not depend on the form of
the line, but only on the positions of its extremities, the line-
integral is called the Potential.

In the case of fluxes, we have to take the integral, over a
surface, of the flux through every element of the surface. The
result of this operation is called the Surface-integral of the flux.
It represents the quantity which passes through the surface.

There are certain surfaces across which there is no flux. If
two of these surfaces intersect, their line of intersection is a line
of flux. In those cases in which the flux is in the same direction
as the force, lines of this kind are often called Lines of Force.
It would be more correct, however, to speak of them in electro-
statics and magnetics as Lines of Induction, and in electrokine-
matics as Lines of Flow.

15.] There is another distinction between different kinds of
directed quantities, which, though very important from a physical
point of view, is not 8o necessary to be observed for the sake of
the mathematical methods. This is the distinction between
longitudinal and rotational properties.. '

The direction and magnitude of a quantity may depend upon
some action or effect which takes place entirely along a c=rtain
line, or it may depend upon something of the nature of rota-
tion about that line as an axis. The laws of combination of
directed quantities are the same whether they are longitudinal or
rotational, so that there is no difference in the mathematical
treatment of the two classes, but there may be physical circum-
stances which indicate to which class we must refer a particular
phenomenon. Thus, electrolysis consists of the transfer of cer-
tain substances along a line in one direction, and of certain
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other substances in the opposite direction, which is e
a longitudinal phenomenon, and there is' no evidence
rotational effect about the direction of the force. H
infer that the electric current which causes or accc
electrolysis is a longitudinal, and not a rotational pheno:

On the other hand, the north and south poles of a m:
not differ as oxygen and hydrogen do, which appear at
places during electrolysis, so that we have no evide:
magnetism is a longitudinal phenomenon, while the
magnetism in rotating the plane of polarization of plane |
light distinctly shews that magnetism .is & rotational
menon *, '

On Line-integrals.

16.] The operation of integration of the resolved p
vector quantity along a line is important in physical
generally, and should be clearly understood. .

Let =z, y, z be the coordinates of a point P on a lir
length, measured from a certain point 4,is s. These coo
will be functions of a single variable s.

Let R be the numerical value of the vector quantity a
let the tangent to the curve at P make with the directi
the angle ¢, then R cos ¢ is the resolved part of R along

and the inte,
gral L=chos¢d8
0

is called the line-integral of R along the line s.
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between A and P. When, however, within a certain region, the
quantity X dz + Ydy + Zde= —D¥,
that is, when it is an exact differential within that region, the
value of L becomes

L= ¥, —¥p,
and is the same for any two forms of the path between A and P,
provided the one form can be changed into the other by con-
tinuous motion without passing out of this region.

O'n, Potentials.

The quantity ¥ is a scalar function of the position of the point,
and is therefore independent of the directions of reference. It
is called the Potential Function, and the vector quantity whose
components are X, Y, Z is said to have a potential ¥, if

dy dv ay
=@, == z=-

When a potential function exists, surfaces for which the
potential is constant are called Equipotential surfaces. The
direction of R at any point of such a surface coincides with the
normal to the surface, and if » be a normal at the point P,

ay

thenR=_d—-

The method of considering the components of a vector as the
first derivatives of a certain function of the coordinates with re-
spect to these coordinates was invented by Laplace * in his treat-
ment of the theory of attractions. The name of Potential was
first given to this function by Green {, who made it the basis of
his treatment of electricity. Green’s essay -was neglected by
mathematicians till 1846, and before that time most of its im-
portant theorems had been rediscovered by Gauss, Chasles,
Sturm, and Thomson }.

In the theory of gravitation the potential is taken with the
opposite sign to that which is here used, and the resultant force
in any direction is then measured by the rate of increase of the
potential function in that direction. In electrical -and magnetic

® Méc. Céleste, liv. iii.

4+ Esay on the Application of Mathematical Analysis to the Theories of Elec-
tricity and M ism, Nottingham, 1828. Reprinted in Crelle’s Jowrnal, and in
Mr. Ferrers’ edition of Green’s Works.

$ Thomson and Tait, Natural Philosophy, § 483.
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investigations the potential is defined so that the result
in any direction is measured by the decrease of the po
that direction. This method of using the expression
correspond in sign with potential energy, which always «
when the bodies are moved in the direction of the fore
on them.

17.] The geometrical nature of the relation bets
potential and the vector thus derived from it receiv
light from Hamilton’s discovery of the form of the
by which the vector is derived from the potential.

The resolved part of the vector in any direction is, as
seen, the first derivative of the potential with respect
ordinate drawn in that direction, the sign being reverse

Now if 4, j, k are three unit vectors at right angles
other, and if X, ¥, Z are the components of the vector §
parallel to these vectors, then

F=1X+Y+kZ;
and by what we have said above, if ¥ is the potential,

AY Ay | d¥
g = —(1'85 +jd—y +k£)°
If we now write V for the operator,
Tt +J 4 + ki )
de " “dy " “dz

§=—-V¢.
The symbol of operation V may be interpreted as dir
to measure, in each of three rectangular directions, th
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function ¥, using the phrase to indicate the direction, as well as
the magnitude, of the most rapid decrease of ¥.

18.] There are cases, however, in which the conditions

24 dY_o dX dZ dY dX

&~ H%=" % @ dz " dy
which are those of Xdz + Ydy + Zdz being a complete differential,
are satisfied throughout a certain region of space, and yet the
line-integral from A to P may be different for two lines, each of
which lies wholly within that region. This may be the case if
the region is in the form of a ring, and if the two lines from 4
to P pass through opposite segments of the ring. In this case,
the one path cannot be transformed into the other by continuous
motion without passing out of the region.

We are here led to considerations belonging to the Geometry
of Position, a subject which, though its importance was pointed
out by Leibnitz and illustrated by Gauss, has been little studied.
The most complete treatment of this subject has been given by
J. B. Listing *.

Let there be p points in space, and let ! lines of any form be
drawn joining these points so that no two lines intersect each
other, and no point is left isolated. We shall call a figure com-
posed of lines in this way a Diagram. Of these lines, p—1 are
sufficient to join the p points so as to form a connected system.
Every new line completes a loop or closed path, or, as we shall
call it, a Cycle. The number of independent cycles in the
diagram is therefore x = l—p+1.

Any closed path drawn along the lines of the diagram is com-
posed of these independent cycles, each being taken any number
of times and in either direction.

The existence of cycles is called Cyclosis, and the number of
cycles in a diagram is called its Cyclomatic number.

=0, and =0,

Cyclosis in Surfaces and Regions.

Surfaces are either complete or bounded. Complete surfaces
are either infinite or closed. Bounded surfaces are limited by
one or more closed lines, which may in the limiting cases become
double finite lines or points.

® Der Census Raimlicker Complere, Gitt. Abh., Bd. x. 8. 97 (1861). {For an

elementary account of those properties of multiply connected ;P“e which are necessary
for physical purposes see Lamb's Treatise on the Motion of Fluids, p. 47.}

VOL. I. C
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A finite region of space is bounded by one or mo:
surfaces. Of these one is the external surface, the ot
included in it and exclude each other, and are called
surfaces.

If the region has one bounding surface, we may supj
surface to contract inwards without breaking its conti
ocutting itself. If the region is one of simple continuity.
a sphere, this process may be continued till it is redu
point; but if the region is like a ring, the result will be
curve; and if the region has multiple connections, the re
be a diagram of lines, and the cyclomatic number of the
will be that of the region. The space outside the region
same cyolomatic number as the region itself. Hence, if t}
is bounded by internal as well as external surfaces, its cy:
number is the sum of those due to all the surfaces.

When a region encloses within itself other regions, it
a Periphractio region.

The number of internal bounding surfaces of a region
its periphractic number. A closed surface is also peri
its periphractic number being unity.

The cyclomatic number of a closed surface is twice
either of the regions which it bounds. To find the cy:
number of a bounded surface, suppose all the boundaries
tract inwards, without breaking continuity, till they mex
surface will then be reduced to a point in the case of an
surface, or to a linear diagram in the case of cyclic surfac
cyclomatic number of the diagram is that.of the surface.
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Hence if AQP and AQ'P are two paths from A to P, the line-
integral for AQ'P is the sum of that for AQP and the closed
path AQ'PQA. But the line-integral of the closed path is zero,
therefore those of the two paths are equal.

Hence if the potential is given at any one point of such a
region, that at any other point is determinate.

20.] TeeoreM IL. In a cyclic region in which the equation
Xdz+Ydy+2Zdz = —D¥
18 everywhere satisfied, the line-integral from A to P along
a line drawn within the region, will not in general be
determinate unless the channel of communication between
A and P be specified.

Let N be the cyclomatic number of the region, then & sections
of the region may be made by surfaces which we may call Dia-
phragms, so0 as to close up N of the channels of communication,
and reduce the region to an acyclic condition without destroying
its continuity.

The line-integral from A to any point P taken along a line
which does not cut any of these diaphragms will be, by the last
theorem, determinate in value.

Now let A and P be taken indefinitely near to each other, but
on opposite sides of a diaphragm, and let K be the line-integral
from A to P. .

Let A’ and P’ be two other points on opposite sides of the same
diaphragm and indefinitely near to each other, and let K’ be the
line-integral from A’ to . Then K'= K.

For if we draw AA’ and PP, nearly coincident, but on oppo-
site sides of the diaphragm, the line-integrals along these lines
will be equal*. Suppose each equal to L, then K’, the line-integral
of A’ P isequal tothatof A’A+ AP+ PP =—-L+K+L=K=
that of AP.

Hence the line-integral round a closed curve which passes .
through one diaphragm of the system in a given direction is a
constant quantity K. This quantity is called the Cyclic constant
corresponding to the given cycle.

Let any closed curve be drawn within the region, and let it cut
the diaphragm of the first cycle p times in the positive direction

* {8ince X, ¥, Z, are continuous. }
C 2
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and p’ times in the negative direction, and let p—p" = n,
the line-integral of the closed curve will be n, K.
Similarly the line-integral of any closed curve will be
MK +n, Ko+ ... +n,K,;
where n, represents the excess of the number of positive |
of the curve through the diaphragm of the cycle S ¢
number of negative passages.
_If two curves are such that one of them may be tran
into the other by continuous motion without at any time
through any part of space for which the condition of b
potential is not fulfilled, these two curves are called Recon
curves. Curves for which this transformation cannot be
are called Irreconcileable curves *.

The condition that X dx+ Ydy + Zdz is a complete difl
of some function ¥ for all points within a certain region
in several physical investigations in which the directed g
and the potential have different physical interpretations.

In pure kinematics we may suppose X, Y, Z to be tl
ponents of the displacement of a point of a continuous bod
original coordinates are z,y, z; the condition then expres
these displacements constitute a non-rotational strain 1.

If X, Y, Z represent the components of the velocity of
at the point z, y, z, then the condition expresses that the
of the fluid is irrotational.

If X, Y, Z represent the components of the force at tl
%, ¥, 2, then the condition expresses that the work do
particle passing from one point to another is the differenc
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TaEOREM ITI. The surface-integral of the fluz inwards through
a closed surface may be expressed as the volume-integral of
ils convergence taken within the surface. (See Art. 25.)
Let X, Y, Z be the components of R, and let I, m, » be the
direction-cosines of the normal to S measured outwards. Then
the surface-integral of R over S is

/fRcosedS=f/deS+fmedS+fondS, (1)

the values of X, Y, Z being those at a point in the surface, and
the integrations being extended over the whole surface.

If the surface is a closed one, then, when y and z are given,
the coordinate £ must have an even number of values, since a line
parallel to 2 must enter and leave the enclosed space an equal
number of times provided it meets the surface at al.

At each entrance

ldS= — dydz,
and at each exit ldS= dyde.
Let a point travelling from ¢ = — o to 2 = + o first enter

the space when z=ux,, then leave it when z=2x,, and s0 on;
and let the values of X at these points be X,, X,, &c., then

/]deS: _ff{(x,_ X))+ (X,—X,) + &e.

+ (Xgu_1—X,4)}dydz. (2)
If X is a quantity which is continuous, and has no infinite values
between z, md x,, then

X-X=[" G ®)

where the integration is extended from the first to the second -
intersection, that is, along the first segment of « which is within
the closed surface. Taking into account all the segments which
lie within the elosed surface, we find

f f X1dS = f f f ‘% dzdyds, (4)

the double integration being confined to the closed surface, but
the triple integration being extended to the whole enclosed space.
Hence, if X, Y, Z are continuous and finite within a closed surface
S, the total surface-integral of R over that surface will be

fchosedS —fff(dx ¥ dz)da:(Isz (5)
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the triple integration being extended over the whole
within S.

Let us next suppose that X, Y, Z are not continuous
the elosed surface, but that at a certain surface F'(z,y, z) =
values of X, ¥, Z alter abruptly from X, Y, Z on the n
side of the surface to X’, Y, Z' on the positive side.

If this discontinuity occurs, say, between z, and ,, the
of X,— X, will be X

j:' 12 do+(X'- X),
where in the expression under the integral sign only th
values of the derivative of X are to be considered.

In this case therefore the total surface-integral of R o
closed surface will be expressed by

fchosedS—fff(dX CZ; ‘if)dxdydz+fﬂX’
+ff(Y'_Y)dzdz+ff(Z'—Z)dzds

or, if , m’, n’ are the direction-cosines of the normal to t
face of discontinuity, and dS’ an element of that surface,

fchoscdS—fff(dX O + %) drayds

+ [/ (X - X)+m’(Y'—Y)+'n’(Z’—Z)}dA

where the integration of the last term is to be extended o
surface of discontinuity.
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is satisfied. We have as a consequence of this-the surface-integral
over the closed surface equal to zero.

Now let the closed surface S consist of three parts S, S,, and
S,. Let S, be a surface of any form bounded by a closed line L,.
Let S, be formed by drawing lines from every point of L, always
coinciding with the direction of R. If [, m, n are the direction-
cosines of the normal at any point of the surface S,, we have

Rcose=Xl+Ym+Zn=0. (12)
Hence this part of the surface contributes nothing towards the
value of the surface-integral.

Let S, be another surface of any form bounded by the c]osed
carve L, in which it meets the surface S,.

Let Q,, @,, @, be the surface-integrals of the surfaces S, S, S,,
and let @ be the surface-integral of the closed surface 8. Then

Q=Q1+Q0+Qz=0; _(13)
and we know that Q,=0; (14)
therefore Q.= —@s; (15)

or,in other words, the surface-integral over the surface S; is equal
and opposite to that over S, whatever be the form and position:
of S,, provided that the intermediate surface S, is one for which
R is always tangential.

If we suppose L, a closed curve of small area, S, will be &
tubular surface having the property that the surface-integral over
every complete section of the tube is the same. '

Since the whole space can be divided into tubes of this kind

provided - dX dY  dZ -

iz + @ + == 0, (16)
a distribution of a vector quantity consistent with this equation
is called a Solenoidal Distribution.

On Tubes and Lines of Flow.

If the space is so divided into tubes that the surface-integral
for every tube is unity, the tubes are called Unit tubes, and the
surface-integral over any finite surface S bounded by a closed
curve L is equal to the number of such tubes which pass through
S in the positive direction, or, what is the same thing, the number
which pass through the closed curve L.

Hence the surface-integral of S depends only on the form of
its boundary L, and not on the form of the surface within its

boundary.



24 PRELIMINARY.

On Periphractic Regions.

If, throughout the whole region bounded externally -
single closed surface S, the solenoidal condition
dX dY  dZ
wtayta
is satisfied, then the surface-integral taken over any closed
drawn within this region will be zero, and the surface-i
taken over a bounded surface within the region will deper
on the form of the closed curve which forms its boundary.

It is not, however, generally true that the same results
if the region within which the solenoidal condition is sati
bounded otherwise than by a single surface.

For if it is bounded by more than one continuous surface
these is the external surface and the others are internal s
and the region S is a periphractic region, having within i
regions which it completely encloses.

If within one of these enclosed regions, say, that boundec
closed surface S,, the solenoidal condition is not satisfied,

Q,=fchosedSl

be the surface-integral for the surface enclosing this regi
let Qy, @5, &o. be the corresponding quantities for the ot
closed regions S,, S;, &c.

Then, if a closed surface S’ is drawn within the regior
value of its surface-integral will be zero only when this
S’ does not inelude any of the enclosed regions S, S,, &c

=0
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number, or the number of internal surfaces. In drawing these
lines we must remember that any line joining surfaces which are
already connected does not diminish the periphraxy,but introduces
cyclosis. When these lines have been.drawn we may assert that
if the solenoidal condition is satisfied in the region S, any closed
surface drawn entirely within S, and not cutting any of the lines,
bhas its surface-integral zero. If it cuts any line, say L,, once or
any odd number of times, it encloses the surface S, and the
surface-integral is Q,.

The most familiar example of a periphractic region within which
the solenoidal condition is satisfied is the region surrounding a
mass attracting or repelling inversely as the square of the distance.

In the latter case we have

X=m%, Y=m%, Z= m?%;

where 1 is the mass, supposed to be at the origin of coordinates.
At any point where 7 is finite '
dX dY  dZ _
tawta™
bat at the origin these quantities become infinite. For any closed
surface not including the origin, the surface-integral is zero. If a

closed surface includes the origin, its surface-integral is 4wm.

If, for any reason, we wish to treat the region round m as if it
were not periphractic, we must draw & line from m to an infinite
distance, and in taking surface-integrals we must remember to
add 47m whenever this line crosses from the negative to the
poeitive side of the surface.

On Right-handed and Left-handed Relations in Space.
23.] In this treatise the motions of translation along any axis
and of rotation about that axis will be assumed to be of the same
sign when their directions correspond to those of the translation
and rotation of an ordinary or right-handed screw *.

¢ The combined action of the muscles of the arm when we turn the upper side of
the right-hand outwards, and at the same time thrust the hand forwards, will impress
the right-handed screw motion on the memory more firmly than any verbal definition.
A common corkscrew may be used as a material symbol of the same relation.

Professor W. H, Miller has & ted to me that as the tendrils of the vine are
right-handed screws and those of the hop left-handed, the two systems of relations
in space might be called those of the vine and the hop respectively.

The system of the vine, which we adopt, is that of Linnwus, and of screw-makers
in all civilized countries except Japan. De Candolle was the first who called the
hop-tendril right-handed, and ﬁl this he is followed by Listing, and by most writers
em the circular polarization of light. Screws like the hop-tendril are made for the
couplings of railway-carriages, and for the fittings of wheels on the left side of ordinary
carriages, but they are always called left-handed screws by those who use them.

o,
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For instance, if the actual rotation of the earth from wes
is taken positive, the direction of the earth’s axis from
north will be taken positive, and if a man walks forwa
positive direction, the positive rotation is in the order, hes
hand, feet, left-hand.

If we place ourselves on the positive side of a sur
positive direction along its bounding curve will be op
the motion of the hands of a watch with its face toward:

This is the right-handed system which is adopted in '
and Tait's Natural Philosophy, and in Tait's Quai
The opposite, or left-handed system, is adopted in He
Quaternions (Lectures. p. 76, and Elements, p. 108, an
note). The operation of passing from the one system to 1
is called by Listing, Perversion.

The reflexion of an object in & mirror is a perverted
the object. ,

When we use the Cartesian axes of z, ¥, 2, we shall dr.
so that the ordinary conventions about the cyclic orde
symbols lead to a right-handed system of directions i
Thus, if 2 is drawn eastward and y northward, z must t
upward *,

The areas of surfaces will be taken positive when the
integration ooincides with the cyclic order of the symbol
the area of a closed curve in the plane of zy may be writt

f.rd'y or —ﬁ(h;

the order of integration being x, y in the first expression,
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We now proceed to prove a theorem which is useful as estab-
lishing & connection between the surface-integral taken over a
finite surface and a line-integral taken round its boundary.

24.] THEOREM IV. A line-integral taken round a closed curve
may be expressed in terms of a surface-integral taken over
a surface bounded by the curve. '

Let X, Y, Z be the components of a vector quantity 2 whose
line-integral is to be taken round a closed curve s.

Let S be any continuous finite surface bounded entirely by the
closed curve s, and let £, , ¢ be the components of another vector
quantity B, related to X, Y, Z by the equations

dZ dY _dX dZ _dY aX
£= dy ~ & "T a4 T dz’ (= d_J (1)
Then the surface-integral of B taken over the surface S is equal to
the line-integral of U taken round the curve s. It is manifest that
£, n, ¢ satisfy of themselves the solenoidal condition.
df  dn d¢
atoyt &=

Let I, m, n be the direction-cosines of the normal to an element
of the surface d .S, reckoned in the positive direction. Then the
value of the surface-integral of B may be written

f (té+mn+n()dS. (2)

In order to form a definite idea of the meaning of the element
48, we shall suppose that the values of the coordinates z, y, z for
every point of the surface are given as functions of two inde-
pendent variablesaand 8. If 8 is constant and a varies, the point
(2, y,2) will describe & curve on the surface, and if a series of values
is given to B, a series of such curves will be traced, all lying on
the surface 8. In the same way, by giving a series of constant
values to a, & second series of curves may be traced, cutting the
first series, and dividing the whole surface into elementary
portions, any one of which may be taken as the element dS.

The projection of this element on the plane of yz is, by the
ordinary formula,

ldS = (_a - — == —a-) dBda. (3)

The expressions for mdS and ndS are obtained from this by
substituting z, ¥, z in cyclic order.
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The surface-integral which we have to find is

[[ae+mn+neyas;
or, substituting the values of { 5, {in terms of X, ¥, Z,

dX dX dY ,dY .dZ _dZ
ff(mz;‘”dg* —15, 15 —m ) ds. .

de ~"de T dy
The part of this which depends on X may be written
dX dzdx d:zdx dedy drdy
I @G- i) - o Gah~ Ta)osds

adding and subtracting d{X 3’2 i’; » this becomes

{ x dX dx dXdy+dXdz

ff drda dyda dz da

dx dX dx dXdy dX dz
—dlGzat wagt @ dﬂ)}dﬁ'd"

dXdx dXdx
- [[G 3 - G5 70 asae
Let us now suppose that the curves for which a is cor
form a series of closed curves surrounding a point o
surface for which a has its minimum value, a,, and let th
ourve of the series, for which a = a,, coincide with the ¢

eurve s.
Let us also suppose that the curves for which 8 is co1
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but one value of z at the point where a = a,, the second term is
zero, and the expression is reduced to the first term:

Since the curve a = q, is identical with the closed curve s, we
may write the expression in the form

f X%ds, (10)

where the integration is to be performed round the curve s. We
may treat in the same way the parts of the surface-integral
which depend upon Y and Z so that we get finally,

ff(lf+mn+n{)dS =f(X‘(il.—f + Y%% + Zg_z)de; (11)

where the first integral is extended over the surface S, and the
second round the bounding curve s *.

On the effect of the operator V on a vector function.

25.] We have seen that the operation denoted by V is that by
which a vector quantity is deduced from its potential. The same
operation, however, when applied to a vector function, produces
results which enter into the two theorems we have just proved
(IIT and IV). The extension of this operator to vector displace-
ments, and most of its further development, are due to Professor
Tait 1. .

Let o be a vector function of p, the vector of a variable point.
Let us suppose, as usual, that

p=ix + jy + ke,
and o=t X+;Y+kZ;
where X, ¥, Z are the components of ¢ in the directions of the
axes.
We have to perform on o the operation

.d  .d d
Performing this operation, and remembering the rules for the
maltiplication of i, j, k, we find that Vo consists of two parts,

one scalar and the other vector.

