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Preface xi

Preface

The most beautiful thing we can experience is the mysterious.
It is the source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book

We believe that learning in computer science and engineering should reflect the
current state of the field, as well as introduce the principles that are shaping com-
puting. We also feel that readers in every specialty of computing need to appreci-
ate the organizational paradigms that determine the capabilities, performance,
and, ultimately, the success of computer systems. 

Modern computer technology requires professionals of every computing spe-
cialty to understand both hardware and software. The interaction between hard-
ware and software at a variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.

About the Other Book

Some readers may be familiar with Computer Architecture: A Quantitative
Approach, popularly known as Hennessy and Patterson. (This book in turn is
called Patterson and Hennessy.) Our motivation in writing that book was to
describe the principles of computer architecture using solid engineering funda-
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mentals and quantitative cost/performance trade-offs. We used an approach that
combined examples and measurements, based on commercial systems, to create
realistic design experiences. Our goal was to demonstrate that computer architec-
ture could be learned using quantitative methodologies instead of a descriptive
approach. It is intended for the serious computing professional who wants a
detailed understanding of computers.

A majority of the readers for this book do not plan to become computer archi-
tects. The performance of future software systems will be dramatically affected,
however, by how well software designers understand the basic hardware tech-
niques at work in a system. Thus, compiler writers, operating system designers,
database programmers, and most other software engineers need a firm grounding
in the principles presented in this book. Similarly, hardware designers must
understand clearly the effects of their work on software applications. 

Thus, we knew that this book had to be much more than a subset of the mate-
rial in Computer Architecture, and the material was extensively revised to match
the different audience. We were so happy with the result that the subsequent edi-
tions of Computer Architecture were revised to remove most of the introductory
material; hence, there is much less overlap today than with the first editions of
both books.

Changes for the Third Edition

We had six major goals for the third edition of Computer Organization and Design:
make the book work equally well for readers with a software focus or with a hard-
ware focus; improve pedagogy in general; enhance understanding of program per-
formance; update the technical content to reflect changes in the industry since the
publication of the second edition in 1998; tie the ideas from the book more closely
to the real world outside the computing industry; and reduce the size of this book.

First, the table on the next page shows the hardware and software paths through
the material. Chapters 1, 4, and 7 are found on both paths, no matter what the expe-
rience or the focus. Chapters 2 and 3 are likely to be review material for the hard-
ware-oriented, but are essential reading for the software-oriented, especially for
those readers interested in learning more about compilers and object-oriented pro-
gramming languages. The first sections of Chapters 5 and 6 give overviews for those
with a software focus. Those with a hardware focus, however, will find that these
chapters present core material; they may also, depending on background,  want to
read Appendix B on logic design first and the sections on microprogramming and
how to use hardware description languages to specify control. Chapter 8 on
input/output is key to readers with a software focus and should be read if time per-
mits by others. The last chapter on multiprocessors and clusters is again a question
of time for the reader. Even the history sections show this balanced focus; they
include short histories of programming languages, compilers, numerical software,
operating systems, networking protocols, and databases.

This Page Intentionally Left Blank
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Chapter or Appendix Sections Software Focus Hardware Focus

1. Computer Abstractions
and Technology

1.1 to 1.6

      1.7 (History)

3. Arithmetic for Computers
3.1 to 3.11

      3.12 (History)

4. Assessing and Understanding
Performance

5. The Processor: Datapath and
Control

4.1 to 4.6

      4.7 (History)

D. RISC instruction set architectures       D.1 to D.19

2. Instructions: Language
of the Computer

2.1 to 2.11

2.13 (C sort)

      2.12 (Compilers)

      2.14 (Java)

2.15 to 2.18

      2.19 (History)

5.1 (Overview)

      5.8 (Microcode)

5.2 to 5.7

      5.9 (Verilog)

5.10 to 5.12

      5.13 (History)