\%

® This theorem was given by Professor Stokes, SmitA’s Prize Ezaminalion, 1854,
quoestion 8. It is proved in Thomson and Tait’s Natural Philosophy, § 190 (7).

1+ See Proc. R. 8. Edin., April 28,1862. *‘On Green's and other allied Theorems,’
Trens. B. S. Edin., 1869-70, a very valuable paper; and ‘On some Quaternion
Integrals,” Proc. R, 8. Edin., 1870-71.
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The scalar part is
SVe = (dX ar dZ) see Theorem IIT,
and the vector part is W
VVa...z( dZ dY) (dX dzZ ) k(dY dX)

If the relation between X, Y, Z and &, Cis that g’

equation (1) of the last theorem, we may write
VVo=14f+jn+k{ See Theorem IV.

It appears therefore that the functions of X, ¥, Z whicl
in the two theorems are both obtained by the operatior
the vector whose components are X, ¥, Z. The theorems
selves may be written

f f SVeds = f S.0Uvds, (IIT)

and fsﬂdp =_f fs'.vavuds; @)

where ds is an element of a volume, ds of a surface, d
curve, and Uy a unit-vector in the di

\ l / of the normal.
To understand the meaning of these
— 5 = tions of a vector, let us suppose that o
A N value of o at a point P, and let us e
t the value of o — o, in the neighbourhooc
If we draw a closed surface round P
if the surface-integral of o over this ¢
is directed inwards, SVo will be positive, and the vector

Fig. 1.
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In Fig. 3 we have an illustration of rotation combined with
convergence.

Let us now consider the meaning of the equation

VVe=0.

This implies that Vo is a scalar, or that the vector o is the space-
variation of some scalar function ¥.

26.] One of the most remarkable properties of the operator Vv
is that when repeated it becomes

= —(da:‘ dy d—z’) ’
an operator occurring in all parts of Physics, which we may refer
to as Laplace’s Operator.

This operator is itself essentially scalar. When it acts on a
scalar function the result is scalar, whem it acts on a vector
fanction the result is a vector.

If, with any point P as centre, we draw a small sphere whose
radius is 7, then if ¢, is the value of ¢ at the centre, and § the
mean value of ¢ for all points within the sphere,

9—7 = Y57 Vi¢q;
s0 that the value at the centre exceeds or falls short of the mean
value according as V?q is positive or negative.

I propose therefore to call V3¢ the concentration of ¢ at the
point P, because it indicates the excess of the value of ¢ at that
point over its mean value in the neighbourhood of the point.

If g is & scalar function, the method of finding its mean value
is well known. If it is a vector function, we must find its mean
value by the rules for integrating vector functions. The result
of course is a vector.



PART I.

ELECTROSTATICS.

CHAPTER I

DESCRIPTION OF PHENOMENA.
Electrification by Friction.

27.] ExpERIMENT I*, Let a piece of glass and a piece ¢
neither of which exhibits any electrical properties, be rub
gether and left with the rubbed surfaces in contact. Th
still exhibit no electrical properties. Let them be separated
will now attract each other.

If a second piece of glass be rubbed with a second |
resin, and if the pieces be then separated and suspended
neighbourhood of the former pieces of glass and resin, it
observed—

(1) That the two pieces of glass repel each other.
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If a body electrified in any manner whatever behaves as the
glass does, that is, if it repels the glass and attracts the resin, the
body is said to be vitreously electrified, and if it attracts the glass
and repels the resin it is said to be resinously electrified. All
electrified bodies are found to be either vitreously or resinously
electrified.

It is the established practice of men of science to call the vitreous
electrification positive, and the resinous electrification negative.
The exactly opposite properties of the two kinds of electrification
Jjustify us in indicating them by opposite signs, but the applica-
tion of the positive sign to one rather than to the other kind must
be considered as a matter of arbitrary convention, just as it is a
matter of convention in mathematical diagrams to reckon positive
distances towards the right hand.

No force, either of attraction or of repulsion, can be observed
between an electrified body and a body not electrified. When, in
any case, bodies not previously electrified are observed to be acted
on by an electrified body, it is because they have become electrified
by induction.

Electrification by Induction.

28.] ExperIMENT II*. Let a hollow vessel of metal be hung
up by white silk threads, and let a similar thread
be attached to the lid of the vessel so that the vessel
may be opened or closed without touching it.
Let the pieces of glass and resin be similarly sus-
pended and electrified as before.
Let the vessel be originally unelectrified, then if
an electrified piece of glass is hung up within it by
its thread without touching the vessel, and the lid
closed, the outside of the vessel will be found to
be vitreously electrified, and it may be shewn that
the electrification outside of the vessel is exactly the
same in whatever part of the interior space the glass Fig. 4.
is suspended t.
If the glass is now taken out of the vessel without touching
it, the electrification of the glass will be the same as before it
was put in, and that of the vessel will have disappeared.

¢ This, and several experiments which follow, are due to Faraday, ¢ On Static
Eectrical Inductive Action,” Phil. Mag., 1843, or Exp. Res., vol. ii. p. 279.
+ {This is an fllustration of Art. 1000.}

VOL. L D
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This electrification of the vessel, which depends on t!
being within it, and which vanishes when the glass is rem
called electrification by Induction.

Similar effects would be produced if the glass were su:
near the vessel on the outside, but in that case we shor
an electrification, vitreous in one part of the outside of th
and resinous in another. When the glass is inside th
the whole of the outside is vitreously and the whole of th
resinously electrified.

Electrification by Conduction.

29.] ExPERIMENT III. Let the metal vessel be electri
induction, as in the last experiment, let a second metall
be suspended by white silk threads near it, and let a met
similarly suspended, be brought so as to touch simultaneor
electrified vessel and the second body.

The second body will now be found to be vitreously ele:
and the vitreous electrification of the vessel will have dimi

The electrical condition has been transferred from the v
the second body by means of the wire. The wire is callec
ductor of electricity, and the second body is said to be ele
by conduction. .

Conductors and Insulators.

ExpeRIMENT IV. If a glass rod, a stick of resin or gutta-
or a white silk thread, had been used instead of the metal v
transfer of eleotricity would bave taken place. Hence thes
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medium. Such a medium, considered as transmitting these
electrical effects without conduction, has been called by Faraday
a Dielectric medium, and the action which takes place through it
is called Induction.

In Experiment III the electrified vessel produced electrification
in the second metallic body through the medium of the wire.
Let us suppose the wire removed, and the electrified piece of
glass taken out of the vessel without touching it, and removed
to a sufficient distance. The second body will still exhibit
vitreous electrification, but the vessel, when the glass is removed,
will have resinous electrification. If we now bring the wire into
contact with both bodies, conduction will take place along the
wire, and all electrification will disappear from both bodies,
shewing that the electrification of the two bodies was equal and
opposite.

80.] ExpeRIMENT V. In Experiment II it was shewn that if
a piece of glass, electrified by rubbing it with resin, is hung up in
an insulated metal vessel, the electrification observed outside does
not depend on the position of the glass. If we now introduce the
piece of resin with which the glass was rubbed into the same vessel,
without touching it or the vessel, it will be found that there is
no electrification outside the vessel. From this we conclude that
the electrification of the resin is exactly equal and opposite to that
of the glass. By putting in any number of bodies, electrified in
any way, it may beshewn that the electrification of the outside of
the vessel is that due to the algebraic sum of all the electrifica-
tions, those being reckoned negative which are resinous. We have
thus a practical method of adding the electrical effects of several
bodies without altering their electrification.

81.] ExPeRIMENT VI. Let a second insulated metallic vessel,
B, be provided, and let the electrified piece of glass be put into
the first vessel 4,and the electrified piece of resin into the second
vessel B. Let the two vessels be then put in communication by
the metal wire, as in Experiment ITI.  All signs of electrification
will disappear.

Next, let the wire be removed, and let the pieces of glass and of
resin be taken out of the vessels without touching them. It will
be found that A is electrified resinously and B vitreously.

If now the glass and the vessel A be introduced together into
a larger insulated metal vessel C, it will be found that there is no

D2
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electrification outside C. This shews that the electrificatic
is exactly equal and opposite to that of the piece of gl
that of B may be shewn in the same way to be equal and ¢
to that of the piece of resin.

We have thus obtained a method of charging a vessel
quantity of electricity exactly equal and opposite to tha
electrified body without altering the electrification of the
and we may in this way charge any number of vesse
exactly equal quantities of electricity of either kind, wl
may take for provisional units.

82.] ExpERIMENT VII. Let the vessel B, charged
quantity of positive electricity, which we shall call,
present, unity, be introduced into the larger insulated v
without touching it. It will produce a positive electri
on the outside of C. Now let B be made to touch the ir
C. No change of the external electrification will be ol
If B is now taken out of C without touching it, and rem:
a sufficient distance, it will be found that B is complet:
charged, and that C' has become charged with a unit of §
electricity.

We have thus a method of transferring the charge of B

Let B be now recharged with a unit of electricity, intr
into C already charged, made to touch the inside of C,:
moved. It will be found that B is again completely disc
so that the charge of C is doubled.

If this process is repeated, it will be found: that h
highly C is previously charged, and in whatever wa
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33.] Before we proceed to the investigation of the law of
electrical force, let us enumerate the facts we have already
established.

By placing any electrified system inside an insulated hollow
conducting vessel, and examining the resultant effect on the
outside of the vessel, we ascertain the character of the total
electrification of the system placed inside, without any com-
munication of electricity between the different bodies of the
system.

The electrification of the outside of the vessel may be tested
with great delicacy by putting it in communication with an
electroscope.

We may suppose the electroscope to consist of a strip of gold
leaf hanging between two bodies charged, one positively, and
the other negatively. If the gold leaf becomes electrified it will
incline towards the body whose electrification is opposite to its
own. By increasing the electrification of the two bodies and the
delicacy of the suspension, an exceedingly small electrification of
the gold leaf may be detected.

When we come to describe electrometers and multipliers we
shall find that there are still more delicate methods of detecting
electrification and of testing the accuracy of our theories, but at
present we shall suppose the testing to be made by connecting
the hollow vessel with a gold leaf electroscope.

This method was used by Faraday in his very admirable
demonstration of the laws of electrical phenomena *.

84.] 1. The total electrification of a body, or system of bodies,
remains always the same, except in so far as it receives electrifi-
cation from or gives electrification to other bodies.

In all electrical experiments the electrification of bodies is
found to change, but it is always found that this change is due
to want of perfect insulation, and that as the means of insulation
are improved, the loss of electrification becomes less. We may
therefore assert that the electrification of a body placed in a
perfectly insulating medium would remain perfectly constant.

II. When one body electrifies another by conduction, the
total electrification of the two bodies remains the same, that
is, the one loses as much positive or gains as much negative

¢ ¢On Static Electrical Inductive Action,’ PAil. Mug., 1848 or Ezp. Kes., vol. ii.
p- 279.



38 ELECTROSTATIC PHENOMENA.

electrification as the other gains of positive or loses of ne
electrification.

For if the two bodies are enclosed in the hollow ves
change of the total electrification is observed.

I1I. When electrification is produced by friction, or L
other known method, equal quantities of positive and ne
electrification are produced.

For the electrification of the whole system may be tes
the hollow vessel, or the process of eleetrification may be (
on within the vessel itself, and however intense the el
cation of the parts of the system may be, the electrifica
the whole, as indicated by the gold leaf electroscope,
variably zero. ‘

The electrification of a body is therefore a physical qt
capable of measurement, and two or more electrifications
combined experimentally with a result of the same ki
when two quantities are added algebraically. We theref
entitled to use language fitted to deal with electrificatio:
quantity as well as & quality, and to speak of any ele
body as ¢ charged with a certain quantity of positive or ne
eleotricity.’

83.] While admitting electricity, as we have now done,
rank of a physical quantity, we must not too hastily i
that it is, or is not, a substance, or that it is, or is not, a £
energy, or that it belongs to any known category of pl
quantities. All that we have hitherto proved is that it .
be created or annihilated, so that if the total quantity o
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the result of the action between the parts of an intervening
medium, it is oonceivable that in all cases of the increase or
diminution of the energy within a closed surface we may be
able, when the nature of this action of the parts of the medium
is clearly understood, to trace the passage of the energy in or
out through that surface.

There is, however, another reason which warrants us in
asserting that electricity, as a physical quantity, synonymous
with the total electrification of a body, is not, like heat, a form
of energy. An electrified system has a certain amount of
energy, and this energy can be calculated by multiplying the
quantity of electricity in each of its parts by another physical
quantity, called the Potential of that part, and taking half the
sum of the products. The quantities ‘Electricity ’ and ¢ Potential,’
when multiplied together, produce the quantity ‘ Energy.’ It is
impossible, therefore, that electricity and energy should be
quantities of the same category, for electricity is only one of the
factors of energy, the other factor being ‘ Potential.’ ¥

Energy, which is the product of these factors, may also be
considered as the product of several other pairs of factors,
such as

A Force x A distance through which the force is to act.
A Mass x Gravitation acting througha certain height,
A Mass x Half the square of its velocity.

A Pressure x A volume of fluid introduced into a vessel

at that pressure.

A Chemical Affinity x A chemical change, measured by the num-
ber of electro-chemical equivalents which
enter into combination.

If we ever should obtain distinct mechanical ideas of the nature

of electric potential, we may combine these with the idea of

energy to determine the physical category in which ¢ Electricity ’
is to be placed.
86.] In most theories on the subject, Electricity is treated as

a substance, but inasmuch as there are two kinds of electrifi-

aation which, being combined, annul each other, and since

we cannot conceive of two substances annulling each other, a

distinction has been drawn between Free Electricity and Com-

bined Electricity.
¢ {1t is shown afterwards that ¢ Potential ’ is not of zero dimensions. }
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Theory of Two Fluids.

In what is callod the Theory of Two Fluids, all bo
their uncloctrified stato, are supposed to be charged wit
quantities of positive and nogative electricity. These qu
atro supposed to bo so great that no process of electri
han ever yot doprived a hody of all the electricity of
kind. Tho process of eleotrification, according to this
conninste in taking a ocrtain quantity P of positive ele
from the budy 4 and communicating it to B, or in
a quantity N of negative electricity from B and commu
it to A, or in some combination of these processes.

The reeult will be that 4 will have P+ .V units of 1
cleetricity over and above its remaining positive ele
which ia supposed to be in a state of combination with s
quantity of negative electricity. This quantity P+.Y i
the Free cleetricity, the rest is called the Combined, La
Fixed electrieity.

In most expositions of this theory the two electriei
callnl * Fluide' because they are capable of being tra
from one body to ancther. and are. within condueting
extremely mobile.  The other properties of fluids, such
inertia. weight, and elasticity. are not attributed to ¢
thoee who have used the theary for merely mathemati
poses ¢ but the uee of the word Fluid has been ape to
the vular incdnding wany men of sdence who are nat
phikmophers, am! who bave seized on the word Floii
only fTm in the statemrent of the thaory wdich sas
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by the transfer of P units of positive electricity from A to B,
together with the transfer of V units of negative electricity from
B to A. But if P+ N units of positive electricity had been
transferred from 4 to B, or if P+ .V units of negative electricity
had been transferred from B to 4, the resulting ‘free electricity’
on A and on B would have been the same as before, but the
quantity of ‘combined electricity’ in A would have been less in
the second case and greater in the third than it was in the first.

It would appear therefore, according to this theory, that it is
possible to alter not only the amount of free electricity in a
body, but the amount of combined electricity. But no phe-
nomensa have ever been observed in electrified bodies which can
be traced to the varying amount of their combined electricities.
Hence either the combined electricities have no observable
properties, or the amount of the combined electricities is in-
capable of variation. The first of these alternatives presents no
difficulty to the mere mathematician, who attributes no pro-
perties to the fluids except those of attraction and repulsion, for
he conceives the two fluids simply to annul one another, like
+e and —e, and their combination to be a true mathematical
zero. But to those who cannot use the word Fluid without
thinking of a substance it is difficult to conceive how the
combination of the two fluids can have no properties at all, so
that the addition of more or less of the combination to a body
shall not in any way affect it, either by increasing its mass or
its weight, or altering some of its other properties. Hence it
has been supposed by some, that in every process of electrifica-
tion exactly equal quantities of the two fluids are transferred in
opposite directions, so that the total quantity of the two fluids
in any body taken together remains always the same. By this
new law they ‘contrive to save appearances,’ forgetting that
there would have been no need of the law except to reconcile
the ‘ Two Fluids’ theory with facts, and to prevent it from pre-
dicting non-existent phenomena.

Theory of One Fluid.

37.] In the theory of One Fluid everything is the same as in
the theory of Two Fluids except that, instead of supposing the
two substances equal and opposite in all respects, one of them,
generally the negative one, has been endowed with the pro-
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pertios and namo of Ordinary Matter, while the other
the name of The Eleotric Fluid. The particles of the f
supposed to ropel one another according to the law
inverso square of tho distance, and to attract those of
according to the same law. Those of matter are supp
ropol oach other and attract those of electricity.

If the quantity of the electric fluid in a body is sucl
partialo of thoe electric fluid outside the body is as much !
by the elvotrio fluid in tho body as it is attracted by the
of the body, tho body is said to be Saturated. If the q
of fluid in the body is greater than that required for sat
the oxcess is called the Redundant fluid, and the body is
bo Overeharged, If it is less, the body is said to be
charged, and the quantity of fluid which would be reqc
saturate it is sometimes called the Deficient fluid. The :
of unita of elvotricity required to saturate one grar
ardinary matter must bo very great, because a gramme
way be boaten out to an area of a square metre, and v
this form wmay have a negative charge of at least 60,000 |
eleotricity. In ander to saturate the gold leaf when so ¢
this quantity of eleotric fluid must be communicated t
that the whole quantity required to saturate it must be
than this. The attraction between the matter and th
in two saturated bedies is supposed to be a very little
than the repulsion between the two portions of matter a
between the two portions of fuid.  This residual foree is sc
to aceount for the attmetior of gravitation.
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electricity repel one another, is in direct antagonism with the
well-established fact that every particle of matter attracts every
other particle throughout the universe. If the theory of One
Fluid were true we should have the heavenly bodies repelling
one another.

It is manifest however that the heavenly bodies, according to
this theory, if they consisted of mattér uncombined with elec-
tricity, would be in the highest state of negative electrification,
and would repel each other. We have no reason to believe that
they are in such a highly electrified state, or could be maintained
in that state. The earth and all the bodies whose attraction has
been observed are rather in an unelectrified state, that is, they con-
tain the normal charge of electricity, and the only action between
them is the residual force lately mentioned. The artificial manner,
however, in which this residual force is introduced is a much
more valid objection to the theory.

In the present treatise I propose, at different stages of the in-
vestigation, to test the different theories in the light of additional
classes of phenomena. For my own part, I look for additional
light on the nature of electricity from a study of what takes place
in the space intervening between the electrified bodies. Such is
the essential character of the mode of investigation pursued by
Faraday in his Ezperimental Researches, and as we go on I
intend to exhibit the results, as developed by Faraday,
W. Thomson, &ec., in a connected and mathematical form, so
that we may perceive what phenomena are explained equally well
by all the theories, and what phenomena indicate the peculiar
difficulties of each theory.

Measurement of the Force between Electrified Bodies.

. 38.] Forces may be measured in various ways. For instance,
one of the bodies may be suspended from one arm of a delicate
balance, and weights suspended from the other arm, till the body,
when unelectrified, is in equilibrium. The other body may then
be placed at a known distance beneath the first, so that the
attraction or repulsion of the bodies when electrified may increase
or diminish the apparent weight of the first. The weight which
must be added to or taken from the other arm, when expressed
in dynamical measure, will measure the force between the bodies.
This arrangement was used by Sir W. Snow Harris, and is that
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adopted in Sir W. Thomson’s absolute electromet:
Art. 217,

It is sometimes more convenient to use a torsion-be
which a horizontal arm is suspended by a fine wire or fi
to be capable of vibrating about the vertical wire as an
the body is attached to one end of the arm and acted o
force in the tangential direction, so as to turn the armr
vortical axis, and 8o twist the suspension wire through
angle. The torsional rigidity of the wire is found by ¢
the time of oscillation of the arm, the moment of inert
arm being otherwise known, and from the angle of tor
the torsional rigidity the force of attraction or repulsio
deduoed. The torsion-balance was devised by Michel
determination of the force of gravitation between sma
and was used by Cavendish for this purpose. Coulomb,
independently of these philosophers, reinvented it, th
studied its action, and successfully applied it to discover
of electrio and magnetic forces ; and the torsion-balance
since been used in researches where small forces ha
measured. See Art. 215,

89.] Let us suppose that by either of these method:
measure the force between two electrified bodies.
suppose the dimensions of the bodies small compared
distance between them, so that the result may not
altered by any inequality of distribution of the eleetrifi
either body, and we shall suppose that both bodie
suspended in air as to be at a considerable distanee fr
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Then each of the m positive units in A will repel each of the
m’ poeitive units in B with a certain force, say f, making a total
effect equal to mm' f.

Since the effect of negative electricity is exactly equal and
opposite to that of positive electricity, each of the m positive units
in A will attract each of the »' negative units in B with the
same force f, making a total effect equal to m «’f.

Similarly the n negative units in 4 will attract the m’ positive
units in B with a force nm’ f, and will repel the »’ negative units
in B with a force nn'f.

The total repulsion will therefore be (mm’+nn')f; and the
total attraction will be (mn'+m'n)f.

The resultant repulsion will be

(mm’ + a0’ —mn'—am’)f or (m—n)(m'—n')f.

Now m—n = e is the algebraical value of the charge on 4, and
m'—n’ = ¢ is that of the charge on B, so that the resultant re-
pulsion may be written eslf, the quantities ¢ and ¢’ being always
understood to be taken with their proper signs.

Variation of the Force with the Distance.

40.] Having established the law of force at a fixed distance,
we may measure the force between bodies charged in a constant
manner and placed at different distances. It is found by direct
measurément that the force, whether of attraction or repulsion,
varies inversely as the square of the distance, so that if / is the
repulsion between two units at unit distance, the repulsion at dis-
tance 7 will be fr—% and the general expression for the repulsion
between e units and ¢ units at distance » will be

fee' r2,

Definition of the Electrostatic Unit of Electricity.

41.] We have hitherto used a wholly arbitrary standard for our
unit of electricity, namely, the electrification of a certain piece of
glass as it happened to be electrified at the commencement of our
experiments. We are now able to select a unit on a definite
principle, and in order that this unit may belong to a general
system we define it so that f may be unity, or in other words—

The electrostatic unit of electricity is that quantity of positive
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electricity which, when placed at unit of distance from
quantity, repels it with unit of force*.

This unit is called the Electrostatic unit to distinguis.
the Electromagnetic unit, to be afterwards defined.

We may now write the general law of electrical actic
simple form F=e¢dr?; or,

The repulsion between two emall bodies charged res
with e and & wunits of electricity is numerically equa
‘product of the charges divided by the square of the dista

Dimensions of the Electrostatic Unit of Quants

42.] If [Q] is the concrete electrostatic unit of quanti
and ¢, ¢’ the numerical values of particular quantities ;
the unit of length, and » the numerical value of the dista:
if [F) is the unit of force, and F the numerical value of t
then the equation becomes

F[F]=eer*[QT][L7];
whence [Q] = [LFY]
= [L¥IT-1M1).