B. The Basics of Logic Design       B.1 to B.13

C. Mapping Control to Hardware       C.1 to C.6

A. Assemblers, Linkers, and
the SPIM Simulator

Computers in the Real World Between Chapters

      A.1 to A.12

Read carefully

Review or read

Read if have time

Read for culture

Reference

6. Enhancing Performance with
Pipelining

6.1 (Overview)

      6.7 (verilog)

6.2 to 6.6

7. Large and Fast: Exploiting
Memory Hierarchy

7.1 to 7.8

      7.9 (History)

6.8 to 6.9

6.10 to 6.12

      6.13 (History)

9. Multiprocessors and Clusters
      9.1 to 9.10

      9.11 (History)

8. Storage, Networks, and
Other Peripherals

8.1 to 8.2

      8.3 (Networks)

8.4 to 8.10

      8.13 (History)
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The next goal was to improve the exposition of the ideas in the book, based on
difficulties mentioned by readers of the second edition. We added five new book
elements to help. To make the book work better as a reference, we placed defini-
tions of new terms in the margins at their first occurrence. We hope this will help
readers find the sections when they want to refer back to material they have
already read. Another change was the insertion of the “Check Yourself” sections,
which we added to help readers to check their comprehension of the material on
the first time through it. A third change is that added extra exercises in the “For
More Practice” section. Fourth, we added the answers to the “Check Yourself” sec-
tions and to the For More Practice exercises to help readers see for themselves if
they understand the material by comparing their answers to the book. The final
new book element was inspired by the "Green Card" of the IBM System/360. We
believe that you will find that the MIPS Reference Data Card will be a handy refer-
ence when writing MIPS assembly language programs. Our idea is that you will
remove the card from the front of the book, fold it in half, and keep it in your
pocket, just as IBM S/360 programmers did in the 1960s.

Third, computers are so complex today that understanding the performance of
a program involves understanding a good deal about the underlying principles
and the organization of a given computer. Our goal is that readers of this book
should be able to understand the performance of their progams and how to
improve it. To aid in that goal, we added a new book element called “Understand-
ing Program Performance” in several chapters. These sections often give concrete
examples of how ideas in the chapter affect performance of real programs.

Fourth, in the interval since the second edition of this book, Moore’s law has
marched onward so that we now have processors with 200 million transistors,
DRAM chips with a billion transistors, and clock rates of multiple gigahertz. The
“Real Stuff” examples have been updated to describe such chips. This edition also
includes AMD64/IA-32e, the 64-bit address version of the long-lived 80x86 archi-
tecture, which appears to be the nemesis of the more recent IA-64. It also reflects
the transition from parallel buses to serial networks and switches. Later chapters
describe Google, which was born after the second edition, in terms of its cluster
technology and in novel uses of search.

Fifth, although many computer science and engineering students enjoy infor-
mation technology for technology’s sake, some have more altruistic interests. This
latter group tends to have more women and underrepresented minorities. Conse-
quently, we have added a new book element, “Computers in the Real World,” two-
page layouts found between each chapter. Our perspective is that information
technology is more valuable for humanity than most other topics you could
study—whether it is preserving our art heritage, helping the Third World, saving
our environment, or even changing political systems—and so we demonstrate our
view with concrete examples of nontraditional applications. We think readers of
these segments will have a greater appreciation of the computing culture beyond
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the inherently interesting technology, much like those who read the history sec-
tions at the end of each chapter   

Finally, books are like people: they usually get larger as they get older. By using
technology, we have managed to do all the above and yet shrink the page count by
hundreds of pages. As the table illustrates, the core portion of the book for hard-
ware and software readers is on paper, but sections that some readers would value
more than others are found on the companion CD. This technology also allows
your authors to provide longer histories and more extensive exercises without
concerns about lengthening the book. Once we added the CD to the book, we
could then include a great deal of free software and tutorials that many instructors
have told us they would like to use in their courses. This hybrid paper-CD publi-
cation weighs about 30% less than it did six years ago—an impressive goal for
books as well as for people.