This unit is called the Electrostatic Unit of electricity.
units may be employed for practical purposes, and in ¢
partments of electrical science, but in the equations of
statics quantities of electricity are understood to be estis
electrostatic units, just as in physical astronomy we e
unit of mass which is founded on the phenomena of gra
and which differs from the units of mass in common use.
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capable of carrying charges sufficient to produce measurable
forces. The action of each body will then produce an effect on
the distribution of electricity on the other, so that the charge
cannot he considered as evenly distributed over the surface, or
eollected at the centre of gravity; but its effect must be calcu-
lated by an intricate investigation. This, however, has been
done as regards two spheres by Poisson in an extremely able
manner, and the investigation has been greatly simplified by
Sir W. Thomson in his Theory of Electrical Images. See Arts.
172-175.

Another difficulty arises from the action of the electricity
induced on the sides of the case containing the instrument. By
making the inner surface of the instrument of metal, this effect
can be rendered definite and measurable.

An independent difficulty arises from the imperfect insulation
of the bodies, on account of which the charge continually de-
creases. Coulomb investigated the law of dissipation, and made
corrections for it in his experiments.

The methods of insulating charged conductors, and of measur-
ing electrical effects, have been greatly improved since the time
of Coulomb, particularly by Sir W. Thomson; but the perfect
accuracy of Coulomb’s law of force is established, not by any
direct experiments and measurements (which may be used as
illustrations of the law), but by a mathematical consideration of the
phenomenon described as Experiment VII, namely, that an elec-
trified conductor B, if made to touch the inside of a hollow closed
conductor C and then withdrawn without touching C, is per-
fectly discharged, in whatever manner the outside of C may be
electrified. By means of delicate electroscopes it is easy to shew
that no electricity remains on B after the operation, and by the
mathematical theory given at Arts. 74 ¢, 74 d, this can only be the
case if the force varies inversely as the square of the distance,
for if the law were of any different form B would be electrified.

The Electric Field.

44.] The Electric Field is the portion of space in the neigh-
bourhood of electrified bodies, considered with reference to elec-
tric phenomena. It may be occupied by air or other bodies, or
it may be a so-called vacuum, from which we have withdrawn
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every substance which we can act upon with the mear
disposal.

If an electrified body be placed at any part of the ele:
it will, in general, produce a sensible disturbance in th
fication of the other bodies.

But if the body is very small, and its charge also ve
the electrification of the other bodies will not be sen:
turbed, and we may consider the position of the body
mined by its centre of mass. The force acting on the 1
then be proportional to its charge, and will be revers
the charge is reversed.

Let e be the charge of the body, and ¥ the force actix
body in a certain direction, then when e is very small ¥ i
tional to e, or F = Re,

where R depends on the distribution of electricity on -
bodies in the field. If the charge e could be made
unity without disturbing the electrification of other b
should have F= R.

We shall call R the Resultant Electromotive Intensi
given point of the field. When we wish to express the
this quantity is a vector we shall denote it by the Germar

Total Electromotive Force and Potential.

45.] If the small body carrying the small charge ¢ 1
from one given point, 4, to another B, along & given
will experience at each point of its course a force Re,
varies from point to point of the course. Let the wi
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It depends only on the position of A. In mathematical investi-
gations, B is generally taken at an infinite distance from the
electrified bodies.

A body charged positively tends to move from places of greater
positive potential to places of smaller positive, or of negative,
potential, and a body charged negatively tends to move in the
opposite direction.

In a conductor the electrification is free to move relatively to
the conductor. If therefore two parts of a conductor have
different potentials, positive electricity will move from the part
having greater potential to the part having less potential as long
as that difference continues. A conductor therefore cannot be
in electrical equilibrium unless every point in it has the same
potential. This potential is called the Potential of the Conductor.

Equipotential Surfaces.

46.] If a surface described or supposed to be described in the
electric field is such that the electric potential is the same at
every point of the surface it is called an Equipotential surface.

An electrified particle constrained to rest upon such a surface
will have no tendensy to move from one part of the surface to
another, because the potential is the same at every point. An
equipotential surface is therefore a surface of equilibrium or a
level surface.

The resultant force at any point of the surface is in the direc-
tion of the normal to the surface, and the magnitude of the force
is such that the work done on an electrical unit in passing from
the surface V to the surface V' is V—V".

No two equipotential surfaces having different potentials can
meet one another, because the same point cannot have more than
one potential, but one equipotential surface may meet itself, and
this takes place at all points and along all lines of equilibrium.

The surface of a conductor in electrical equilibrium is neces-
sarily an equipotential surface. If the electrification of the con-
ductor is positive over the whole surface, then the potential will
diminish as we move away from the surface on every side, and
the conductor will be surrounded by a series of surfaces of lower
potential.

But if (owing to the action of external electrified bodies) some

VOL. I. E
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regions of the conductor are charged positively and o
gatively, the complete equipotential surface will consi
surface of the conductor itself together with a system
surfaces, meeting the surface of the conductor in the lin
divide the positive from the negative regions*. These
be lines of equilibrium, and an electrified particle place
of these lines will experience no force in any direction.

When the surface of & conductor is charged positively
parts and negatively in others, there must be some othe
fied body in the field besides itself. For if we allow a |
electrified particle, starting from a positively charged p:
surface, to move always in the direction of the result
upon it, the potential at the particle will continually din
the particle reaches either a negatively charged surface af
tial less than that of the first conductor, or moves off to a
distance. Since the potential at.an infinite distance is
latter case can only occur when the potential of the con
positive.

In the same way a negatively electrified particle, m
from a negatively charged part of the surface, must eit.
a positively charged surface, or pass off to infinity, and
case can only happen when the potential of the con
negative. A

Therefore, if both positive and negative charges e:
conductor, there must be some other body in the fie
potential has the same sign as that of the conductor but
numerical value, and if a conductor of any form is alo
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A conductor placed inside the vessel and communicating with
it, may be considered as bounded by the interior surface. Hence
such a conductor has no charge.

Lines of Force.

47.] The line described by a point moving always in the direc-
tion of the resultant intensity is called a Line of Force. It cuts
the equipotential surfaces at right angles. The properties of
lines of force will be more fully explained afterwards, because
Faraday has expressed many of the laws of electrical action in
terms of his conception of lines of force drawn in the electric
field, and indicating both the direction and the intensity at every
point.

Electric Tension.

48.] Since the surface of a conductor is an equipotential surface,
the resultant intensity is normal to the surface, and it will be
shewn in Art. 80 that it is proportional to the superficial density of
the electrification. Hence the electricity on any small area of the
surface will be acted on by a force tending from the conductor
and proportional to the product of the resultant intensity and
the density, that is, proportional to the square of the resultant
intensity.

This force, which acts outwards as a tension on every part of the
conductor, will be called electric Tension. It is measured like
ordinary mechanical tension, by the force exerted on unit of area.

The word Tension has been used by electricians in several vague
senses, and it has been attempted to adopt it in mathematical
language as a synonym for Potential ; but on examining the cases
in which the word has been used, I think it will be more con-
sistent with usage and with mechanical analogy to understand by
tension a pulling force of so many pounds weight per square inch
exerted on the surface of a conductor or elsewhere. We shall
find that the conception of Faraday, that this electric tension
exists not only at the electrified surface but all along the lines of
force, leads to a theory of electric action as a phenomenon of
stress in & medium.

Electromotive Force.

49.] When two conductors at different potentials are connected
by a thin conducting wire, the tendency of electricity to flow

L E 2
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along the wire is measured by the difference of the pote
the two bodies. The difference of potentials between t
ductors or two points is therefore called the Electromot
between them.

Electromotive force cannot in all cases be expressec
form of a difference of potentials. These cases, however
treated of in Electrostatics. We shall consider them v
come to heterogeneous circuits, chemical actions, ma
magnets, inequalities of temperature, &c.

Capacity of a Conductor.

50.] If one conductor is insulated while all the surr
conductors are kept at the zero potential by being put in
nication with the earth, and if the conductor, when chary
a quantity E of electricity, has a potential V, the ratio o
is called the Capacity of the conductor. If the cond
completely enclosed within a conducting vessel without 1
it, then the charge on the inner conductor will be equal
posite to the charge on the inner surface of the outer co
and will be equal to the capacity of the inner conductor m
by the difference of the potentials of the two conductors

Electric Accumulators.

A system consisting of two conductors whose opposed
are separated from each other by a thin stratum of an in
medium is called an electric Accumulator. The two co:
are called the Electrodes and the insulating medium is &
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mass becomes the same. In the case of pieces of metal used in
ordinary experiments this process is completed in & time teo short:
to be observed, but in the case of very long and thin wires, such
as those used in telegraphs, the potential does not become uniform -
till after a sensible time, on account of the resistance of the wire
to the passage of electricity through it.

The resistance to the passage of electricity is exceedingly dif-
ferent in different substances, as may be seen from the tables at
Arts. 362, 364, and 367, which will be explained in treating of
Electric Currents.

All the metals are good conductors, though the resistance of lead
is 12 times that of copper or silver, that of iron 6 times, and that
of mercury 60 times that of copper. The resistance of all metals
increases as their temperature rises.

Many liquids conduct electricity by electrolysis. This mode of
conduction will be considered in Part II. For the present, we
may regard all liquids containing water and all damp bodies as
conductors, far inferior to the metals but incapable of insulating
a charge of electricity for a sufficient time to be observed. The
resistance of electrolytes diminishes as the temperature rises.

On the other hand, the gases at the atmospheric pressure,
whether dry or moist, are insulators so nearly perfect when the
electric tension is small that we have as yet obtained no evidence
of electricity passing through them by ordinary conduction. The
gradual loss of charge by electrified bodies may in every case be
traced to imperfect insulation in the supports, the electricity
either passing through the substance of the support or creeping
over its surface. Hence, when two charged bodies are hung up
near each other, they will preserve their charges longer if they
are electrified in opposite ways, than if they are electrified in the
same way. For though the electromotive force tending to make
the electricity pass through the air between them is much greater
when they are oppositely electrified, no perceptible loss occurs in
this way. The actual loss takes place through the supports, and
the electromotive force through the supports is greatest when the
bodies are electrified in the same way. The result appears
anomalous only when we expect the loss to occur by the passage
of electricity through the air between the bodies. The passage
of electricity through gases takes place, in general, by disruptive
discharge, and does not begin till the electromotive intensity has
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reached a certain value. The value of the electromotive ir
‘which can exist in a dielectric without a discharge takir
is called the Electric Strength of the dielectric. The
strength of air diminishes as the pressure is reduced fi
atmospheric pressure to that of about three millime
mercury *. When the pressure is still further reduced, the
strength rapidly increases ; and -when the exhaustion is ca
the highest degree hitherto attained, the electromotive i1
required to produce a spark of a quarter of an inch is
than that which will give a spark of eight inches in ai1
ordindry pressure.

A vacuum, that is to say, that which remains in a ves:
we have removed everything which we can remove fro
therefore an insulator of very great electric strength.

The electric strength of hydrogen is much less than th:
at the same pressure.

Certain kinds of glass when cold are marvellously pe:
sulators, and Sir W. Thomson has preserved charges of ele
for years in bulbs hermetically sealed. The same glass, h
becomes a conductor at a temperature below that of boilin;

Gutta-percha, caoutchoue, vulcanite, paraffin, and re:
good insulators, the resistance of gutta-percha at 75°I
about 6 x 10 times that of copper.

. Ice, crystals, and solidified electrolytes, are also insulaf

Certain liquids, such as naphtha, turpentine, and some
_ insulators, but inferior to the best solid insulators.
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the ratios in which their capacities exceeded that of plates of air
of the same dimensions.

Faraday, to whom these researches were unknown, discovered
that the capacity of an accumulator depends on the nature of the
insulating medium between the two conductors, as well as on the
dimensions and relative position of the conductors themselves.
By substituting other insulating media for air as the dielectric of
the accumulator, without altering it in any other respect, he found
that when air and other gases were employed as the insulating
medium the capacity of the accumulator remained sensibly the
same, but that when shellac, sulphur, glass, &c. were substituted
for air, the capacity was increased in a ratio which was different’
for each substance.

By a more delicate method of measurement Boltzmann succeeded
in obeerving the variation of the inductive capacities of gases at
different pressures. '

This property of dielectrics, which Faraday called Specific In-
ductive Capacity, is also called the Dielectric Constant of the
substance. It is defined as the ratio of the capacity of an
accumulator when its dielectric is the given substance, to its
capacity when the dielectric is a vacuum.

If the dielectric is not a good insulator, it is difficult to measure
its inductive capacity, because the accumulator will not hold a
charge for a sufficient time to allow it to be measured ; but it is
certain that inductive capacity is a property not confined to
good insulators, and it is probable that it exists in all bodies *.

Absorption of Electricity.

58.] It is found that when an accumulator is formed of certain
dielectrics, the following phenomena occur.

When the accumulator has been for some time electrified and
is then suddenly discharged and again insulated, it becomes
recharged in the same sense as at first, but to a smaller degree,
8o that it may be discharged again several times in succession,
these discharges always diminishing. This phenomenon is called
that of the Residual Discharge.

¢ {Cohn and Arons (Wiedemann's Annalen, v. 88, p. 13) have investigated the

ific inductive capacities of some non-insulating fluids such as water and aloohol :

find that these are very large ; thus, that of distilled water isabout 76 and that of
athyl aloobol aboat 3¢ times that of air. } *
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The instantaneous discharge appears always to be prop
to the difference of potentials at the instant of dischai
the ratio of these quantities is the true capacity of the s
lator; but if the contact of the discharger is prolonged
include some of the residual discharge, the apparent cap
the accumulator, caleculated from such a discharge, will
great.

The accumulator if charged and left insulated appears
its charge by conduction, but it is found that the propo:
rate of loss is much greater at first than it is afterwards,
the measure of conductivity, if deduced from what take
at first, would be too great. Thus, when the insulati
submarine cable is tested, the insulation appears to img
the electrification continues.

Thermal phenomena of a kind at first sight analogo
place in the case of the conduction of heat when the ¢
sides of a body are kept at different temperatures. In {
of heat we know that they depend on the heat taken
given out by the body itself. Hence, in the case of the el
phenomena, it has been supposed that electricity is absorl
emitted by the parts of the body. We shall see, howe
Art. 329, that the phenomena can be explained withc
hypothesis of absorption of electricity, by supposing the di
in some degree heterogeneous.

That the phenomena called Electric Absorption are
actual absorption of electricity by the substance may be
by charging the substance in any manner with electricit;
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place among a system of bodies surrounded by a metallic vessel,
the charge on the outside of that vessel is not altered.

Now if any portion of electricity could be forced into a body
so as to be absorbed in it, or to become latent, or in any way
to exist in it, without being connected with an equal portion
of the opposite electricity by lines of induction, or if, after
having been absorbed, it could gradually emerge and return
to its ordinary mode of action, we should find some change of
electrification in the surrounding vessel.

As this is never found to be the case, Faraday concluded that
it is impossible to communicate an absolute charge to matter, and
that no portion of matter can by any change of state evolve or
render latent one kind of electricity or the other. He therefore
regarded induction as ‘the essential function both in the first
development and the consequent phenomena of electricity.” His
‘ induction’ is (1298) a polarized state of the particles of the
dielectric, each particle being positive on one side and negative
on the other, the positive and the negative electrification of each
particle being always exactly equal.

Disruptive Discharge*

55.] If the electromotive intensity at any point of a dielectric
is gradually increased, a limit is at length reached at which there
is a sudden electrical discharge through the dielectric, generally
accompanied with light and sound, and with a temporary or
permanent rupture of the dielectric.

The electromotive intensity when this takes place is a measure
of what we may call the electric strength of the dielectric.
It depends on the nature of the dielectric, and is greater in
dense air than in rare air, and greater in glass than in air, but
in every case, if the electromotive force be made great enough,
the dielectric gives way and its insulating power is destroyed, so
that a current of electricity takes place through it. It is for this
reason that distributions of electricity for which the electromotive
intensity becomes anywhere infinite cannot exist.

® See Faraday, Erp. Res., vol. i., series xii. and xiii.

{So many investigations have been made on the e of electricity through
gases since the first edition of this book was publinhod that the mere enumeration of

them would stretch beyond the limits of a foot-note. A summary of the results
obtained by these researches will be given in the Supplementary Volume. }
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The Electric Glow.

Thus, when a conductor having a sharp point is electr
theory, based on the hypothesis that it retains its char
to the conclusion that as we approach the point the s
density of the electricity increases without limit, so th
point itself the surface-density, and therefore the :
electromotive intensity, would be infinite. If the air,
surrounding dielectric, had an invincible insulating po
result would actually occur; but the fact is, that as soc
resultant intensity in the neighbourhood of the point ha
a certain limit, the insulating power of the air gives wa)
the air close to the point becomes a conductor. At i
distance from the point the resultant intensity is not suf
break through the insulation of the air, so that the electri
is checked, and the electricity accumulates in.the air r
point.

The point is thus surrounded by particles of air * char
electricity of the same kind as its own. The effect of this
air round the point is to relieve the air at the point ite
part of the enormous electromotive intensity which it wc
experienced if the conductor alone had been electrified.
the surface of the electrified body is no longer pointed, be
point is enveloped by a rounded mass of charged air, th
of which, rather than that of the solid conductor, may be
as the outer electrified surface.

If this portion of charged air could be kept still, the e
body would retain its charge, if not on itself at lea
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In this way the following phenomena are produced :—At and
<lose to the point there is a steady glow, arising from the con-
stant discharges which are taking place between the point and
the air very near it.

The charged particles of air tend to move off in the same general
direction, and thus produce a current of air from the point, con-
sisting of the charged particles, and probably of others carried
slong by them. By artificially aiding this current we may increase
the glow, and by checking the formation of the current we may
prevent the continuance of the glow *.

The electric wind in the neighbourhood of the point is sometimes
very rapid, but it soon loses its velocity, and the air with its
cbarged particles is carried about with the general motions of the
atmosphere, and constitutes an invisible electric cloud. When the
charged particles come near to any conducting surface, such as a
wall, they induce on that surface a charge opposite to their own,
and are then attracted towards the wall, but since the electro-
motive force is small they may remain for a long time near the
wall without being drawn up to the surface and discharged. They
thus form an electrified atmosphere clinging to conductors, the
presence of which may sometimes be detected by the electrometer.
The electrical forces, however, acting between large masses of
charged air and other bodies are exceedingly feeble compared with -
the ordinary forces which produce winds, and which depend on
inequalities of density due to differences of temperature, so that
it is very improbable that any observable part of the motion
of ordinary thunder clouds arises from electrical causes.

The passage of electricity from one place to another by the
motion of charged particles is called Electrical Convection or
Convective Discharge.

The electrical glow is therefore produced by the constant passage .
of electricity through a small portion of air in which the tension
is very high, 80 as to charge the surrounding particles of air which
are continually swept off by the electric wind, which is an essential
part of the phenomenon.

The glow is more easily formed in rare air than in dense air,
and more easily when the point is positive than when it is negative.

° &o Priestley’s History of. Electricity, pp. 117 and 591; and Cavendish’s ¢ Elec-
trical Ressarches,’ PAil. Trans., 1771, § 4, or Art. 125 of Electrwal Researches of the
B-unbh Henry Cavendish.
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This and many other differencds between positive and
electrification must be studied by those who desire to
something about the nature of electricity. They b
however, been satisfactorily brought to bear upon any
theory. '

The Electric Brush.

56.] The electric brush is a phenomenon which may
duced by electrifying a blunt point or small ball so as tc
an electric field in which the tension diminishes as the
increases, but in a less rapid manner than when a shary
used. It comsists of a succession of discharges, ramifyin
diverge from the ball into the air, and terminating ¢
charging portions of air or by reaching some other cond
is accompanied by a sound, the pitch of which depenc
interval between the successive discharges, and the
current of air as in the case of the glow.

The Electric Spark.

57.] When the tension in the space between two conc
considerable all the way between them, as in the case of
whose distance is not great compared with their r
discharge, when it occurs, usually takes the form of a ¢
which nearly the whole electrification is discharged at o

In this case, when any part of the dielectric has gi-
the parts on either side of it in the direction of the elec
are put into a state of greater tension so that they also ¢
and so the discharge proceeds right through the dielectri
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so that if the electricity, for example, is passing along a tube
containing a very small quantity of gas, a number of luminous
disks will be seen arranged transversely at nearly equal intervals
along the axis of the tube and separated by dark strata. If the
strength of the current be increased a new disk will start into
existence, and it and the old disks will arrange themselves in
closer order. In a tube described by Mr. Gassiot * the light of
each of the disks is bluish on the negative and reddish on the
positive side, and bright red in the central stratum.

Thesee, and many other phenomena of electrical discharge, are
exeeedingly important, and when they are better understood they
will probably throw great light on the nature of electricity as
well as on the nature of gases and of the medium pervading space.
At present, however, they must be considered as outside the
domain of the mathematical theory of electricity.

Electric Phenomena of Tourmaline t.

58.] Certain crystals of tourmaline, and of other minerals,
possess what may be called Electric Polarity. Suppose a crystal
of tourmaline to be at a uniform temperature, and apparently
free from electrification on its surface. Let its temperature be
now raised, the erystal remaining insulated. One end will be
found positively and the other end negatively electrified. Let
the surface be deprived of this apparent electrification by means
of a flame or otherwise, then if the crystal be made still hotter,
electrification of the same kind as before will appear, but if the
erystal be cooled the end which was positive when the crystal
was heated will become negative,

These electrifications are observed at the extremities of the
erystallographic axis. Some crystals are terminated by a six-
sided pyramid at one end and by a three-sided pyramid at the
other. In these the end having the six-sided pyramid becomes
positive when the crystal is heated.

Sir W. Thomson supposes every portion of these and other
hemihedral crystals to have a definite electric polarity, the
intensity of which dopends on the temperature. When the
surface is passed through a flame, every part of the surface
becomes electrified to such an extent as to exactly neutralize,

® Intellectual Observer, March 1866.
4 {Fora fuller account of this %roperty and the electrification of crystals by radiant
light and heat, soe Wisdemann's Elektrioitit, v. 2, p. 816. }
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for all external points, the effect of the internal polari
crystal then has no external electrical action, nor any
to change its mode of electrification. But if it be heated
the interior polarization of each particle of the crystal i
and can no longer be balanced by the superficial elect:
so that there is a resultant external action.

Plan of this Treatise.

59.] In the following treatise I propose first to ex]
ordinary theory of electrical action, which considers j
pending only on the electrified bodies and on their
position, without taking account of any phenomena wh
take place in the intervening media. In this way -
establish the law of the inverse square, the theory of th
tial, and the equations of Laplace and Poisson. We sl
consider the charges and potentials of a system of e
conductors as connected by a system of equations, the co
of which may be supposed to be determined by experi
those cases in which our present mathematical method:
applicable, and from these we shall determine the me
forces acting between the different electrified bodies.

We shall then investigate certain general theorems t
Green, Gauss, and Thomson have indicated the conditiol
lution of problems in the distribution of electricity. O:
of these theorems is, that if Poisson’s equation is satisfiec
function, and if at the surface of every conductor the
has the value of the potential of that conductor, then {
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no further in speculating on its cause. If, on the other hand, we
adopt the conception of action through a medium, we are led to
enquire into the nature of that action in each part of the medium.

1t appears from the theorem, that if we are to look for the seat
of the electric energy in the different parts of the dielectric me-
dium, the amount of energy in any small part must depend on
the square of the resultant electromotive intensity at that place
multiplied by a coefficient called the specific inductive capacity
of the medium.

It is better, however, in considering the theory of dielectrics
from the most general point of view, to distinguish between the
electromotive intensity at any point and the electric polarization
of the medium at that point, since these directed quantities,
though related to one another, are-not, in some solid substances,
in the same direction. The most general expression for the electric
energy of the medium per unit of volume is half the product of
the electromotive intensity and the electric polarization multi-
plied by the cosine of the angle between their directions. In
all fluid dielectrics the electromotive intensity and the electric
polarization are in the same direction and in a constant ratio.

If we calculate on this hypothesis the total energy residing
in the medium, we shall find it equal to the energy due to the
electrification of the conductors on the hypothesis of direct action
at a distance. Hence the two hypotheses are mathematically
equivalent. ' '

If we now proceed to investigate the mechanical state of the
medium on the hypothesis that the mechanical action observed
between electrified bodies is exerted through and by means of
the medium, as in the familiar instances of the action of one
body on another by means of the temsion of & rope or the
pressure of a rod, we find that the medium must be in a state of
mechanical stress.

The nature of this stress is, as Faraday pointed out*, a tension
along the lines of force combined with an equal pressure in all
directions at right angles to these lines. The magnitude of these
stresses is proportional to the emergy of the electrification per
unit of volume, or, in other words, to the square of the resultant
electromotive intensity multiplied by the specific inductive
capacity of the medium.

* Ezp. Res., series xi. 1297,
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This distribution of stress is the only one consistent *
observed mechanical action on the electrified bodies, .
with the observed equilibrium of the fluid dielectri
surrounds them. I have therefore thought it a warrant
in scientific procedure to assume the actual existene
state of stress, and to follow the assumption into its cons
Finding the phrase electric tension used in several vagu
I have attempted to confine it to what I conceive to b
in the minds of some of those who have used it, nar
state of stress in the dielectric medium which cause
of the electrified bodies, and leads, when continually au
to disruptive discharge. Electric tension, in this se
tension of exactly the same kind, and measured in the s:
as the tension of a rope, and the dielectric medium, w
support a certain tension and no more, may be said
a ocertain strength in exactly the same sense as the ro)
to have a certain strength. Thus, for example, Tho:
found that air at the ordinary pressure and tempera
support an electric tension of 9600 grains weight pe
foot before a spark passes,

60.] From the hypothesis that electric action is nof
action between bodies at a distance, but is exerted by
the medium between the bodies, we have deduced !
medium must be in a state of stress. We have also as
the character of the stress, and compared it with the
which may occur in solid bodies. Along the lines of fo
is tension, and perpendicular to them there is pres
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The electric polarization of an elementary portion of a dielectric
is a forced state into which the medium is thrown by the action
of electromotive force, and which disappears when that force is
removed. We may conceive it to consist in what we may call
an electrio displacement, produced by the electromotive intensity.
When the electromotive force acts on a conducting medium it
produces a current through it, but if the medium is a non-con-
ductor or dielectric, the current cannot {continue to} flow through
the medium, but the electricity is displaced within the medium
in the direction of the electromotive intensity, the extent of this
displacement depending on the magnitude of the electromotive
intensity, so that if the electromotive intensity increases or
diminishes, the electric displacement increases or diminishes in
the same ratio, .

The amount of the displacement is measured by the quantity
of electricity which crosses unit of area, while the displacement
inereases from zero to its actual amount. This, therefore, is the
measure of the electric polarization.

The analogy between the action of electromotive intensity in
producing electric displacement and of ordinary mechanical force
in producing the displacement of an elastic body is so obvious that
Ihave ventured to call the ratio of the electromotive intensity to
the corresponding electric displacement the coefficient of electric
elasticity of the medium. This coefficient is different in different
media, and varies inversely as the specific inductive capacity of
each medium.

The variations of electric displacement evidently constitute
electric currents®*. These currents, however, can only exist
during the variation of the displacement, and therefore, since
the displacement cannot exceed a certain value without causing
disruptive discharge, they cannot be continued indefinitely in
the same direction, like the currents through conductors.

In tourmaline, and other pyro-electric crystals, it is probable
that a state of electric polarization exists, which depends upon
temperature, and does not require an external electromotive force
to produce it. If the interior of a body were in a state of
permanent electric polarization, the outside would gradually
become charged in such a manner as to neutralize the action of
the internal polarization for all points outside the body. This

¢ {If we assume the views enunciated in the preceding paragraph. }

VOL. 1. ¥
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external superficial charge could not be detected by ai
ordinary tests, and could not be removed by any of the
methods for discharging superficial electrification. The
polarization of the substance would therefore never be di
unless by some means, such as change of temperature, the
of the internal polarization could be increased or dir
The external electrification would then be no longer
of neutralizing the external effect of the internal pol:
and an apparent electrification would be observed, as in
of tourmaline.

If a charge ¢ is uniformly distributed over the suri
sphere, the resultant intensity at any point of the med
rounding the sphere is proportional to the charge e
" by the square of the distance from the centre of th:
This resultant intensity, according to our theory, is acco
by a displacement of electricity in a direction outwards
sphere,

If we now draw a concentric spherical surface of radi
whole displacement, E, through this surface will be proj
to the resultant intensity multiplied by the area of the !
surface. But the resultant intensity is directly as the
and inversely as the square of the radius, while the are
surface is directly as the square of the radius.

Hence the whole displacement, £, is proportional to th
¢, and is independent of the radius.

To determine the ratio between the charge ¢, and the .
of electricity, X, displaced outwards through any or
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the displacement, 3E = 3¢, and since £ and e vanish together,
E =c¢e or—

The displacement outwards through any spherical surface
concentric with the sphere is equal to the charge on the sphere.

To fix our ideas of electric displacement, let us consider an
accumulator formed of two conducting plates A and B, separated
by a stratum of a dielectric C. Let W be a conducting wire
Joining A and B, and let us suppose that by the action of an
electromotive force a quantity Q of positive electricity is trans-
ferred along the wire from B to A. The positive electrification
of A and the negative electrification of B will produce a eertain
electromotive force acting from A towards B in the dielectric
stratum, and this will produce an electric displacement from
A towards B within the dielectric. The amount of this dis-
placement, as measured by the quantity of electricity forced
across an imaginary section of the dielectric dividing it into
two strata, will be, according to our theory, exactly Q. See Arts.
75, 76, 111.

It appears, therefore, that at the same time that a quantity
Q of electricity is being transferred along the wire by theelectro--
motive force from B towards 4, so as to cross every section of
the wire, the same quantity of electricity crosses every section
of the dielectric from A towards B by reason of the electric dis-
placement.

The displacements of electricity during the discharge of the
accumulator will be the reverse of these. In the wire the dis-
charge will be Q from A4 to B, and in the dielectric the displace-
ment will subside, and a quantity of electricity Q will cross
every section from B towards A.

Every case of charge or discharge may therefore be considered
as & motion in a closed circuit, such that at every section of
the circuit the same quantity of electricity crosses in the same
time, and this is the case, not only in the voltaic circuit where
it has always been recognized, but in those cases in which elec-
tricity has been generally supposed to be accumulated in certain
places.

61.] We are thus led to a very remarkable consequence of the
theory which we are examining, namely, that the motions of
electricity are like those of an incompressible fluid, so that the
total quantity within an imaginary fixed closed surface remains

ra
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always the same. This result appears at first sight i
contradiction to the fact that we can charge a conduc
then introduce it into the closed space, and so alter th
tity of electricity within that space. But we must re:
that the ordinary theory takes no aecount of the elect
placement in the substance of dielectrics which we ha
investigating, but confines its attention, to the electrifie:
the bounding surfaces of the conductors and dielectrics.
case of the charged conductor let us suppose the charg
positive; then if the surrounding dielectric extends on ¢
beyond the closed surface there will be electric pola:
accompanied with displacement from within outwards :
the closed surface, and the surface-integral of the disple
taken over the surface will be equal to the charge on t
ductor within.

Thus when the charged conductor is introduced into th
~ space there is immediately a displacement of a quantity

tricity equal to the charge through the surface from witl
wards, and the whole quantity within the surface rema
same,

The theory of electric polarization will be discus
greater length in Chapter V, and a mechanical illustra
it will be given in Art. 334, but its importance cannot kb
understood till we arrive at the study of electromagnet
nomena. -

. 62.] The peculiar features of the theory are :—
. That the emergy of electrification resides in the di
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maultiplied by i K, where K is the specific inductive capacity of

the dielectrie.

That the energy per unit of volume of the dielectric arising
from the electric polarization is half the produet of the electro-
motive intensity and the electric displacement, multiplied, if
necessary, by the cosine of the angle between their directions.

That in fluid dielectrics the electric polarization is accompanied
by a tension in the direction of the lines of induction, combined
with an equal pressure in all directions at right angles to the
lines of induction, the tension or pressure per unit of area being
numerically equal to the energy per unit of volume at the same
place.

That the surface of any elementary portion into which we may
conceive the volume of the dielectric divided must be conceived
to be charged so that the surface-density at any point of the
surface is equal in magnitude to the displacement through that
point of the surface reckoned inwards. If the displacement is in
the positive direction, the surface of the element will be charged
negatively on the positive side of the element, and positively on
the negative side. These superficial charges will in general
destroy one another when consecutive elements are considered,
except where the dielectric has an internal charge, or at the
surface of the dielectric.

That whatever electricity may be, and whatever we may
understand by the movement of electricity, the phenomenon
which we have called electric displacement is a movement of
electricity in the same sense as the transference of a definite
quantity of electricity. through a wire is a movement of elec-
tricity, the only difference being that in the dielectric there is &
force which we have called electric elasticity which acts against
the electric displacement, and forces the electricity back when
the electromotive force is removed ; whereas in the conducting
wire the electric elasticity is continually giving way, so that
a current of true conduction is set up, and the resistance depends
not on the total quantity of electricity displaced from its position
of equilibrium, but on the quantity which crosses a section of
the conductor in a given time.

That in every case the motion of electricity is subject to the
same condition as that of an incompressible fluid, namely, that



70 ELECTROSTATIC PHENOMENA.,

at every instant as much must flow out of any given
surface as flows into it.

It follows from this that every electric current must
oclosed circuit. The importance of this result will be see
we investigate the laws of electro-magnetism.

Since, as we have seen, the theory of direct action ai
tance is mathematically identical with that of action b
of & medium, the actual phenomena may be explained by
theory as well as by the other, provided suitable hypotl
introduced when any difficulty occurs. Thus, Mossotti
duced the mathematical theory of dielectrics from the ¢
theory of attraction merely by giving an electric inste
magnetic interpretation to the symbols in the investiga
which Poisson has deduced the theory of magnetic iv
from the theory of magnetic fluids. He assumes the e:
within the dielectric of small conducting elements, caj
having their opposite surfaces oppositely electrified by in
but not capable of losing or gaining.electricity on the
owing to their being insulated from each other by
conducting medium. This theory of dielectrics is co
with the laws of electricity, and may be actually true.
true, the specific inductive capacity of a dielectric may be
but cannot be less, than that of a vacuum. No instance
been found of a dielectric having an inductive capacity 1
that of a vacuum, but if such should be discovered, M
physical theory must be abandoned, although his f
would all remain exact, and would only require us to 1



CHAPTER II

ELEMENTARY MATHEMATICAL THEORY OF STATICAL
ELECTRICITY.

Definition of Electricity as a Mathematical Quantity.

63.] W= have seen that the properties of charged bodies are
such that the charge of one body may be equal to that of an-
other, or to the sum of the charges of two bodies, and that when
two bodies are equally and oppositely charged they have no elec-
trical effect on external bodies when placed together within a
closed insulated conducting vessel. We may express all these
results in a concise and consistent manner by describing an
electrified body as charged with a certain quantity of electricity,
which we may denote by e. When the charge is positive, that
is, acoording to the usual convention, vitreous, e will be a positive
quantity. When the charge is negative or resinous, e will be
negative, and the quantity —e may be interpreted either as a
negative quantity of vitreous electricity or as a positive quantity
of resinous electricity.

The effect of adding together two equal and opposite charges
of electricity, +e¢ and —e, is to produce a state of no charge
expressed by zero. We may therefore regard a body not charged
as virtually charged with equal and opposite charges of indefinite
magnitude, and a charged body as virtually charged with un-
equal quantities of positive and negative electricity, the algebraic
sum of these charges constituting the observed electrification.
It is manifest, however, that this way of regarding an electrified
body is entirely artificial, and may be compared to the concep-
tion of the velocity of a body as compounded of two or more
different velocities, no one of which is the actual velocity of the

body.
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ON ELECTRIO DENSITY.
Distribution in Three Dimensions.

64.] Definition. The electric volume-density at & give
in space is the limiting ratio of the quantity of electricit;
a sphere whose centre is the given point to the volume
sphere, when its radius is diminished without limit.

We shall denote this ratio by the symbol p, which
positive or negative,

Distribution over a Surface.

It is & result alike of theory and of experiment, that, in
cases, the charge of a body is entirely on the surface. The
at a point on the surface, if defined according to the meth¢
above, would be infinite. We therefore adopt a different
for the measurement of surface-density.

Definition. The electric density at a given point on &
is the limiting ratio of the quantity of electricity within .
whose centre is the given point to the area of the surfe
tained within the sphere, when its radius is diminished
limit.

We shall denote the surface-density by the symbol .

Those writers who supposed electricity to be a mater
or a collection of particles, were obliged in this case to
the electricity distributed on the surface in the form of a
of a certain thickness 0, its density being p,, or that va
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Distribution on a Line.

It is sometimes convenient to suppose electricity distributed
on a line, that is, a long narrow body of which we neglect the
thickness. In this case we may define the line-density at any
point to be the limiting ratio of the charge on an element of the
line to the length of that element when the element is diminished
without limit.

If A denotes the line-density, then the whole quantity of elecs
tricity on a curve is ¢e=[ Ads, where ds is the element of the

curve. Similarly, if o is the surface-density, the whole quantity
of electricity on the surface is

e=f o ds,

where dS is the element of surface.
If p is the volume-density at any point of space, then the
whole electricity with a certain volume is

e=fffpda;dydz,

where drdydz is the element of volume. The limits of in-
tegration in each case are those of the curve, the surfa.ce, or the
portion of space considered.

It is manifest that ¢, A, o and p are quantities differing in kind,
each being one dimension in space lower than the preceding, so
that if / be a line, the quantities ¢, IA, I? o, and I3p will be all of
the same kind, and if [L] be the unit of length, and [A], [#], [r]
the units of the different kinds of density, [e], [LA], [L? 0], and
[L? p] will each denote one unit of electricity.

Definition of the Unit of Electricity.

65.] Let A and B be two points the distance between which
is the unit of length. Let two bodies, whose dimensions are
small compared with the distance 4B, be charged with equal
quantities of positive electricity and placed at A and B respect-
ively, and let the charges be such that the force with which they
repel each other is the unit of force, measured as in Art. 6, Then
the charge of either body is said to be the unit of electricity *.

If the charge of the body at B were & unit of negative -
ﬁ:}{ In this definition the dielectric separating the charged bodies is supposed to be
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eloctricity, then, since the action between the bodies 1
roversed, we should have an attraction equal to the unit
If the charge of A were also negative, and equal to v
force would be repulsive, and equal to unity.

Since the action between any two portions of electrici
affectod by the presence of other portions, the repulsior
¢ units of electricity at A and ¢’ units at B is e¢’, the
AB being unity. See Art. 39.

Law of Force between Charged Bodies.

66.] Coulomb shewed by experiment that the force
charged bodies whose dimensions are-small compared
distanoe botween them, varies inversely as the square of
tanocs. Henoe the repulsion between two such bodies
with quantities e and ¢’ and placed at a distance r is

ee’
S

We shall prove in Arta. 74 ¢, 74 d, 74 ¢ that this law is
one oonsistent with the observed fact that a conductc
in the inside of a closed hollow conductor and in coni
it, is deprived of all electrical charge. Our convictio
aocuracy of tho law of the inverse square of the dista
be considered to rest on experiments of this kind, rat
on the direct measurewents of Coulomb.

Resultunt Forve between Two Bodiex
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which the electrical density is p, and «/, ¥/, 2/, and p’ are the
corresponding quantities for the second body, and the integration
is extended first over the one body and then over the other.

Resultant Intensity at a Poind.

68.] In order to simplify the mathematical process, it is con-
venient to consider the action of an electrified body, not on
another body of any form, but on an indefinitely small body,
charged with an indefinitely small amount of electricity, and
placed at any point of the space to which the electrical action
extends. By making the charge of this body indefinitely small
we render insensible its disturbing action on the charge of the
first body.

Let ¢ be the charge of the small body, and let the force acting
on it when placed at the point (, y, 2) be Re, and let the
direction-cosines of the force be [, m, n, then we may call R the
resultant electric intensity at the point (z, ¥, 2).

If X, Y, Z denote the components of R, then

X =Rl Y = Rm, Z = Rn.

In speaking of the resultant electric intensity at a point, we
do not necessarily imply that any force is actually exerted there,
but only that if an electrified body were placed there it would be
acted on by a force R ¢, where e is the charge of the body *.

Definition. The resultant electric intensity at any point is
the force which would be exerted on a small body charged with
the unit of positive electricity, if it were placed there without
disturbing the actual distribution of electricity.

This force not only tends to move a body charged with
electricity, but to move the electricity within the body, so that
the positive electricity tends to move in the direction of R and
the negative electricity in the opposite direction. Hence the
quantity R is also called the Electromotive Intensity at the
point (i, ¥, 2).

When we wish to express the fact that the resultant intensity
is a vector, we shall denote it by the German letter €. If the
body is a dielectric, then, according to the theory adopted in
this treatise, the electricity is displaced within it, so that the

® The Electric and Magnetic Intensities correspond, in electricity and magnetism,
to the intensity of gravity, commionly denoted by g, in the theory of heavy bodies.
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quantity of electricity which is forced in the direction of
. unit of area fixed perpendicular to € is

1 ..
D=4—,;11@,

where D is the displacement, € the resultant intensity, a
specific inductive capacity of the dielectric.

If the body is & conductor, the state of constraint is co
giving way, so that a current of conduction is prod
maintained as long as @ acts op the medium.

Lime-Integral of Electric Intensity, or Electromotive
along an Arc of a Curve.

69.] The Electromotive force along a given arc AP ¢
is numerically measured by the work which would be
the electric intensity on a unit of positive electricity car
the curve from A, the beginning, to P, the end of the a

If s is the length of the arc, measured from 4, and
sultant intensity R at any point of the curve makes &
with the tangent drawn in the positive direction, then
done on unit of electricity in moving along the eleme

curve ds will be R cos eds,
and the total electromotive force £ will he
E= f "R cos eds,
0

the integration being extended from the beginning tc
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In this ease V is & scalar function of the position of a point in
space, that is, when we know the coordinates of the point, the
nalne of ¥ is determinate, and this value is independent of the
position and direction of the axes of reference. See Art. 16,

On Functions of the Position of a Point,

In what follows, when we describe a quantity as a function of
the position of a point, we mean that for every position of the
point the fundtion has a determinate value. We do not imply
that this valie can always be expressed by the same formula
for all points of space, for it may be expressed by one formula
on one side of a given surface and by another formula on the
other side.

On Potential Functions.

70.] The quantity X dz + ¥ dy + Zds is an exact differential
whemever the force arises from attractions or repulsions whose
intensity is a function of the distances from any number of
points. For if 7, be the distance of one of the points from the
point (z, y, 2), and if R, be the repulsion, then

r—x dr
x=R*%-p M,

with similar expressions for ¥; a.nd Z,, so that

X, dz+ Kdy+Zldz = Rydr;
and since R, is a function of », only, R,dr, is an exact differ-
ential of some funétion of ,, say — ¥}

Similarly for any other force R,, acting from a centre at dis-
tance 7, X do+ Y.dy+Z,dz = Rydry = —dV,

But X=X, + X, + &ec., and Y and Z are compounded in the same
way, therefore

Xda+ Ydy+2Zdz = —dV,—dV,—&e. = —-dV.
The integral of this quantity, under the condition that it vanishes
at an infinite distance, is called the Potential Function,

The use of this function in the theory of attractions was intro-
daced by Laplace in the calculation of the attraction of the
earth, Green, in his essay ¢ On the Application of Mathematical
Analysis to Electricity,’ gave it the name of the Potential
Fanction. QGauss, working independently of Green, also used
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the word Potential. Clausius and others have applied |
Potential to the work which would be done if two t
systems were removed to an infinite distance from one
We shall follow the use of the word in recent Englis
and avoid ambiguity by adopting the following definitio
Sir W. Thomson.

Definition of Potential. The Potential at a Point is
which would be done on a unit of positive electricity
electric forces if it were placed at that point without d’
the electric distribution, and carried from that point t
finite distance: or, what comes to the same thing, t
which must he done by an external agent in order to 1
unit of positive electricity from an infinite distance (or
place where the potential is zero) to the given point.

71.] Expressions for the Resultant Intensity and
components in terms of the Potential.
Since the total electromotive force along any arec AB !
" Eup=Vi—T5

if we put ds for the arc AB we shall have for the inte
solved in the direct.ign of ds, v

Recose=—~—;

ds

whence, by assuming ds parallel to each of the axes in st

we get

av. v 4V, 4V,

Y —
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conductor. Hence R = 0 throughout the whole space occupied
by the conductor. From this it follows that

av av av
= =0, —d?/' =0, TE =0;
and therefore for every point of the conductor
V=g,

where C is & constant quantity.

Since the potential at all points within the substance of the
eonductor is C, the quantity C is called the Potential of the con-
ductor. C may be defined as the work which must be done by
external agency in order to bring a unit of electricity from an
infinite distance to the conductor, the distribution of electricity
being supposed not to be disturbed by the presence of the unit *.

It will be shewn at Art. 246 that in general when two bodies
of different kinds are in contact, an electromotive force acts from
one to the other through the surface of contact, so that when
they are in equilibrium the potential of the latter is higher than
that of the former. For the present, therefore, we shall suppose
all our conductors made of the same metal, and at the same
temperature,

If the potentials of the conductors A and B be V; and V;
respectively, then the electromotive force along & wire joining
4 and B will be Vi—-% ‘

in the direction 4B, that is, positive electricity will tend to pass
from the conductor of higher potential to the other.

Potential, in electrical science, has the same relation to Elec-
tricity that Pressure, in Hydrostatics, has to Fluid, or that Tem-
perature, in Thermodynamics, has to Heat. Electricity, Fluids,
and Heat all tend to pass from one place to another, if the
Potential, Pressure, or Temperature is greater in the first place
than in the second. A fluid is certainly a substance, heat is as
certainly not a substance, so that though we may find assistance
from analogies of this kind in forming clear ideas of formal
relations of electrical quantities, we must be careful not to let
the one or the other analogy suggest to us that electricity is
either a substance like water, or a state of agitation like heat.

® {If there is any discontinuity in the putential as we pass from the dielectric to
the condnctor it is y to atate whether the electrified point is brought inside
the conductor or merely to the surface. }
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Potential due to any Electrical System.

78.] Let there be & single electrified point charged
quantity e of electricity, and let » be the distance of t
o, o, 7 from it, then

“e e
V=fRdr—[ ;,dr—;-

Let there be any number of electrified points whose co«
are (;, Y1, 2,), (g, Yg, %), &o. and their charges ¢, ¢,
let their distances from the point (¢, ¥/, 2) be 7y, 1y, {
the potential of the system at («, ¥/, 2) will be

V=3 (i).

Let the electric density at any point (z, ¥, z) within
trified body be p, then the potential due to the body is

o jj -

where r={(@=2P+(y—yP+E—2P}
the integration being extended throughout the body.

On the Proof of the Law of the Inverse Square.

74a.] The fact that the force between electrified 1
inversely as the square of the distance may be consider
established by Coulomb’s direct experiments with the
balance. The results, however, which we derive from
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together, formed an insulated spherical shell concentric with the
globe.

The globe could then be made to communicate with the hemi-
spheres by means of a short wire, to which a silk string was
fastened so that the wire could be removed without discharging
the apparatus.

The globe being in communication with the hemispheres, he
charged the hemispheres by means of a Leyden jar, the potential
of which had been previously measured by an electrometer, and
immediately drew out the communicating wire by means of the
silk string, removed and discharged the hemispheres, and tested
the electrical condition of the globe by means of a pith ball
electrometer.

No indication of any charge of the globe could be detected Ry
the pith ball electrometer, which at that time (1773) was con-
sidered the most delicate electroscope.

Cavendish next communicated to the globe a known fraction
of the charge formerly communicated to the hemispheres, and
tested the globe again with his electrometer.

He thus found that the charge of the globe in the original
experiment must have been less than ; of the charge of the
whole apparatus, for if it had been greater it would have been
detected by the electrometer.

He then calculated the ratio of the charge of the globe to
that of the hemispheres on the hypothesis that the repulsion’is
inversely as a power of the distance differing slightly from 2,
and found that if this difference was 4% there would have
been a charge on the globe equal to 4 of that of the whole
apparatus, and therefore capable of being detected by the
electrometer.

74b.] The experiment has recently been repeated at the
Cavendish Laboratory in a somewhat different manner.

The hemispheres were fixed on an insulating stand, and the
globe fixed in its proper position within them by means of an
ebonite ring. By this arrangement the insulating support of the
globe was never exposed to the action of any sensible electric
force, and therefore never became charged, so that the disturbing
effect of electricity creeping along the surface of the insulators
was entirely removed.

Instead of removing the hemispheres before testing the potential

VOL. I, G



82 _ ELECTROSTATICS.

of the globe, they were left in their position, but disch
earth. The effect of a given charge of the globe on the
meter was not so great as if the hemispheres had been 1
but this disadvantage was more than compensated by th
security afforded by the conducting vessel against all
electric disturbances.

The short wire which made the connexion between {
and the globe was fastened to a small metal disk whi
a8 a lid to a small hole in the shell, so that when f
and the lid were lifted up by a silk string, the electrod
electrometer could be made to dip into the hole and res
globe within. '

The electrometer was Thomson's Quadrant Electrom
‘seribed in Art. 219. The case of the electrometer and o1
efectrodes were always connected to earth, and the
electrode was connected to earth till the electricity of t
had been discharged.

To estimate the original charge of the shell, a small b
was placed on an insulating support at a considerable
from the shell.

The operations were conducted as follows:—

The shell was charged by communication with a Leyd

The small ball was connected to earth so as to give it 4
charge by induction, and was then left insulated.

‘The communicating wire between the globe and the &
removed by a silk string.

The shell was then discharged, and kept connected to
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Baut if the repulsion had been as 9~%, the potential of the globe
would have been —0-1478 ¢ of that of the shell by equation (22),
p- 85.

Hence if +d be the greatest deflection of the electrometer
which could escape observation, and D the deflection observed in
the second part of the experiment, {since -1478 ¢V /; 3V must be
less than ¢ /D,} q cannot exceed

1d
tnD
Now even in a rough experiment D was more than 300 d, so
that g cannot exceed 1
*+ 21600°

Theory of the Experiment.

74c.] To find the potential at any point due to a uniform
spherical shell, the repulsion between two units of matter being
any given function of the distance.

Let ¢ () be the repulsion between two units at distance r, and
let f (r) be such that

®

YO(=rm)=r[ swar (1)
Let the radius of the shell be @, and its surface density o, then,

if a denotes the whole charge of the shell,
a=4nata. (2)
Let b denote the distance of the given point from the centre of
the shell, and let = denote its distance from any given point of

the shell.

If we refer the point on the shell to spherical coordinates, the
pole being the centre of the shell, and the axis the line drawn to

the given point, then v
7 = a4+ b2 —2ab cos 0. ’ (3)
The mass of the element of the shell is
oatsindd¢ de, (4)

and the potential due to this element at the given point is
aa’sineflf‘i)ded¢; (5)

G2
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and this has to be integrated with respect to ¢ from «
¢ = 2 =, which gives ,
2w oadsin 0.‘@(10,
which has to be integrated from 6 = 0 to 4 = =.
Differentiating (3) we find
rdr = absin 6d 6.
Substituting the value of 40 in (6) we obtain

2w %’ I (r)dr,

the integral of which is
V= 2n03 {f(r)—f ()}
where 7, is the greatest value of », which is always a +
is the least value of », which is b—a when the given
outside the shell and @ —b when it is within the shell.
If we write a for the whole charge of the shell, and
potential at the given point, then for & point outside the
V=503 (f0+a)=f(b~a)}.
For a point on the shell itself
=2 *
V= 75 1 (2a),

and for a point inside the shell
V= {fla+b)-f(a=b)}.
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By putting A = B=V, and solving the equations (13) and
(14) for 8, we find for the charge of the inner shell
= bf(2a)—a[f(a+b)—f(a—b)]

£ = ipar@-Tero—reoF

In the experiment of Cavendish, the hemispheres forming the

outer shell were removed to a distance which we may suppose

infinite, and discharged. The potential of the inner shell (or

globe) would then become

By =B 1 (20) . (16)

In the form of the experiment as repeated at the Cavendish
Laboratory the outer shell was left in its place, but connected
to earth, so that A = 0. In this case we find for the potential
of the inner globe in terms of ¥V

a f(a+d)—f(a—-0b)
B,= V{l -3 faag } (17)
74d.] Let us now assume, with Cavendish, that the law of
force is some inverse power of the distance, not differing much
from the inverse square, and let us put
¢ (r) =" (18)
then flr)= I—_Lq,rm x, “(19)

If we suppose ¢ to Be small, we may expand this by the ex-
ponential theorem in the form
f(r)= l_lq,r{l+qlog'r+ l—l.—z(qlogr)z-}-&c.}; (20)
and if we neglect terms involving ¢ equations (16) and (17) be-
come

a 4a3 a, a+b
B,= 123V lg s - S low 05 1)
4a® a +b

from which we may determine ¢ in terms of the results of the
experiment.

74 ¢.] Laplace gave the first demonstration that no function of
the distance except the inverse square satisfies the condition that
a uniform spherical shell exerts no force on a particle within it t.

* {Bedetly £ (r)-/(0) = l—_lq,rw if g* be less than unity.}
4+ Mec. Cel, L 2.
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If we suppose that 8 in equation (15) is always zero,
apply tho method of Laplace to determine the form of f(
haveo by (18),

bf(2a)—af (a+b)+af(a—b) = 0.
Differentiating twioce with respect to b, and dividing b,

find " (@+b) = f” (a=b).
If this equation is generally true
J”(r) = C,, a constant.
Henoo, S (r)=Cyr+Cy;
and by (1) [¢('r)>dr =f—£t) = 0°+%‘,
C
[ (1') = -;’1 o

Wo may observe, however, that though the assum;
Cavundish, that the force varies as some power of the «
may appear less general than that of Laplace, who suf
to be any function of the distance, it is the only one e
with the fact that similar surfaces can be electrified
have similar electrical properties, {so that the lines of {
similar}.

For if the force were any function of the distance ¢
power of the distance, the ratio of the forces at two
distanoos would not be a function of the ratio of the di
but would depend on the absolute value of the distan
would thorefore involve the ratios of these distance



76.] ELECTRIO INDUCTION. 87

Surface-Integral of Electric Induction, and Electric
Displacement through a surface. ’

75.] Let R be the resultant intensity at any point of the
surface, and ¢ the angle which R makes with the normal drawn
towards the positive side of the surface, then R cos ¢ is the
component of the intensity normal to the surface, and if d.S is the
element of the surface, the electric displacement through d S will

be, by Art. 68, -l—KRooscdS
4z :

Since we do mot at present consider any dielectric except air,
K=1.

We may, however, avoid introducing at this stage the theory
of electric displacement, by calling Rcosed S the Induction
through the element dS. This quantity is well known in
mathematical physics, but the name of induction is borrowed
from Faruday. The surface-integral of induction is

J[Roos eas,

and it appears by Art. 21, that if X, ¥, Z are the components
of R, and if these quantities are continuous within a region
bounded by a closed surface S, the induction reckoned from
within outwards is

/chosedS-ff/(dX ar dZ)dwdydz,

the integration being extended through the whole space within
the surface.

Induction through a Closed Surface due to a single
Centre of Force.

76.] Let a quantity e of electricity be supposed to be placed at
a point O, and let = be the distance of any point P from O, the
intensity at that point is R = er~* in the direction OP.

Let a line be drawn from O in any direction to an infinite dis-
tance. If O is without the closed surface this line will either
not cut the surface at all, or it will issue from the surface as
many times as it enters. If O is within the surface the line
must first issue from the surface, and then it may enter and
issue any number of times alternately, ending by issuing from it.

Let ¢ be the angle between OP and the normal to the surface
drawn outwards where OP cuts it, then where the line issues
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from the surface, cos ¢ will be positive, and where it ente
will be negative.

Now let a sphere be described with centre O and radiu
and let the line OP describe a conical surface of small
aperture about O as vertex.

This cone will cut off & small element d w from the su
the sphere, and small elements d8;, dS,, &c. from th
surface at the different places where the line O.P intersec

Then, since any one of these elements d.S intersects t
at a distanoe r from the vertex and at an obliquity e,

dS=+7secedw;
and, since R = er-3, we shall have

RcosedS = tedw;
the positive sign being taken when 7 issues from the surfi
the negative when it enters it.

If the point O is without the closed surface, the positiv:
are equal in number to the negative ones, so that

direction of 7, SRcosedS =0,

and therefore / RcosedS =0,

the integration being extended over the whole closed sur
If the point O is within the closed surface the radius ve
first issues from the closed surface, giving a positive value
and then has an equal number of entrances and issues, 80
this case ZRcosedS = edw.
Extending the integration over the whole closed sur
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at 0. This quantity, therefore, depends only on the closed curve,
and the form of the surface of which it is the boundary may be
changed in any way, provided it does not pass from one side to
the other of the centre of force.

On the Equations of Laplace and Poisson.

77.] Since the value of the total induction of a single centre
of force through a closed surface depends only on whether the
centre is within the surface or not, and does not depend on its
position in any other way, if there are a number of such centres
e,, €, &c. within the surface, and e/, ¢,’, &ec. without the surfaee,

we shall have
- f RcosedS = 47e;

where ¢ denotes the algebraical sum of the quantities of elec-
tricity at all the centres of force within the closed surface, that
is, the total electricity within the surface, resinous electricity
being reckoned negative.

If the electricity is so distributed within the surface that the
density is nowhere infinite, we shall have by Art. 64,

4re=41rfffpda:dydz,
and by Art. 75,

ijwsedS—fff(dX O+ ) awayds.

If we take as the closed surface tha.t of the element of volume
dz dy dz, we shall have, by equating these expressions,
aX dY 47 _ ..
de Yy YT az =47
and if a potential V exists, we find by Art. 71,
£ ] 2 2
2V BV T i
This equation, in the case in which the density is zero, is called
Laplace’s Equation. In its more general form it was first given
by Poisson. It enables us, when we know the potential at every
point, to determine the distribution of electricity.
We shall denote, as in Art. 26, the quantity
2 2 2

snd we may express Poisson’s equation in words by saying that
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the electric density multiplied by 4 = is the concentratic
potential. Where there is no electrification, the potentit
concentration, and this is the interpretation of Laplace’s ¢

By Art. 72, V is constant within a conductor. Henc
a conductor the volume-density is zero, and the whol
must be on the surface.

If we suppose that in the superficial and linear dist:
of electricity the volume-density p remains finite, and
electricity exists in the form of a thin stratum or a narr
then, by increasing p and diminishing the depth of the
or the section of the fibre, we may approach the limit
superficial or linear distribution, and the equation be
throughout the process will remain true at the limit,
preted in accordance with the actual circumstances.

Variation of the Potential at a Charged Surface

78 a.] The potential function, ¥V, must be physically co
in the sense defined in Art. 7, except at the bounding s
two different media, in which case, as we shall see in .
there may be a difference of potential between the su
8o that when the electricity is in equilibrium, the pot
a point in one substance is higher than the potentit
contiguous point in the other substance by a constant -
C, depending on the natures of the two substances and
temperatures.

But the first derivatives of ¥ with respect to «,y, or :
discontinuous, and, by Art. 8, the points at which thi
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from a given point of the surface into the positive region. Those
of the normal », drawn from the same point into the negative
region will be —/, —m, and — .

The rates of variation of ¥V along the normals are

d¥, ,d¥ _d¥ _d¥

dyl=—l%—m;i?—’n£) (3)
a_ 4%, d%_dy
F ld—z +n dy +n (4)

Let any line be drawn on the surface, and let its length, measured
from a fixed point in it, be s, then at every point of the surface,
and therefore at every point of this line, ; — ¥ = C. Differen-
tiating this equa.tion with respect to s, we get

(dV ay\de

d dV d aV; d¥\dz
=&t (‘I y (———!—— i (5)
and since the norma.l is perpendmcular to this line
' de dy dz
lds+mda+n—"° (6)
From (3), (4), (5), (6) we find
ay, d¥ _ I ay | 4V, @)
&=t
A dV dV dl{
d—y (d"l 372 ®
dV dV d¥,  dVi .
(dvl (©)

If we consider the va.natlon of the electromotive intensity at
a point in passing through the surface, that component of the in-
tensity which is normal to the surface may change abruptly at
the surface, but the other two components parallel to the tangent
plane remain continuous in passing through the surface.

78b.] To determine the charge of the surface, let us consider a
closed surface which is partly in the positive region and partly in
the negative region, and which therefore encloses a portion of the
surface of discontinuity.

he Sinco (6) and (6) are true for an infinite number of values of E
a5 av, dl,_dv, d¥, dy,

& dz dy dy dz d: ay, dv, av, dvy, v, dv,
R PR IR B PP B L PR RO

v,
and therefore by equations (8) and (4) each of these ratios = :r‘ + :':}

% g—:, we have
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The surface integral,
| [[Recseas,

extended over this surface, is equal to 4 we, where ¢ is the
of electricity within the closed surface. -
Proceeding as in Art. 21, we find

fchos.ds_fff(dX ax + %)t dyds

+ff {l(xs—x,)mm—Y,)~+n(zz-zo}

where the triple integral is extended throughout the close

and the double integral over the surface of discontinuit;

Substituting for the terms of this equation their val
(7 (8), (9),

sxe= [[[1xpasayas—[[( G+ ;’E)d&

But by the definition of the volume-density, p, and the
density, o,

76 =4xfffpdzdydz+4tffcd8.

Henoce, comparing the last terms of these two equations
dV, aV;
dr + 8— +4m0c=0.
This equation is called the ehamtemhc equation of
eleotrified surface of which the surface-density is o.
78¢.] If V is & function of x, y, z which, throughou
continuous region of space, satisfies Laplace’s equation
£ DBV DV
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to differ from C. Hence Z—-r just outside the surface may be

positive or negative, but cannot be zero except for mormals
drawn from the boundary line between a positive and a negative
area. :

But if / is the normal drawn inwards from the surface S, V'= C

anddv’

=0.

a_"r
Hence, at every point of the surface except certain boundary
lines, dv _dv

oty (=-1)

is a finite quantity, positive or negative, and therefore the surface
8 has a continuous distribution of electricity over all parts of it
except certain boundary lines which separate positively from
negatively charged areas.

Laplace’s equation is not satisfied at the surface S except at
points lying on certain lines on the surface. The surface S there-
fore, within which ¥ = O, includes the whole of the continuous
region within which Laplace’s equation is satisfied.

Force Acting on a Charged Surface.

79.] The general expressions for the components of the force
acting on a charged body parallel to the three axes are of the form

4= [[rxdzayas, (14)

with similar expressions for B and C, the components parallel to
yand z

But at a charged surface p is infinite, and X may be discon-
tinuous, so that we cannot calculate the force directly from
expressions of this form.

‘We have proved, however, that the discontinuity affects only
that component of the intensity which is normal to the charged
surface, the other two components being continuous.

Let us therefore assume the axis of # normal to the surface at
the given point, and let us also assume, at least in the first part
of our investigation, that X is not really discontinuous, but that
it changes continuously from X, to X, while « changes from =z,
to z,. If the result of our calculation gives a definite limiting
value for the force when z;—z, is diminished without limit, we
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may consider it correct when z,=uz,, and the charged
has no thickness.

Substituting for p its value as found in Art. 77,

A__/ff(dx iy d)deddz'

Integrating this expression w1th respect to « from x
« = @, it becomes

4=t [[[rxa-x +f” (dY Y xds)ay

This is the value of 4 for a stratum pa.ra.llel toyzof w
thickness is o, — ;.

Since Y and Z are continuous, Z: + c(ilZ
is also finite,

f(dY dZ)XdMC(wa z),

aY dZ
oy +d)XbetweeJ

is finite, and

where C is the greatest value of (

and z = z,.

Hence when #,—z, is diminished without limit this te
ultimately vanish, leaving

a=[[Lxr-xpaya,

where X, is the value of X on the negative and X on the
side of the surface.

But by Art. 78, X,—X,=%%_%W_ 4.,
so that we may write
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We may now suppose the direction of the normal to the surface
to be in any direction with respect to the axes, and write the
general expressions for the components of the force on the element
of surface d S, A=} (X, +X,)od8,

B=1} (Y‘-" Yg)ndS, }
C=1%(2,+2,)qsd8S.

(20)

Charged Surface of a Conductor.

80.] We have already shewn (Art. 72) that throughout the
substance of a conductor in electric equilibrium X =Y¥Y=2Z =0,
and therefore V' is constant.

z—f + g{?ﬁz: 47p = 0,

and therefore p must be zero throughout the substance of the
conductor, or there can be no electricity in the interior of the
conductor.

Hence a superficial distribution of electricity is the only
possible distribution in a conductor in equilibrium.

A distribution throughout the mass of a body can exist only
when the body is a non-conductor.

Since the resultant intensity within the conductor is zero, the
resultant intensity just outside the conductor must be in the
direction of the normal and equal to 4 7 o, acting outwards from
the conductor.

This relation between the surface-density and the resultant in-
tensity close to the surface of a conductor is known as Coulomb’s
Law, Coulomb having ascertained by experiment that the elec-
tromotive intensity near a given point of the surface of a con-
ductor is normal to the surface and proportional to the surface-
density at the given point. The numerical relation

R=47%c
was established by Poisson.

The force acting on an element, d S, of the charged surface of
a conductor is, by Art. 79, (since the intensity is zero on the
inner side of the surface,)

yRodS = 270%d8 = %, RS,

Hence

This force acts along the normal outwards from the conductor,
whether the charge of the surface is positive or negative.
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Its value in dynes per square centimetre is
1Ro =2nc* = L R,
8w

acting as a tension outwards from the surface of the con:

81.] If we now suppose an elongated body to be el
we may, by diminishing its lateral dimensions, arriv
conception of an electrified line.

Let ds be the length of a small portion of the elongat
and let ¢ be its circumference, and o the surface-densit
electricity on its surface; then, if A is the charge per
length, A = co, and the resultant electric intensity clos

surface will be A
4710 = 41rE-

If, while A remains finite, ¢ be diminished indefinitely
tensity at the surface will be increased indefinitely.
every dielectric there is a limit beyond which the :
cannot be increased without a disruptive discharge.
distribution of electricity in which a finite quantity is |
a finite portion of a line is inconsistent with the ¢
existing in nature.

Even if an insulator could be found such that no «
could be driven through it by an infinite force, it +
impossible to charge a linear conductor with a finite qu
electricity, for {since a finite charge would make the
infinite} an infinite electromotive force would be rec
bring the electricity to the linear conductor.
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On Lines of Force.

82.] If a line be drawn whose direction at every point of its
course coincides with that of the resultant intensity at that
point, the line is called a Line of Force.

In every part of the course of a line of force, it is proceeding
from a place of higher potential to a place of lower potential.

Hence a line of force eannot return into itself, but must have
a beginning and an end. The beginning of a line of force must,
by § 80, be in a positively charged surface, and the end of a line
of force must be in a negatively charged surface.

The beginning and the end of the Jine are called corresponding -
points on the positive and negative surface respectively.

If the line of force moves so that its beginning traces a closed
curve on the positive surface, its end will trace a corresponding
closed curve on the negative surface, and the line of force itself
will generate a tubular surface called a tube of induction. Such
a tube is called a Solenoid *.

Since the force at any point of the tubular surface is in the
tangent plane, there is no induction across the surface. Hence
if the tube does not contain any electrified matter, by Art. 77
the total induction through the closed surface formed by the .
tubular surface and the two ends is zero, and the values of

f f Rcos edS for the two ends must be equal in magnitude

but opposite in sign.
If these surfaces are the surfaces of conduetors
e=0 and R =—4no,

mdfchos edS becomes —4nffadS, or the charge of the sur-

face multiplied by 47 1.

Hence the positive charge of the surface enclosed within the
closed curve at the beginning of the tube is numerically equal to
the negative charge enclosed within the corresponding closed
curve at the end of the tube.

Several important results may be deduced from the properties
of lines of force.

¢ From owAfy, a tube. Faraday uses (8271) the term ‘Sphondyloid’ in the same

senne.
+ {R here is drawn outwards frcm the fube.}
VOL 1. H
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The interior surface of a closed conducting vessel is
free from charge, and the potential at every point witl
the same as that of the conductor, provided there is no i
and charged body within the vessel.

For since a line of force must begin at a positively
surface and end at a negatively charged surface, and
charged body is within the vessel, a line of force, if
within the vessel, must begin and end on the interior s
the vessel itself.

But the potential must be higher at the beginning «
of force than at the end of the line, whereas we have pro
the potential at all points of a conductor is the same.

Hence no line of force can exist in the space within
conducting vessel, provided no charged body be placed :

If a conductor within a closed hollow conducting
placed in communication with the vessel, its potential
the same as that of the vessel, and its surface becor
tinuous with the inner surface of the vessel. The con
therefore free from charge. '

If we suppose any charged surface divided into ele
portions such that the charge of each element is unit;
solenoids having these elements for their bases are drawn
the field of force, then the surface-integral for any othe
will be represented by the number of solenoids which it
is in this sense that Faraday uses his conception of lines
to indicate not only the direction but the amount of the
any place in the field.
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On Specific Inductive Capacity.

83a.] In the preceding investigation of surface-integrals we
have adopted the ordinary conception of direct action at a dis-
tance, and have not taken into consideration any effects de-
pending on the nature of the dielectric medium in which the
forces are observed.

But Faraday has observed that the quantity of electricity in-
duced by a given electromotiye force on the surface of a
conductor which bounds a dielectric is.not the same for all
dielectrics. The induced electricity is greater for most solid
and liquid dielectrics than for air and gases. Hence these bodies
are said to have a greater specific inductive capacity than air,
which he adopted as the standard medium.

We may express the theory of Faraday in mathematical
language by saying that in a dielectric medium the induction
across any surface is the product of the normal electric intensity
into the coefficient of specific inductive capacity of that medium.
If we denote this coefficient by K, then in every part of the in-
vestigation of surface-integrals we must multiply X, ¥, and Z
by K, so that the equation of Poisson will become

%.K%+%.K%’+%.K(§V+41rp—0* ¢))

At the surface of separation of two media' whose inductive

capacities are K, and K,, and in which the potentials are ¥ and
¥, the characteristic equation may be written

v dy

I(d +K*d

where »,; v,, are the normals dmwn in the two media, and o is
the true surface-density on the surface of separation; that is to
say, the quantity of electricity which is actually on the surface
in the form of a charge, and which can be altered only by con-
veying electricity to or from the spot.

+ 4710 =0; (2)

Apparent distribution of Electricity.

83 b.] If we begin with the actual distribution of the potential
and deduce from it the volume-density p” and the surface-density
o’ on the hypothesis that K is everywhere equal to unity, we

* {See note at the end of this chapter.}
H2
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may call o’ the apparent volume-density and ¢’ the af
surface-density, because a distribution of electricity thus «
would account for the actual distribution of potential,
hypothesis that the law of electric force as given in .
requires no modification on account of the different prope:
dielectrics.

The apparent charge of electricity within & given regic
increase or diminish without any passage of electricity t
the bounding surface of the region. We must therefo
tinguish it from the true charge, which satisfies the equa
continuity.

In a heterogeneous dielectric in which K varies contim
if p’ be the apparent volume-density,

2 2y dEV
:—wg-{-:ll?-i- Py +4mp’ = 0.
Comparing this with the equation (1) above, we find

4n(p—Kp') + qulI+ dEdv + dKaV
dz dz " dydy * dz dz
The true electrification, indicated by p, in the dielectric
variable inductive capacity is denoted by’ K, will produ
same potential at every point as the apparent electrifi
denoted by p’, would produce in a dielectric whose inc

capacity is everywhere equal to unity.

The apparent surface charge, o/, is that deduced fro
electrical forces in the neighbourhood of the surface, usi
ordinary characteristic equation

=0.
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tion of the surface is discharged by passing a flame over the
surface, then, when the inducing force is taken away, there will
appear a true electrification opposite to o’*.

APPENDIX TO CHAPTER IL

The equations
d/..
d—z(ls )+dy(K +dz(Kdz)+41rp.—0
v av
K,d—”-i-K,d + 4750 =0,

are the expressions of the condition that the displacement across any
closed surface is 47 times the quantity of electricity inside it. The first
equation follows at once if we apply this principle to a parallelepiped
whose faces are at right angles to the co-ordinate axes, and the second if
we apply it to a cylinder enclosing a portion of the charged surface.

If we anticipate the results of the next chapter, we can deduce these
equations directly from Faraday’s definition of specific inductive capacity.
Let us take the case of a condenser consisting of. two infinite parallel
plates. Let ¥, ¥, be the potentials of the plates respectively, d the
distance between them, and £ the charge on an area 4 of one of the
plutes, then, if K is the specific inductive capacity of the dielectric
separating them,

FmV;.
47nd
@, the energy of the system, is by Art. 84 equal to
YE(V,-V)=31KA (,74 ;’)

or if F is the electromotive intensity at any point between the plates
|
-_—— K 2
Q= an KA4d P,
If we regard the energy as resident in the dielectric there will be

@/Ad units of energy per unit of volume, so that the energy per unit
volume equals K#*/87n. This result will be true when the field is not

¢ See Faraday's ‘ Remarks on Static Induction,” Proceadings of the Royal In-
stitution, Feb. 12, 1858.
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uniform, so that if @ denotes the energy in any electric field

Q=él;fffKF'dxdydz
= 811; f f f K {(g)’+ (g '+ (Z—Z)'z dudyds.

Let us suppose that the potential at any point of the field is in
by a small quantity 37 when 3V is an arbitrary function of z, y,
3Q, the variation in the energy, is given by the equation

_ dVd bV avad.3v dvd. 67}
8@ = 41rff(x dy dy Y& & )dzdy1
this, by Green’s Theorem,

=._“ff( 'a +x anS
d av d dyv

where d»,and d», denote elements of the normal to the surface dra:

the first to the second and from the second to the first medium respe
But by (Arts. 85, 86)

3Q = S(ed V) =/fcdeS+[/]p6 Vdzdyds,

and since 3V is arbitrary we must have
RN LNY
=(Kig + ’d.

=g,

41{&:( )dy(K +§z(xg}=

which are the equations in the text.
In Faraday's experiment the flame may be regarded as a cond



CHAPTER IIL

ON ELECTRICAL WORK AND ENERGY IN A SYSTEM
OF CONDUCTORS.

84.] On the Work which must Le done by an external agent in
order to charge an electrified system in a given manner.
The work spent in bringing a quantity of electricity 3 ¢ from

an infinite distance (or from any place where the potential is zero)
to a given part of the system where the potential is V, is, by the
definition of potential (Art. 70), V' 3e.

The effect of this operation is to increase the charge of the
given part of the system by 3¢, so that if it was e before, it will
become e+ 3 ¢ after the operation.

We may therefore express the work done in producing & given
alteration in the charges of the system by the integral

sz(bee); (1)
where the summation, (), is to be extended to all parts of the
electrified system.

It appears from the expressxon for the potential in Art. 73,
that the potential at a given point may be considered as the sum
of a number of parts, each of these parts being the potential due
to a corresponding part of the charge of the system.

Hence if V is the potential at a given point due to a system
of charges which we may call = (¢), and V” the potential at the
same point due to another system of charges which we may call
2 (¢), the potential at the same point due to both systems of
charges existing together would be V'+ V.

If, therefore, every one of the charges of the system is altered
in the ratio of n to 1, the potential at any given point in the
system will also be a.lbered in the ratio of n to 1.
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Let us, therefore, suppose that the operation of charg
system is conducted in the following manner. Let the
be originally free from charge and at potential zero, anc
different portions of the system be charged simultaneous
at a rate proportional to its final charge.

Thus if e is the final charge, and V the final potential
part of the pystem, then, if at any stage of the operal
charge is ne, the potential will be n V, and we may re
the process of charging by supposing = to increase conti
from 0 to 1.

While n increases from » to n+ 3n, any portion of the
whose final charge is ¢, and whose final potential is V,
an increment of charge e3n, its potential being n V, 80 1
work done on it during this operation is e V' n 8 n.

Hence the whole work done in charging the system is

. }:(eV)/‘;l ndn = §Z(eV),

or half the sum of the products of the charges of the ¢
portions of the system into their respective potentials.

This is the work which must be done by an external &
order to charge the system in the manner described, b
the system is a conservative system, the work required {
the system into the same state by any other process mus
same.

We may therefore call

W= 33(eV)

the electric energy of the system, expressed in terms of the
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But W= i 3 (8 V),
and - W=32(¢V)
Substituting these values in equation (4), we find
S(eV)=Z2(7) (5)

Hence if,in the same fixed system of electrified conductors, we
oonsider two different states of electrification, the sum of the
products of the charges in the first state into the potentials of
the corresponding portions of the conductors in the second state,
is equal to the sum of the products of the charges in the second
state into the potentials of the corresponding conductors in the
first state.

This result corresponds, in the elementary theory of electricity,
to Green's Theorem in the analytical theory. By properly
choosing the initial and final states of the system, we may deduce
a number of useful results.

85 b.] From (4) and (5) we find another expression for the in-
crement of the energy, in which it is expressed in terms of the
increments of potential,

W-W=3Z(+e)(V-V). : (6)
If the inerements are infinitesimal, we may write (4) and (6)
dW=2(Vde)=Z(ed V); (7)

and if we denote by W, and W, the expressions for W in terms
of the charges and the potentials of the system respectively, and
by A4,, e,, and ¥ a particular conduetor of the system, its charge,
and its potential, then W

I/"=de,’ (8)
dWw,
o=Y (®)

86.] If in any fixed system of conductors, any one of them,
which we may denote by A4,, is without charge, both in the initial
and final state, then for that conductor ¢, = 0, and ¢ = 0, s0
that the terms depending on A, vanish from both members of
equation (5). '

If another conductor, say A4,, is at potential zero in both states
of the system, then ¥, = 0 and ¥’ = 0, so that the terms de-
pending on A, vanish from both members of equation (5).

If, therefore, all the conductors except two, 4, and 4,, are
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either insulated and without charge, or else connect:
earth, equation (5) is reduced to the form °
‘o V t+e, V) =¢'V+e/V,
If in the initial state

e,=1 and ¢, =0,
and in the final state

¢, =0 and ¢ =1,
equation (10) becomes V=Y
or if a unit charge communicated to A, raises 4, when
to a potential V, then a unit charge communicated t
raise A, when insulated to the same potential V, prov
every one of the other conductors of the system is either
and without charge, or else connected to earth so that -
tial is zero.

This is the first instance we have met with in electr
reciprocal relation. Such reciprocal relations occur
branch of science, and often enable us to deduce the so
new problems from those of simpler problems already s

Thus from the fact that at a point outside a conducti
whose charge is 1 the potential is »~1, where 7 is the
from the centre, we conclude that if a small body whc
is 1 is placed at a distance » from the centre of a ¢
sphere without charge, it will raise the potential of t
to »-1,

~ Let us next suppose that in the initial state
V=1 and V=0,
and in the final state
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at potential zero, & unit charge communicated to 4, will induce
on A, a negative charge, the numerical value of which is V.

In all these cases we may suppose some of the other con-
ductors to be insulated and without charge, and the rest to be
connected to earth.

The third case is an elementary form of one of Green’s theorems.
As an example of its use let us suppose that we have ascertained
the distribution of electric charge on the different elements of a
conducting system at potential zero, induced by a charge unity
communicated to a given body A4, of the system.,

Let 5, be the charge of A, under these circumstances. Then
if we suppose A, without charge, and the other bodies raised each
to a different potential, the potential of 4, will be

¥ = -2a¥). (14)

Thus if we bave ascertained the surface-density at any given
point of a hollow conducting vessel at zero potential due to a
unit charge placed at a given point within it, then, if we know
the value of the potential at every point of a surface of the
same size and form as the interior surface of the vessel, we can
deduce the potential at a point within it the position of which
corresponds to that of the unit charge.

Hence if the potential is known for all peints of a closed
surface it may be determined for any point within the surface,
if there be no electrified body within it, and for any point
outside, if there be no electrified body outside.

Theory of a system of conductors.

87.] Let A, 4,, ... A, be n conductors of any form; let e, ¢,
...¢, be their charges; and ¥, ¥,... ¥, their potentials.

Let us suppose that the dielectric medium which separates the
conductors remains the same, and does not become charged with
electricity during the operations to be considered. '

We have shown in Art. 84 that the potential of each conductor
is a homogeneous linear function of the n charges.

Hence since the electric energy of the system is half the sum
of the products of the potential of each conductor into its charge,
the electric energy must be a homogeneous quadratic function of
the n charges, of the form

W,=1pue,’ + Prsties + EPnts’ + P1sis + Pty + hPusts + &0 (15)
The suffix ¢ indicates that W is to be expressed as a function

v
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of the charges. When W is written without a suffix it denotes
the expression (3), in which both charges and potentials occur.
From this expression we can deduce the potential of any onews
of the conductors. For since the potential is detined as the work—_
which must be done to bring a unit of electricity from potentialk

zero to the given potential, and since this work is spent im
inereasine W wa hava nnlv ta diffarentiata W with reanant. tn tha
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We bave in this case also ¢,, = g,,, for
_de_ d AW, d AW, _de, (19
9 = dI{— dI{ dz - dzd—I{ - dz_ 9o
By substituting the values of the charges in the equation for
the electric energy

W=13[eV+...+eY...+6T), (20)
we obtain an expression for the energy in terms of the potentials
Wr =1V + gV %+ 1, Vo2

+qVi itV i+ ignli®+&e  (21)

A coefficient in which the two suffixes are the same is called
the Electric Capacity of the conductor to which it belongs.

Definition. The Capacity of a conductor is its charge when its
own potential is unity, and that of all the other conductors is
zero.

This is the proper definition of the capacity of a conductor when
no further specification is made. But it is sometimes convenient
to specify the condition of some or all of the other conductors in
! a different manner, as for instance to suppose that the charge of
| eertain of them is zero, and we may then define the capacity of
the oconductor under these conditions as its charge when its
potential is unity. .

The other coefficients are called coefficients of induction. Any
one of them, as ¢,,, denotes the charge of A, when A, is raised to
potential unity, the potential of all the conductors except 4,
being zero.

The mathematical calculation of the coefficients of potential
and of capacity is in general difficult. We shall afterwards
prove that they bave always determinate values, and in certain
special cases we shall calculate these values. We shall also
show how they may be determined by experiment.

When the capacity of a conductor is spoken of without
specifying the form and position of any other conductor in the
same system, it is to be interpreted as the capacity of the con-
ductor when no other conductor or electrified body is within a
finite distance of the conductor referred to.

It is sometimes convenient, when we are dealing with capacities
and coefficients of induction only, to write them in the form [4.P],
this symbol being understood to denote the charge on A when
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P is raised to unit potential {the other conductors b
zero potential}.

In like manner [(4 + B) . (P+ Q)] would denote the
A + B when P and Q are both raised to potential 1
manifest that since

[(A+B).(P+Q)]=[4.P]+[4.Q]+[B.P]+

: =[P +Q) -

the compound symbols may be combined by addition
plication as if they were symbols of quantity.

The symbol [4 . A] denotes the charge on 4 when th
of A4 is 1, that is to say, the capacity of 4.

In like manner [(A + B).(4+ Q)] denotes the s
charges on 4 and B when A and Q are raised to pote:
potential of all the conductors except 4 and Q being z

It may be decomposed into

[A4.4]+[4.B]+[4.Q]+[B.¢Q]

The coefficients of potential cannot be dealt with ir
The coefficients of induction represent charges, and th
can be combined by addition, but the coefficients o
represent potentials, and if the potential of 4 is V] a
B is ¥, the sum ¥ + ¥ bas no physical meaning bear
phenomena, though ¥~ ¥, represents the electrom
from 4 to B.

The coefficients of induction between two conduetc
expressed in terms of the capacities of the conductor
of the two conductors together, thus :
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On certain conditions which the coefficients must satisfy.

89a.] In the first place, since the electric energy of a system
is an essentially poeitive quantity, its expression as a quadratio
fanction of the charges or of the potentials must be posifive,
whatever values, positive or negative, are ‘given to the charges
or the potentials.
Now the conditions that a homogeneous quadratic function
of n variables shall be always positive are » in number, and
may be written

Pn >0,
P Przf 0,
D2 Py )
....... b (22)
Pr--Pin
----- >0
Dnre--Pnn
These n conditions are necessary and sufficient to ensure that
W, shall be essentially positive *.

Bat since in equation (16) we may arrange the conductors in
any order, every determinant must be positive which is formed
symmetrically from the coefficients belonging to any combin-
ation of the n conductors, and the number of these combinations
i8 2°—~1.

Only =, however, of the conditions so found can be inde-
pendent. .

The coefficients of capacity and induction are subject to con-
ditions of the same form.

89b.] The coefficients of potential are all positive, but mone
of the coefficients p,, is greater than p,, or p,,.

For let a charge unity be communicated to 4,, the other con-
ductors being uncharged. A system of equipotential surfaces
will be formed. Of these one will be the surface of 4,, and its
potential will be p,.. If A4, is placed in a hollow excavated in
A, 8o as to be completely enclosed by it, then the potential of
4, will also be p,,.

If, howover, 4, is outside of 4, its potential p,, will lie between
P.» and zero.

* See Williamson's Differential Calculus, 8rd edition, p. 407.
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For consider the lines of force issuing from the cha
ductor 4,. The charge is measured by the excess of tl
of lines which issue from it over those which termir
Hence, 'if the conductor has no charge, the number
which enter the conductor must be equal to the numl
issue from it. The lines which enter the conductor c
places of greater potential, and those which issue fror
places of less potential. Hence the potential of an 1
conductor must be intermediate between the highest a
potentials in the field, and therefore the highest an
potentials cannot belong to any of the uncharged bodie

The highest potential must therefore be p,,, that of th
body A,, the lowest must be that of space at an infinite
which is zero, and all the other potentials such as p,
between p,, and zero.

If A, completely surrounds 4,, then p,, = p,,.

89 c.] None of the coefficients of induction are positiv
sum of all those belonging to a single conduct
numerically greater than the coefficient of capacii
conductor, which i8 always positive.

For let A, be maintained at potential unity while all
conductors are kept at potential zero, then the chary
is ¢,,, and that on any other conductor A4, is ¢,,.

The number of lines of force which issue from A, i
these some terminate in the other conductors, and s
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the arithmetical sum of the coefficients of induction g¢,,, &e. will
be less than g,,.

We have deduced these two theorems independently by means
of electrical considerations. We may leave it to the mathe-
matical student to determine whether one is a mathematical
consequence of the other.

89 d.] When there is only one conductor in the field its
coefficient of potential on itself is the reciprocal of its capacity.

The centre of mass of the electricity when there are no ex-
ternal forces is called the electric centre of the conductor. If
the conductor is symmetrical about a centre of figure, this
point is the electric centre. If the dimensions of the conductor
are small compared with the distances considered, the position
of the electric centre may be estimated sufﬁclently nearly by
conjecture.

The potential ata distance ¢ from the electric centre must be

between
5(1+c‘2) and E(l— 0_2)*;

where ¢ is the charge, and « is the greatest distance of any part
of the surface of the body from the electric centre.

For if the charge be concentrated in two points at distances
« on opposite sides of the electric centre, the first of these
expressions is the potential at a point in the line joining the
charges, and the second at a point in a line perpendicular to the
line joining the ch'&rges For all other distributions within the
sphere whose radius is a the potentml is intermediate between
those values.

If there are two conductors in the field, their mutual coefficient

of potential is é;, where ¢’ cannot differ from ¢, the distance
+ b2

between the electric centres, by more than 2 ; @ and b being

the greatest distances of any part of the surfaces of the bodies
from their respective electric centres.

* {For let p be the density of the electncuty at any point, then if we take the line
)oining the electric centre to P as the axis of z, the potential at P is

Jffrictete <[ 20 50 B} ariyas

where ¢ is the distance of P from the electric centre. The first term equals ¢/o, the
sscond vanishes since the origin is the electric centre, and the greatest value of the

VOL. I, ) §
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89e] If a new conductor is brought into the
coefficient of potential of any one of the others on
diminished. ,

For let the new body, B, be supposed at first to b
conductor {having the same specific inductive capacit;
free from charge in any part, then when one of the co
A,, receives a charge e,, the distribution of the electrici
conductors of the system will not be disturbed by B, as
without charge in any part, and the electric energy of ti
will be simply Ye, W =1e2p,

Now let B become a conductor. Electricity will f
places of higher to places of lower potential, and in so d
diminish the electric energy of the system, so that the
} ¢,%p,, must diminish.

But ¢, remains constant, therefore p,, must diminish.

Also if B increases by another body b being pla.ced i
with it, p;; will be further diminished.

For let us first suppose that there is no electric commn
between B and b; the introduction of the new bod
diminish p,,. Now let a communication be opened be
and b. If any electricity flows through it, it flows fron
of higher to a place of lower potential, and therefore, as
shewn, still further diminishes p,,.

third is when the electricity is concentrated at the points for which the
inside the bracket has its greatest value, which is a?/e3, thus the greatest
third term is ea?/c®; the least value of this term is when the electricit;
trated at the points for which the third term inside the bracket has its gr
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Hence the diminution of p,, by the body B is greater than
that which would be produced by any conductor the surface of
which can be inseribed in B, and less than that produced by any
conductor the surface of which can be described about B.

‘We shall shew in Chapter XI, that a sphere of diameter b at a
distance 7, great compared with b, diminishes the value of p,,

3
by a quantity which is approximately }% *

Hence if the body B is of any other figure, and if b is its
greatest diameter, the diminution of the value of p,, must be less

b
tb&n *?'

Hence if the greatest diameter of B is so small compared with
its distance from A, that we may neglect quantities of the order

g, we may consider the reciprocal of the capacity of 4, when

alone in the field as a sufficient approximation to p,;. '
90 a.] Let us therefore suppose that the capacity of 4, when
alone in the field is K,, and that of 4,, K,, and let the mean
distance between A, and A, be 7, where 7 is very great compared
with the greatest dimensions of 4, and :A;, then we may write
Pu=I_}l’ 1’12=;.’ Pm=%—2;
H=eK, +er™,
K=er?! +eK,.
Hence = K,(1-K,K,r%)7",
¢y =—K,Kr' (1-K,K,r~?)71,
92 = K,(1-K,K,r%).
Of these coefficients ¢,, and g,, are the capacities of 4, and 4,
when, instead of being each alone at an infinite distance from
any other body, they are brought so as to be at a distance » from
each other.
90 b.] When two conductors are placed so near together that
their coefficient of mutual induction is large, the combination is
called a Condenser.

Let A and B be the two conductors or electrodes of a con-
denser.

* {Bee equation (48), Art. 146.}
I2
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Let L be the capacity of A, N that of B, and M the ¢
of mutual induction. (We must remember that M is es
negative, so that the numerical values of L+ M and M
less than L and N.)

Let us suppose that @ and b are the electrodes of anot
denser at a distance R from the first, R being very gr
pared with the dimensions of either condenser, and
coefficients of capacity and induction of the condenser ¢
alone be I, n, m. Let us calculate the effect of one
condensers on the coefficients of the other.

Let D=LN-M? and d=In—m?;
then the coefficients of potential for each condenser by i
Paa= D7'N, p,= d'n,
pap=—D'M, pyu=-—d'm,
* PBB= D"L, P = a-1,
The values of these coefficients will not be sensibly
when the two condensers are at a distance R.
The coefficient of potential of any two conductors at
R is R-1, so that
Paa=Pas=Pra=pm=R1
The equations of potential are therefore
Vi= D Ney—D 'Meg+ R-'e,+ R e,
—D'Me + D 'Leg+ R e, + R e,
R4+ R leg+d ne,—d 'me,,
= R-'es+R'es—d-'me, +d -Ve,.

1/
14
19
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If only one conductor, a, is brought into the field,m =7 = 0, and
o (L+ M)
a=L=L+ g ST Ny
o (L+M)(M+N)!
Qa=M'=M+ p— IL+2M+N)
_ RI(L+M)
Y4a =~ R _TL+2M+])
If there are only the two simple conductors, A and a,
M=N=m=n=0,

L3 RLL
snd @=L+ popy == oIy

expressions which agree with those found in Art. 90 a.

The quantity L+ 2 M + N is the total charge of the condenser
when its electrodes are at potential 1. It cannot exceed half
the greatest diameter of the condenser *,

L + M is the charge of the first electrode, and M + N that of the
second when both are at potential 1. These quantities must be
each of them positive and less than the capacity of the electrode
by itself. Hence the corrections to be applied to the coefficients
of capacity of a condenser are much smaller than those for a
simple_conductor of equal capacity.

Approximations of this kind are often useful in estimating the
capacities of conductors of irregular form placed at a consider-
able distance from other conductors.

91.] When a round conductor, 4, of small size compared with
the distances between the conductors, is brought into the field,
the coefficient of potential of A, on A, will be increased when 4,
is inside and diminished when A, is outside of a sphere whose
diameter is the stra.xght line 4, 4,.

For if A, receives a unit posxtlve charge there will be a distri-
bution of electricity on Ay, + ¢ being on the side furthest from 4,,
and —e on the side nearest A,. The potential at 4, due to this
distribution on A4, will be positive or negative as +e or—e is
nearest to A4,, and if the form of A, is not very elongated this
will depend on whether the angle A, 4; 4, is obtuse or acute,
and therefore on whether A; is inside or outside the sphere
described on A4, A, as diameter.

* {For we may prove, as in Art. 89 ¢, that the capacity of & cond all of whose
parts are at the same potential is less than that of the sphere circumscribing it, and
the capacity of the sphere is equal to its radius. }
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If4;jisof an elonga.ted form 1t is easy to see that if it i
with its longest axis in the direction of the tangent to tl
drawn through the points 4,, A4, 4, it may incre
potential of 4,, even when it is entirely outside the sph
that if it is placed with its longest axis in the directio:
radius of the sphere, it may diminish the potential of .
when entirely within the sphere. But this proposition
intended for forming a rough estimate of the phenome:
expected in a given arrangement of apparatus.

92.] If a new conductor, 4,, is introduced into the 1
capacities of all the conductors already there are increa
the numerical values of the coefficients of induction
every pair of them are diminished.

Let us suppose that 4, is at potential unity and all th
potential zero. Since the charge of the new conductor is:
it will induce a positive charge on every other conduc
will therefore increase the positive charge of A, and «
the negative charge of each of the other conductors.

98 a.] Work done by the electric forces during the disp
of a system of insulated charged conductors.

Since the conductors are insulated, their charges
constant during the displacement. Let their potential
¥ ... ¥, before and V', V’,... ¥/ after the displaceme:
electric energy is W=312(eV)
before the displacement, and

W =132 (eV)
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where W, denotes the expression for the electric energy as a
quadratic function of the charges.
dw, dWr
g *
‘We have three different expressmns for the energy of the system,
(1) W=13(e),
a definite function of the » charges and n potentials,
(2) W, =4 5Z (6,0,
where r and s may be the same or different, and both s and sr .
are to be included in the summation.
This is a function of the n charges and of the variables which
define the configuration. Let ¢ be one of these.
(3) Wy = ‘Ez(Vr‘an)a
where the summation is to be taken as before. This isa function
of the n potentials and of the variables which define the con-
figuration of which- ¢ is one.
Since W=W=W,
W+ W—2W=o0.
Now let the n charges, the n potentials, and ¢ vary in any
eonsistent manner, and we must have

+3 [ —e,) V] + (T +ag)e=
Now the n charges, the n potentials, a.nd ¢ are not all inde-

pendent of each other, for in fact only n+1 of them can be
independent. But we have already proved that

aw, v

d_e' =h
so that the first sum of terms vanishes identically, and it follows
from this, even if we had not already proved it, that

=0.

aw, dW;-

and that lastly, dW  dWw,

Work done by the electric forces during the displacement of a
system whose potentials are maintained constant.
. aWwy
93 ¢.] It follows from the last equation that the force & = e

and if the system is displaced under the condition that all the
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potentials remain constant, the work done by the electric
[ods=[aw =W - W,

or the work done by the electric forces in this case is equ:
increment of the electric energy.

Here, then, we have an increase of energy together
quantity of work done by the system. The system must t
be supplied with energy from some external source, su
voltaic battery, in order to maintain the potentials «
during the displacement. _

The work done by the battery is therefore equal to the
the work done by the system and the increment of en:
since these are equal, the work done by the battery is t:
work done by the system of conductors during the disple

On the comparison of similar electrified systems.
94.] If two electrified systems are similar in a geometric
80 that the lengths of corresponding lines in the two sys
as L to L', then if the dielectric which separates the cor
bodies is the same in both systems, the coefficients of i1
and of capacity will be in the proportion of L to L’. F
consider corresponding portions, 4 and 4’, of the two syst:
suppose the quantity of electricity on A to be e, and th:
to be ¢/, then the potentials V" and V” at correspondin
B and B’, due to this electrification, will be

e e
V—A—'B, and V—A,B,



94-] SIMILAR SYSTEMS. 121

third place so electrified that the potentials of corresponding
points are as V to V.

From this it appears that if ¢. be any coefficient of ca.pacity or
induction in the first system, and ¢’ the correspondmg one in the

second, q:¢:: LK : ’K’;
and if p and p’ denote oorrespondmg coefficients of potentxal in
the two systems, 1

p:p --ﬁ( ‘'R

If one of the bodies be displaced in the first system, and the
corresponding body in the second system receives a similar dis-

placement, then these displacements are in the proportion of L
to L', and if the forces acting on the two bodies are as F to F”,
.then the work done in the two systems will be as FL to FL'

But the total electric energy is half the sum of the charges
of electricity multiplied each by the potential of the charged
body, so that in the similar systems, if W and W’ be the total
electric energies in the two systems respectively,

W:W::eV:eV,
and the differences of energy after similar displacements in the
two systems will be in the same proportion. Hence, since FL
is proportional to the electrical work done during the displace-
ment, FL:FL ::eV:€e'V'.

Combining these proportions, we find that the ratio of the
resultant force on any body of the first system to that on the
corresponding body of the second system is

F:F::"K:V2K’,
’2
or F:F:: zizT( ::L'e"’_K'.
The first of these proportions shews that in similar systems the
force is proportional to the square of the electromotive force and
to the inductive capacity of the dielectric, but is independent of
the actual dimensions of the system.

Hence two conductors placed in a liquid whose inductive
capacity is greater than that of air, and electrified to given
potentials, will attract each other more than if they had been
electrified to the same potentials in air.

The second proportion shews that if the quantity of electricity
on each body is given, the forces are proportional to the squares
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of the charges and inversely to the squares of the dista:
also inversely to the inductive capacities of the media.
Hence, if two conductors with given charges are pls
liquid whose inductive capacity is greater than that of
will attract each other less than if they had been surron
air and charged with the same quantities of electricity®

* {Tt follows from the preceding investigation that the force between
fied bodies surrounded by a medium whose specific inductive capacity is K
where ¢ and ¢’ are the charges on the bodies and r is the distance between



CHAPTER 1V.

GENERAL THEOREMS.

9%a.] In the second chapter we have calculated the potential
function and investigated some of its properties on the hypo-
thesis that there is a direct action at a distance between electri-
fied bodies, which is the resultant of the direct actions between
the various electrified parts of the bodies.

If we call this the direct method of investigation, the inverse
method will consist in assuming that the potential is a function

characterised by properties the same as those which we have
already established, and investigating the form of the function.

In the direct method the potential is calculated from the dis-
tribution of electricity by a process of integration, and is found
to satisfy certain partial differential equations. In the inverse
method the partial differential equations are supposed given, and
we have to find the potential and the distribution of electricity.

It is only in problems in which the distribution of electricity
is given that the direct method can be used. When we have to
find the distribution on a conductor we must make use of the
inverse method.

We have now to shew that the inverse method leads in every
case to a determinate result, and to establish certain general
theorems deduced from Poisson’s partial differential equation,

av  dav 4V
%2—4' (Ty;-i- daf +4mp=0.

The mathematical ideas expressed by this equation are of a

different kind from those expressed by the definite integral

+o L+ +wp
V= f f f L oty .

In the differential equation we express that the sum of the
second derivatives of V in the neighbourhood of any point is
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related to the density at that point in a certain manner
relation is expressed between the value of V at that p
the value of p at any point at a finite distance from it.

In the definite integral, on the other hand, the dis
the point (¢, ¥/, 2); at which p exists, from the point (z,
which V exists, is denoted by », and is distinctly recog
the expression to be integrated.

The integral, therefore, is the appropriate mathema
pression for a theory of action between particles at a
whereas the differential equation is the appropriate ex
for a theory of action exerted between contiguous p:
medium.

We have seen that the result of the integration sati
differential equation. We have now to shew that it is
solution of that equation satisfying certain conditions.

We shall in this way not only establish the math
equivalence of the two expressions, but prepare our 1
pass from the theory of direct action at a distance tc
action between contiguous parts of a medium.

95b.] The theorems considered in this chapter relat
properties of certain volume-integrals taken throughout
region of space which we may.refer to as the electric fiel

The element of these integrals, that is to say, the «
under the integral sign, is either the square of a certai
quantity whose direction and magnitude vary from -
paint in the field, or the product of one vector into the
part of another in its own direction.
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When the central forces which, as we have said, give rise to
an irrotational distribution of the resultant force, vary according
to the inverse square of the distance, then, if these centres are
outside the field, the distribution within the field will be sole-
noidal as well as irrotational.

‘When the motion of an incompressible fluid which, as we have
said, is solenoidal, arises from the action of central forces de-
pending on the distance, or of surface pressures, on a frictionless
fluid originally at rest, the distribution of velocity is irrotational
as well as solenoidal. .

‘When we have to specify a distribution which is at once irrota-

tional and solenoidal, we shall call it a Laplacian distribution ;
Laplace having pointed out some of the most important pro-
perties of such a distribution.
. The volume integrals discussed in this chapter are, as we shall
see, expressions for the energy of the electric field. In the first
group of theorems, beginning with Green’s Theorem, the energy
is expressed in terms of the electromotive intensity, a vector
which is distributed irrotationally in all cases of electric equi-
librium. It isshewn that if the surface-potentials be given, then
of all irrotational distributions, that which is also solenoidal has
the least emergy; whence it also follows that there can be
only one Laplacian distribution consistent with the surface
potentials.

In the second group of theorems, including Thomson’s Theorem,
the energy is expressed in terms of the electric displacement, a
vector of which the distribution is solenoidal. It is shewn that
if the surface-charges are given, then of all solenoidal distribu-
tions that has least energy which is also irrotational, whence it
also follows that there can be only one Laplacian distribution
consistent with the given surface-charges.

The demonstration of all these theorems is conducted in the
same way. In order to avoid the repetition in every case of the
steps of a surface integration conducted with reference to rect-
angular axes, we make use in each case of the result of Theorem
III, Art. 21%*, where the relation between a volume-integral and
the corresponding surface-integral is fully worked out. All that

* This theorem seems to bave been first given by Ostrogradsky in a paper read in
1828, but published in 1831 in the Mém. de I'Acad. de St. Pétersbourg,T. 1. p.89. It
may be regarded, however, as a form of the equation of continuity.
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we have to do, therefore, is to substitute for X, ¥, and Z
Theorem the components of the vector on which the p
theorem depends.

In the first edition of this book the statement of each
was cumbered with a multitude of alternative conditior
were intended to shew the generality of the theorem
variety of cases to which it might be applied, but whicl
rather to confuse in the mind of the re&der what was .
with what was to be proved.

In the present edition each theorem is at first stated i1
definite, if more restricted, form, and it is afterwards she
further degree of generality the theerem admits of.

We have hitherto used the symbol V for the potential
shall continue to do so whenever we are dealing with elect:
only. In this chapter, however, and in those parts of th
volume in which the electric potential occurs in electro-r
investigations, we shall use ¥ as a special symbol for the
potential.

Green’s Theorem.

96 a.] The following important theorem was given by
Green, in his ¢ Essay on the Application of Mathematies
tricity and Magnetism.’

The theorem relates to the space bounded by the closec
8. We may refer to this finite space as the Field. L
normal drawn from the surface s into the field, and let ?,
the direction ‘cosines of this normal, then
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The reader who is not acquainted with the method of Quater-
nions may, if it pleases him, regard the expressions V2¢ and
S.V¥V® as mere conventional abbreviations for the quantities to
which they are equated above, and as in what follows we shall
employ ordinary Cartesian methods, it will not be necessary to
remember the Quaternion interpretation of these expressions.
The reason, however, why we use as our abbreviations these ex-
pressions and not single letters arbitrarily chosen, is, that irf the
language of Quaternions they represent fully the quantities to
which they are equated. The operator V applied to the scalar
function ¥ gives the space-variation of that function, and the
expression —S.V¥V® is the scalar part of the product of two
space-variations, or the product of either space-variation into the
resolved part of the other in its own direction. The expression
Z—:’ is usually written in Quaternions S.U»V¥, Uy being & unit- .
vector in the direction of the normal. There does not seem
much advantage in using this notation here, but we shall find
the advantage of doing so when we come to deal with anisotropic
{non-isotropic} media.

Statement of Green’s Theorem.

Let ¥ and ® be two functions of z, y, 2, which, with their first
derivatives, are finite and continuous within the acyelic region s,
bounded by the closed surface s, then

[fw %’ds_fffwwdg = [[[sveveas
_ff4> ds—fff¢V2\Pds, (4)

where the double integrals are to be extended over the whole '
closed surface 8, and the tnple integrals throughout the field, s,

enclosed by that surface.
To prove this, let us write, in Art. 21, Theorem III1, -
ao d¢ do
X=v Ex—' ’ Y=¢—— dy Z= ‘P7 ’ (5)

then Roose:—\l’(l@-y dq) )

=22, by (1); ®
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dX dY dZ d:e  dip d“b
and =)

ot gy ta= gt g ta
Lavdo dvde
de de * dy dy
= —WVHO—S.V¥V, by (2) and (3).
But by Theorem III '

fchoseds—fﬂ(dX ay dZ)d

or by (6) and (7)

[ [ ¥ 92 g I [evrpas = 1/ f 8.v¥veds.

Since in the second member of this equation ¥ and
be interchanged, we may do so in the first, and °
obtain the complete statement of Green’s Theorem, as ;
equation (4).

96b.] We have next to shew that Green's Theorem
when one of the functions, say ¥, is & many-valued one, }
that its first derivatives are single-valued, and do not
infinite within the acyclic region s.

Since V¥ and V& are single-valued, the second me
equation (4) is single-valued ; but since ¥ is many-val
one element of the first member, as ¥Vi®, is many-vah
however, we select one of the many values of ¥, as ¥,
point A within the region s, then the value of ¥ at a
point, P, will be definite. For, since the selected valu(
continuous within the region, the value of ¥ at P must
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Hence, if ¥, is given as the value of ¥ at the point A, the
value at P is definite.

If any other value of ¥, say ¥,+n«, had been chosen as the
value at A, then the value at P would have been ¥+ n x. But
the value of the first member of equation (4) would be the same as
before, for the change amounts to increasing the first member by

!

and this, by Theorem III, Art. 21, is zero.

96 c.] If the region s is doubly or multiply connected we may
reduce it to an acyclic region by closing each of its circuits with
a diaphragm, {we can then apply the theorem to the region
bounded by the surface of s and the positive and negative sides
of the diaphragm}.

Let 8, be one of these diaphragms, and «, the corresponding
cyclic constant, that is to say, the increment of ¥ in going once
round the circuit in the positive direction. Since the region s lies
on both sides of the diaphragm s,, every element of s, will occur
twice in the surface integral.

If we suppose the normal », drawn towards the positive side
of ds,, and »," drawn towards the negative side,

av __do
dv ~ " dy’
and ¥ =¥ +(x)

so that the element of the surface-integral arising from ds, w111 be,
sinoe d», is the element of the inward normal for the positive

surface dd> o de

T hg da ¥ g ds =—x o da
Hence if the region s is multxply oonnected, the first term of
eqna.t.ion (4) must be written

ffw 20 ds—r, [ Z—:ds,—&c.—-x.f g{ds,_/ffwwdg; (4.)

where d» is an element of the inward normal to the bounding

surface and where the first surface-integral is to be taken over

the bounding surface, and the others over the different diaphragms,

each element of surface of a diaphragm being taken once only, and

the normal being drawn in the positive direction of the circuit.
This modification of the theorem in the case of multiply-
YOL. I, K
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connected regions was first shewn to be necessary by Hel
and was first applied to the theorem by Thomson .

96d.] Let us now suppose, with Green, that one
functions, say ®, does not satisfy the condition that it
first derivatives do not become infinite within the give:
but that it becomes infinite at the point P, and at th
only, in that region, and that very near to P the valu
&, +¢/rt, where @, is a finite and continuous quantity,
the distance from P. This will be the case if ® is the
of a quantity of electricity e concentrated at the point P,
with any distribution of electricity the volume density
is nowhere infinite within the region considered.

Let us now suppose & very small sphere whose radiv
be described about P as centre ; then since in the regior
this sphere, but within the surface s, ® presents no sin
we may apply Green’s Theorem to this region, remembe:
the surface of the small sphere is to be taken accou
forming the surface-integral.

In forming the volume-integrals we have to subtract
.volume-integral arising from the whole reglon that aris
the small sphere.

Now f f f ¢V2¥daxdydz for the sphere cannot be nur

greater than (V) f f ®dzdyds,

or (V2¥), {2wea’ + §wald,},
where the suffix, ,, attached to any quantity, indicates
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The surface-integral f f ¢ ?g dg for the sphere cannot be nu-

. avy
merically greater than @,ffd—vds’.
Now by Theorem III, Art. 21,

[[2aa=— [[[[vredodyas,

since d» is here measured outwards from the sphere, and this
cannot be numerically greater than (V2¥),47a® and &, at the

surface isapproximatelyi » 80 that f f o %da cannot be numeri-
cally greater than $mate (V2¥),,
and is therefore of the order a% and may be neglected when a
vanishes,

Baut the surface-integral for the sphere on the other side of
the equation, namely, f f‘l’ do

dv df,

doee not vanish, for fﬁ—?ds’:—«in;

dv being measured outwards from the sphere, and if ¥, be the
value of ¥ at the point P,

de
,/:/“PE; ——479‘[’0.

Equation (4) therefore becomes in this case

ff\l’ %i:ds—fff'PV’d’ds—41req’o=ff¢%—?dc-'fffwz‘[’df*' (%)

97 a.] We may illustrate this case of Green’s Theorem by em-
ploying it as Green does to determine the surface-density of a
distribution which will produce a potential whose values inside
and outside a given closed surface are given. These values must
coincide at the surface, also within the surface V*¥ = 0, and
outside V*¥ = 0 where ¥ and y’ denote the potentials inside and
outside the surface.

Green begins with the direct process, that is to say, the distri-

* {In this equation d» is drawn to the inside of the surface and ///'f Yvi¢drdydz
fs not taken through the space ocoupied by a small sphere whose centre is the point at
which ¢ becomes infinite. }

K 2
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bution of the surface demsity, o, being given, the potentis
internal point P and an external point P are found by i
ing the expressions

e[ e[

where r and 7’ are measured from the points P and P’
ively. :

Now let & = 1/r, then applying Green’s Theorem to tl
within the surface, and remembering that V2 = 0 and *
throughout the limits of integration we find

al
[ 3gaumseor = [ 185
where ¥, is the value of ¥ at P,

Again, if we apply the theorem to the space betw
surface 8 and a surface surrounding it at an infinite dis
the part of the surface-integral belonging to the latter
will be of the order 1/a and may be neglected, and we h:

dl
r 1d¥
JJ¥ zde=[[7ayae
Now at the surface, ¥ = ¥, and since the normals » a1
drawn in opposite directions,

al a4l
T
artav
Henoe on sdding equations (10) and (11), the left-har

= 0.
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That such a function must exist, Green proves from the
physical consideration that if s is a conducting surface connected
to the earth, and if a unit of electricity is placed at the point P,
the potential within 8 must satisfy the above conditions. For

since 8 is connected to the earth the potential must be zero at
every point of s, and since the potential arises from the electricity
at P and the electricity induced on & Vb = 0 at every point
within the surface.

Applying Green’s Theorem to this case, we find

do
4, =ff~p o2 s (13)

where, in the surface-integral, ¥ is the given value of the potential
at the element of surface ds; and since, if o is the density of the
electricity induced on s by unit of electricity at P,
do
4waop + d_D' =0, ‘ (14)
we may write equation (13)

%_—_-ff%ds*, (18)

where o is the surface-density of the electricity induced on ds by
a charge equal to unity at the point P.

Hence if the value of o is known at every point of the surface
for a particular position of P, then we can calculate by ordinary
integration the potential at the point P, supposing the potential
at every point of the surface to be given, and the potential
within the surface to be subject to the condition

Vib = 0.

We shall afterwards prove that if we have obtained a value of
¥ which satisfies these conditions, it is the only value of ¥ which
satisfies them.

Green’s Function.

98.] Let a closed surface s be maintained at potential zero.
Let P and Q be two points on the positive side of the surface s
(we may suppose either the inside or the outside positive), and
let a small body charged with unit of electricity be placed at P;
the potential at the point Q will consist of two parts, of which
one is due to the direct action of the electricity at P, while the

* {This is the same as oquation (14), p. 107.}
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other is due to the action of the electricity induced on
The latter part of the potential is called Green’s Functior
denoted by G,,. )

This quantity is a funotion of the positions of the tw:
P and Q, the form of the function depending on the su
It has been calculated for the case in which sis a sphere,
a very few other cases. It denotes the potential at Q du
electricity induced on 8 by unit of electricity at P.

The actual potential at any point @ due to the electrici
and to the electricity induced on s is 1/r,, + G,,, where 7,
the distance between P and Q.

At the surface s, and at all points on the negative side -
potential is zero, therefore

G, =— 1
pa = Tya ?
where, the suffix , indicates that a point A on the surf
taken instead of Q.

Let o, denote the surface-density induced by P at a |
of the surface s, then, since @,, is the potential at Q du
superficial distribution,

G, =ff%’d¢

where d¢’ is an element of the surface s at A’, and the int
is to be extended over the whole surface s.

But if unit of electricity had been placed at Q, we shot
had by equation (1),
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but which we now see to be deducible from the mathematical
process by which Green’s function may be calculated.

If we assume any distribution of electricity whatever, and
place in the field a point charged with unit of electricity, and if
the surface of potential zero completely separates the point from
the assumed distribution, then if we take this surface for the
surface s, and the point for P, Green’s function, for any point on
the same side of the surface as P, will be the potential of the
assumed distribution on the other side of the surface. In this
way we may construct any number of cases in which Green’s
function can be found for & particular position of P. To find
the form of the function when the form of the surface is given
and.the position of P is arbitrary, is a problem of far greater
difficulty, though, as we have proved, it is mathematically possible.

Let us suppose the problem solved, and that the point P is
taken within the surface. Then for all external points the
potential of the superficial distribution is equal and opposite to
that of P. The superficial distribution is therefore centrobaric *,
and its action on all external points is the same as that of a
unit of negative electricity placed at P.

99 a.] If in Green’s Theorem we make ¥ = &, we find

ffw ds—fff\w’wg —fff(vwdg (16)

If ¥ is the potential of a distribution of electricity in space
with a volume-density p and on conductors whose surfaces are
3, 8, &c., and whose potentials are ¥,, ¥,, &c., with surface-
densities a,, 0,, &c., then

Vi = 47p, (17)
av :
- =—470, (18)

since dv is drawn outwards from the conductor, and

ffdv, = e, (19)

where ¢, is the charge of the surface s,.
Dividing (16) by —8m, we find

= (‘1’191 +¥,e, + &c.) + f f Ypdxdydz

=§;fff[ ) (dy) "+ (Y ]d:cdydz. (20)

* Thomson and Tait’s Natural Philosophy, § 526.



136 GENERAL THEOREMS.

The first term is the electric energy of the system
from the surface-distributions, and the second is that
from the distribution of electricity through the field, if
distribution exists.

Hence the second member of the equation expresses th
electric energy of the system *, the potential ¥ being
function of z, y, 2.

As we shall often have occasion to employ this volume-i
we shall denote it by the a.bbreviation W, so that

W g ([T @ @ andye

If the only charges are t.hoee on the surfaces of the cor
p= 0, and the second term of the.first member of equat
disappears.

The first term is the expression for the energy of the
system expressed, as in Art. 84, in terms of the charges
potentials of the conductors, and this expression for the
we denote by W.

99 b.] Let ¥ be a function of z, y, 2, subject to the &
that its value at the closed surface s is ¥, a known quai
every point of the surface. The value of ¥ at points no

surface 8 is perfectly arbitrary.
Let us also write

e T+ s G2 o

the integration being extended throughout the space wi
surface ; then we shall prove that if ¥, is a particular fc
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The value of W for ¥ will be evidently

L([[id%d%  d¥d¥, d¥dv,
P=W+ W+ =[G, H L G T ) dadyde. (28)

By Green’s Theorem the last term may be written

1 1 avy
fof\l'zv’\l’lds— 4—;‘/:/-‘]” -d—vlds. (26)

The volume-integral vanishes because y?¥, = 0 within the
surface, and the surface-integral vanishes because at the surface
¥, = 0. Hence equation (25) is reduced to the form

W=W+W,. (27)

Now the elements of the integral W, being sums of three
squares, are incapable of negative va.lues, 8o that the integral
itself can only be positive or zero. Hence if W, is not zero it
must be positive, and therefore W greater than W. But if W,
is zero, every one of its elements must be zero, and therefore

dy, e,  d¥,

=% =% & =0
at every point within the surface, and ¥, must be a constant
within the surface. But at the surface ¥, = 0, therefore ¥, = 0
at every point within the surface, and ¥ = ¥,, so that if W is
not greater than W, ¥ must be identical with ¥, at every point
within the surface.

It follows from this that ¥, is the only function of z, y, 2
which becomes equal to ¥ at the surface, and which satisfies
Laplace’s Equation at every point within the surface.

For if these conditions are satisfied by any other function ¥,,
then W, must be less than any other value of W. But we have
already proved that W, is less than any other value, and therefore
than W,. Hence no function different from ¥, can satisfy the
conditions.

The case which we shall find most useful is that in which the
field is bounded by one exterior surface, s, and any number of
interior surfaces, 8, 8,, &c., and when the conditions are that the
value of ¥ shall be zero at s, ¥, at s,, ¥, at s,, and so on, where
¥,, ¥,, &c. are constant for each surface, as in a system of
conductors, the potentials of which are given.

Of all values of ¥ satisfying these conditions, that gives the
minimum value of W, for which V?¥ = 0 at every point in the
field.
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Thomson’s Theorem.
Lemma.

100a.] Let ¥ be any function of z, y, z which is fi
continuous within the closed surface s, and which at
closed surfaces, 8;, &, ..., 8, &c., has the values ¥,, ¥,, ...
constant for each surface.

Let u, v, w be functions of @, ¥, 2, which we may co
the components of a vector € subject to the solenoidal ¢

' du dv dw

—Sv(li_— dy =0

and let us put in Theorem III
X=¢%u, Y=¥vy, Z=9%w;

we find as the result of these substitutions

..ff‘ll (lLw+muu+n,w)ds, +fff¢(du dv )dz
fff(ud"’+v‘l"—"+ ) dwdyds = o,

the surface-integrals being extended over the different
and the volume-integrals being taken throughout th
field, and where l,, m,, n, are the direction cosines of th
to s, drawn from the surface into the field. Now

volume-integral vanishes in virtue of the solenoidal ¢
for u, v, w, and the surfaee-mtegmls vanish in the f
cases :—
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" Let ¥ be a function of z, ¥, z, which within the field is finite
and continuous and satisfies Laplace’s Equation
v = 0, (32)
and has the consta.nt, but not given, values ¥,, ¥,, &e. at the
surfaces 8,, 8;, &c. respectively, and is zero at the external
surface 8.
The charge of any of the conducting surfaces, as s,, is ngen
by the surface integral ;
¥

a= —4_11' dv,
the normal », being drawn from the surface 8, into the electric
field.

100¢.] Now let f, g, & be functions of z, y, 2, which we may
consider as the components of a vector D, subject only to the

conditions that at every point of the field they must satisfy the
solenoidal equation
af dg dh

-cE:+dy+d =0 (34)

and that at any one of the internal closed surfaces, as s,, the
surface-integral

[[estmgtmpyas =, (35)
where /,, m,, n, are the direction cosines of the normal », drawn
outwards from the surface 8, into the electric field, and ¢, is the
same quantity as in equation (33), being, in fact, the electric
charge of the conductor whose surface is s,.

We have to consider the value of the volume-integral

Wo = 21 [[ [(+8 + 1) dadyds, (36)

extended throughout the whole of the field within s and without
8,, 85, &o., and to compare it with

=& G +E&)+ &9 dedyds,  (57)

the limits of integration being the same.
Let us write
dy 1d¥ _ 1 d¥

1
u=f+4—_n_-dTv: v=g+4—’-r@: w= h+4 2’ (38)

and W = 2 [[ (w402 4 w?) dedyds; (39)

——ds,, (33)
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then since
1
U 161r"[ da:) +(dy) + dz)]
+ul+t+wi— 1[ ?1:"’ Z:-a-

= Wt e~ [[[ (w53 + d"’ +wi¥)dady

Now in the first place, u, v, w sa.tlsfy the solenoidal ¢
at every point of the field, for by equations (38)
o odu  dv dw df dg dh l
dztdyt e “detaytdz—
and by the conditions expressed in equations (34) and (:
parts of the second member of (41) are zero.
In the second place, the surface-integral

ff(l,u+m1v+'nl'w) ds,

1 [fd¥
=ff(l,f+fmqg+n,k)ds,+;;f o s

but by (35) the first term of the second member is e,, anc
the second term is —e¢,, so that

ff(l v+ my+nw)ds, = 0.

Hence, since ¥, is constant, the fourth condition of A
is satisfied, and the last term of equation (40) is zero, 8o
equation is reduced to the form

W = W + W
Now since the element of the integral W is the sum

oV
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Hence the problem of determining the displacement and
potential, at every point of the field, when the charge on each
conductor is given, has one and only one solution.

This theorem in one of its more general forms was first stated
by Sir W. Thomson*. We shall afterwards show of what gene-
ralization it is capable.

100d.] This theorem may be modified by supposing that the
vector D, instead of satisfying the solenoidal condition at every
point of the field, satisfies the condition -

j_{;.,.%_,.%:p, 4 (47)
where p is a finite quantity, whose value is given at every point
in the field, and which may be positive or negative, continuous
or discontinuous, its volume-integral within a finite region
being, however, finite.

‘We may also suppose that at certain surfaces in the field

f+mg+nh+Uf +m'g’ + 'k = o, (48)
where !, m, nand I, m’, n’ are the direction cosines of the normals
drawn from a point of the surface towards those regions in which
the companents of the displacement are f, g, & and f, ¢’, &’ re-
spectively, and ¢ is a quantity given at all points of the surface,
the surface-integral of which, over a finite surface, is finite.

100e.] We may also alter the condition at the bounding sur-
faces by supposing that at every point of these surfaces
if+mg+nh=o, (49)
where ¢ is given for every point.

(In the original statement we supposed only the value of the
integral of o over each of the surfaces to be given. Here we
suppose its value given for every element of surface, which
comes to the same thing as if, in the original statement, we had
considered every element as a separate surface.)

None of these modifications will affect the truth of the theorem
provided we remember that ¥ must satisfy the corresponding
conditions, namely, the general condition,

¢y Ay A

W+d—yz+a?+41rp=0, (50)
and the surface condition
%+%{7+4r0=0. (51)

* Cambridge and Dublin Mathematical Journal, Felruary, 1848,
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For if, as before

1 d¥ 1 d¥ 1 d¥
f+1;r¢§=u’ g+4 dy — =Y h+41dz ‘
then u, v, w will satisfy the general solenoidal conditior
du dv dw
dz dy t& =%

and the surface condition
u+mv+nw+l'vw +m'v + 0w =0,
and at the bounding surface
lw+mv+nw= 0,
whence we find as before that

o= [[[(w s + 5 + v dmdyda =0,

and that Wo = Wet Ws.

Hence as before it is shewn that Wp is a unique 1
when Wi = 0, which implies that u? + v? +w? is everywl
and therefore

__lda¥ ~_ 14d¥ B 1 dv
fe—f@& S ng et nd

10l a.] In our statement of these theorems we have
confined ourselves to that theory of electricity which
that the properties of an electric system depend on the {
relative position of the conductors, and on their chai
takes no account of the nature of the dielectric medium
the conductors.
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form with the potential, and the electric displacement is con-
nected by equations of invariable form with the distribution of
electricity, but the relation between the elestromotive intensity
and the electric displacement depends on the nature of the
dielectric medium, and must be expressed by equations, the most
general form of which is as yet not fully determined, and can be
determined only by experiments on dielectrics.

1015.] The electromotive intensity is a vector defined in
Art. 68, as the mechanical force on a small quantity e of elec-
tricity divided by e. We shall denote its components by the
letters P, Q, R, and the vector itself by &.

In electrostatics, the line integral of € is always independent
of the path of integration, or in other words & is the space-
variation of a potential. Hence

A dy d¥
=—-Jm~: Q=—-d—y-’ R=—-a—z-s
or more briefly, in the language of Quaternions
E=-VV¥.

101¢.] The electric displacement in any direction is defined
in Art. 60, as the quantity of electricity carried through a small
area A, the plane of which is normal to that direction, divided
by A. We shall denote the rectangular components of the
electric displacement by the letters f, g, %, and the vector itself
by .

The volume-density gt any point is determined by the equation

_df dg  dh '
p= dz + @ + &’
or in the language of Quaternions
p=—8.VD.

The surface-density at any point of a charged surface is deter-

mined by the equation

c=lf+mg+nh+Uf +m'g + 'k,
where f, g, & are the components of the displacement on one side
of the surface, the direction cosines of the normal drawn from
the surface on that side being I, m, n, and £, g’, &’ and U, m’, n’
are the components of the displacements, and the direction cosines
of the normal on the other side.

This is expressed in Quaternions by the equation

o=—[8.UvD+8.U/Y),
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where U», Uy’ are unit normals on the two sides of the
and S indicates that the scalar part of the product is to L

When the surface is that of a conductor, » being the
drawn outwards, then since £, ¢/, 2’ and D’ are zero, the «
is reduced to the form

o=1If+ mg+ nh;
=-8.U»®.
The whole charge of the conductor is therefore

e =~/f(lf+mg+nk)ds;
=— f fs. UrDde.

101 d.] The electric energy of the system is, as was s
Art. 84, half the sum of the products of, the charges ir
respective potentials. Calling this energy w,

W=13Z(e¥)

= —fffp\llda:dydz+ 1ffv\Pds,
= fff"’( dy e W) dwdydz

+ 5ﬂ\l’({f+mg+nk)ds;
where the volume-integral is to be taken throughout the
field, and the surface-integral over the surfaces of {
ductors,
Writing in Theorem III, Art. 21,
X=¥f, Y=V¥g, Z=¥h
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experiments conducted in air. We now know from the ex-
periments of Boltzmann that the dielectric constant of air is
somewhat greater than that of a vacuum, and that it varies
with the density. Hence, strictly speaking, all measurements of
electric quantity require to be corrected to reduce them either
to air of standard pressure and temperature, or, what would be
more scientific, to & vacuum, just as indices of refraction
measured in air require a similar correction, the correction in
both cases being so small that it is sensible only in measure-
ments of extreme accuracy. .
In the standard medium
47D = G,
or 4sf=DP, 47g=Q, 4nsh=R
In an isotropic medium whose dielectric constant is K
47D =K@,
4nf=KP, 4ng = KQ, 4wh = KR.

There are some media, however, of which glass has been the
most carefully investigated, in which the relation between D and
@ is more complicated, and involves the time variation of one
or both of these quantities, so that the relation must be of the
form ’

F(D,6969, ¢ &.)=o0.
We shall not attempt to discuss relations of this more general
kind at present, but shall confine ourselves to the case in which
D is a linear and vector function of @.
The most general form of such a relation may be written

47D = ¢(6),
whege ¢ during the present investigation always denotes a linear
and vector function. The components of D are therefore homo-
geneous linear functions of those of @, and may be written in
the form 4nf=K,.P+K,Q+K.R,
41rg = K.,P+K"Q+K,,R,
4rh=K_P+K,Q+K_,R;

where the first suffix of each coefficient K indicates the direction
of the displacement, and the second that of the electromotive
intensity.
The most general form of a linear and vector function involves
VOL, I. L
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nine independent coefficients. When the coefficients whi
the same pair of suffixes are equal, the function is sai

self-conjugate.
If we express @ in terms of © we shall have
€C=4np~! (Q)’
or P=dx(kyf+k.g+k.h),
Q=4n (kctf+krvg+klv k),
R=1dn(k,f+k,g+kyk)

101£.] The work dome by the electromotive intensit;
components are P, Q, R, in producing a displacement wh¢
ponents are df, dg, and dk, in unit of volume of the med:

dW= Pdf+Qdg + Rdh.

Since a dielectric {in a steady state} under electric ¢
ment is a conservative system, W must be a function o
and since f, g, k may vary independently, we have

aw aw aw
.P - Tf H Q —_ Tg-’ R -— 7"'- .
dP _d*W _d*W _dQ
Hence — e = Y
> dg = dgdf = dfdg ~ af
But dg = 4nk,., the coefficient of g in the expressio

and :ii_fQ— = 4=k,,, the coefficient of f in the expression for

Hence if a dielectric is a conservative system (and we kn
it is so, because it can retain its energy for an indefinite |
k., = k. '
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We have thus, in all, six different expressions for the energy
of the electric field. Three of these involve the charges and
potentials of the surfaces of conductors, and are given in Art. 87.

The other three are volume-integrals taken throughout the
electric field, and involve the components of electromotive in-
tensity or of electric displacement, or of both.

The first three therefore belong to the theory of action at a
distance, and the last three to the theory of action by means of
the intervening medium.

These three expressions for W may be written,

W=-— %ff 8. DEds,

%= -4 [[[5.€s@ds,
W = — z"ff 8. D¢} (D)ds.

101%.] To extend Green’s Theorem to the case of a hetero-
geneous anisotropic {non-isotropic} medium, we have only to’
write in Theorem IIT, Art. 21, :

X=~p[K_‘3:+K ‘;“’ K,,%z‘l",

do
Y= \P[K,,d +K,,G‘li:+K,,dzj.
Z=~p[K,,‘jl"’+K ‘;;" + 2,22,

and we obtain, if 7, m, n are the direction cosines of the outward
normal to the surface (remembering that the order of the suffixes
of the coefficients is indifferent),

id ae
f f ¥ [(Bal+ Kpim+ Bon) 52 + (Kol + K pym+ K o) &

+(Rolt Kym+ Koum) 52 |do

NG AR )

dd dd
+ E_(Kn— + Kndy + K, dz)
dd>
dz( + K, —— dy K, a;)]da;dydz

L2
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Then if q is the capacity of s,,
=_4
9= ¥, —¥, ? ¢ (1)
ad if Wis the energy of the system with its actual distribution
of electricity W=1e (¥—¥), (2
2w el’
and = 3
1=G_wp= (3)

To find an upper limit of the va.lue of the capacity: assume
any value of ¥ which is equal to 1 at 8, and equal to zero at s,,
and calculate the value of the volume-integral

%= [[[[Cay G+ (@) Jdedyas ()

extended over the whole field.
Then as we have proved (Art. 99 b) that W cannot be greater
than W,, the capacity, ¢, cannot be greater than 2 W,.
To find a lower limit of the value of the capacity: assume
any system of values of f, g, h, which satisfies the equation
af dg  dh

dztayt &= ()

and let it wake [ [(1, 7+m, g-+m h)ds, = e (6)
Calculate the value of the volume-integral

Wo=2[[[ (4t 4+ dadyds, )

extended over the whole field ; then as we have proved (Art. 100¢)
that W cannot be greater than W, the capacity, g, cannot be less
than el v o
- (®)
The simplest method of obtaining & system of values of f, g, &,
which will satisfy the solenoidal condition, is to assume a distribu-
tion of electricity on the surface of s,, and another on &, the sum
of the charges being zero, then to calculate the potential, ¥, due
to this distribution, and the electric energy of the system thus

If we then make

jo_1a¥ _ 1dv L 1ae
T 4xda’ 9"_2}337’ T 4wdz’

these values of /, g, 2 will satisfy the solenoidal condition.
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But in this case we can determine Wp without going
the process of finding the volume-integral. KFor since t!
tion makes V2¥ = 0 at all points in the field, we can ol
in the form of the surface-integrals,

W = ‘12“/‘/:‘1""1'181"' %ff‘y"od“m

where the first integral is extended over the surface s,
second over the surface s,.

If the surface s, is at an infinite distance from s, , the j
at 8, is zero and the second term vanishes.

102 b.] An approximation to the solution of any pr
the distribution of electricity on conductors whose poter
given may be made in the following manner :—

Let 8, be the surface of a conductor or system of co:
maintained at potential 1,and let 4, be the surface of all {
conductors, including the hollow conductor which surro
rest, which last, however, may in certain cases be at an
distance from the others.

Begin by drawing a set of lines, straight or curv.
bl to &,. .

Along each of these lines, assume ¥ so that it is equs
8,, and equal to 0 at 8. Then if P is a point on one
lines {s, and s, the points where the line cuts the surfaces}

take ¥, = SIT)? a8 a first approximation.
0

We shall thus obtain a first approximation to ¥ which
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to the surfaces for which ¥, is constant, and if we denote the
length of this line measured from s, by s, then
dy av. dz dvy,

=_%h ay _ _ah @z _ _ ¥
Re=—"a B& dy’ R & (12
whero R is the resultant intensity = — 13, so that
dpd¥, dpd¥, +dpd\P 4 de
tds Vlydy Ve e =B
dp
and equation (11) becomes
dp
PV = deqf , (14)
ve
whence p= Cea,pf l \p av,, (15)

the integral being a line integral taken along the line s.
Let us next assume that along the line s,

d\P o %

d¥;
==P3g5 . (18)
then \y,_of (eap.[ v Voalav,) av, (17)

the integration being always understood to be performed along
the line s.

The constant C is now to be determined from the condition
that ¥, = 1 at s, when also ¥, = 1, so that

Cf feap. o —d\P}d\P-l (18)

This gives a second approximation to ¥, and the process may
be repeated.

The results obtained from calculating W,, Wo,, W,, &c., give
capacities alternately above and below the true capacity and
continually approximating thereto.

The process as indicated above involves the calculation of the
form of the line s and integration along this line, operations
which are in general too difficult for practical purposes.
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where A is to be determined so that at every point of the field

+ % dh .
Z+ Ayt &=" (26)

and also so that the lme-mtegra.l
41rf(fd8 + ) de) ds, (27)

taken along any line of mductlon from the surface a to the
surface b, shall be equal to —1.
Let us assume
A=1+A+B(z—a)+C(z—a), (28)
and let us neglect powers and products of 4, B, C, and at this
stage of our work powers and products of the first derivatives of
6 and b.
The solenoidal condition then gives

=—Via, -1

V*(b a)’ (29)

where v*.—._(d? + (Ty-’) (30)

If instead of taking the line-integral along the new line of
induction, we take it along the old line of induction, parallel to
z, the second condition gives

1=1+A4A+}B(b—a)+3C(b—a)

Hence A=}3(b-a)V?(2a+d), (31)
and
A=1+}(b—a)V? ] (z—a) 2

3(b—a)V3(2a+b)—(2—a)Via—}5—= V3 (b—a). (32)

We thus find for the second approxlma.tlon t.o the components
of displacement,

_ A [da d(b—a)z—a
— = almt T d oe)
_ _ A [da d(b—a)z—a
41l'g—b_a[ y dy b_a]’ (33)
_ A
b—da’

and for the second approximation to the potential,
_ (s—af
V= b +3V’(2a+b)(z—a)-iv’ab—_—a—

~4vi-0) g ‘;}: (39)
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If ¢, and o, are the surface-densities and ¥, and ¥, th
tials of the surfaces a and b respectively,

1 1
0= gz (¥a— W) [m +3Via+ }V’b],

1
b—a

. =Z’;(¢,,— q:,,)[

* {This investigation is not very rigorous, and the expressions for the sur{
do not agree with the results obtained by rigorous methods for the ca
spheres, two oylinders, a sphere and plane, or a cylinder and plane p
together. We can obtain an expression for the surface density as follov
assume that the axis of z is an axis of symmetry, then the axis will cut a
potential surfaces at right angles, and if V is the potential, R, R, the pri
of curvatare of an equipotential surface where it is cut by the axis of £, th
ocondition along the axis of ¢ may easily be shown to be

d’V+(l+-l g_V = 0.
a3 "\R, " RJd
If V4, Vp are the tﬁownﬁnls of the two surfaces respectively, ¢ the distan
the surfaces along the axis of z,
av dV
V,-V‘+t(-a-)‘+}t’(-ﬁ)‘+...,

_orif Ry, R,, denote the principal radii of curvature of the first surfaces, ¢

—»{,V’a—iv*b] *,

ford’—V from the differential equation, we get

ds?
1 1
Vp—Vy =t (%;—V)‘ {1—}({'3—‘" + FA;} }4‘...;

av
but — ) -
v (dz ) 4 4oy
when o, is the surface density where the axis of z cut the first surface, he:

1 (Va=Va) 11 .
g prbt{g gt | seeeximetl,



CHAPTER V.

MECHANICAL AOTION BETWEEN TWO ELECTRICAL SYSTEMS.

103.] LET E, and E; be two electrical systems the mutual
action between which we propose to investigate. Let the dis-
tribution of electricity in Z, be defined by the volume-density,
p1» of the element whose coordinates are z,, ¥,, z,. Let p, be the
volume-density of the element of E;, whose coordinates are
T35 Y3, 25- '

Then the z-component of the force acting on the element of £
on account of the repulsion of the element of £, will be

&, —
P1Pg — ,.a% dz,dy, dz,dzydy,dz,,

where ™ = (=) + (=) + (5~
and if A denotes the z-component of the whole force acting on E,
on account of the presence of £,

4 =ffffffz%§Pleda’ld?hdzld“’zd%dza: (1)

where the integration with respect to z,, ¥, 2, is extended -
throughout the region occupied by E,, and the integration with
respect to @, ¥,, 2, is extended throughout the region occupied
by E,.

Since, however, p, is zero except in the system E,, and p, is zero
except in the system E,, the value of the integral will not be
altered by extending the limits of the integrations, so that we
may suppose the limits of every integration to be + .

This expression for the force is a literal translation into mathe-
matical symbols of the theory which supposes the electric force
to act directly between bodies at a distance, no attention being
bestowed on the intervening medium.

If we now define ¥,, the potential at the point =,, v, 7,
arising from the presence of the system E;, by the equation

¥y = f ) f % da,dyydz, (2)
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¥, will vanish at an infinite distance, and will everywher
the equation VY, = 41,

We may now express 4 in the form of a triple integra

4 = [[[ R ndndyda.

Here the potential ¥, is supposed to have a definite
every point of the ﬁald, and in terms of this, together -
distribution, p,, of electricity in the first system E|, the fi
expressed, no explicit mention being made of the distril
electricity in the second system E,.

Now let ¥, be the potential arising from the first
expressed as a function of z, ¥, z, and defined by the equ

¥, =fff’$ dz, dy,dz,,

¥, will vanish at an infinite distance, dnd will everywher
the equation V2, = 4mp,.
We may<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>