Instructor Support

We have collected a great deal of material to help instructors teach courses using
this book. Solutions to exercises, figures from the book, lecture notes, lecture
slides, and other materials are available to adopters from the publisher.  Check the
publisher’s Web site for more information: 

www.mkp.com/companions/1558606041

Concluding Remarks

If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at cod3bugs@mkp.com
or by low-tech mail using the address found on the copyright page. The first person
to report a technical error will be awarded a $1.00 bounty upon its implementation
in future printings of the book!

This book is truly collaborative, despite one of us running a major university.
Together we brainstormed about the ideas and method of presentation, then indi-
vidually wrote about one-half of the chapters and acted as reviewer for every draft
of the other half. The page count suggests we again wrote almost exactly the same
number of pages. Thus, we equally share the blame for what you are about to read.

Acknowledgments for the Third Edition

We’d like to again express our appreciation to Jim Larus for his willingness in con-
tributing his expertise on assembly language programming, as well as for welcom-
ing readers of this book to use the simulator he developed and maintains. Our
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exercise editor Dan Sorin took on the Herculean task of adding new exercises and
answers. Peter Ashenden worked similarly hard to collect and organize the com-
panion CD.

We are grateful to the many instructors who answered the publisher’s surveys,
reviewed our proposals, and attended focus groups to analyze and respond to our
plans for this edition.  They include the following individuals:  Michael Anderson
(University of Hartford), David Bader (University of New Mexico), Rusty Baldwin
(Air Force Institute of Technology), John Barr (Ithaca College), Jack Briner
(Charleston Southern University), Mats Brorsson (KTH, Sweden), Colin Brown
(Franklin University), Lori Carter (Point Loma Nazarene University), John Casey
(Northeastern University), Gene Chase (Messiah College), George Cheney (Univer-
sity of Massachusetts, Lowell), Daniel Citron (Jerusalem College of Technology,
Israel), Albert Cohen (INRIA, France), Lloyd Dickman (PathScale), Jose Duato
(Universidad Politécnica de Valencia, Spain), Ben Dugan (University of Washing-
ton), Derek Eager (University of Saskatchewan, Canada), Magnus Ekman (Chalm-
ers University of Technology, Sweden), Ata Elahi (Southern Connecticut State
University), Soundararajan Ezekiel (Indiana University of Pennsylvania), Ernest
Ferguson (Northwest Missouri State University), Michael Fry (Lebanon Valley Col-
lege, Pennsylvania), R. Gaede (University of Arkansas at Little Rock), Jean-Luc
Gaudiot (University of California, Irvine), Thomas Gendreau (University of Wis-
consin, La Crosse), George Georgiou (California State University, San Bernardino),
Paul Gillard (Memorial University of Newfoundland, Canada), Joe Grimes (Califor-
nia Polytechnic State University, SLO), Max Hailperin (Gustavus Adolphus Col-
lege), Jayantha Herath (St. Cloud State University, Minnesota), Mark Hill
(University of Wisconsin, Madison), Michael Hsaio (Virginia Tech), Richard
Hughey (University of California, Santa Cruz), Tony Jebara (Columbia University),
Elizabeth Johnson (Xavier University), Peter Kogge (University of Notre Dame),
Morris Lancaster (BAH), Doug Lawrence (University of Montana), David Lilja
(University of Minnesota), Nam Ling (Santa Clara University, California), Paul Lum
(Agilent Technologies), Stephen Mann (University of Waterloo, Canada), Diana
Marculescu (Carnegie Mellon University), Margaret McMahon (U.S. Naval Acad-
emy Computer Science), Uwe Meyer-Baese (Florida State University), Chris Milner
(University of Virginia), Tom Pittman (Southwest Baptist University), Jalel Rejeb
(San Jose State University, California), Bill Siever (University of Missouri, Rolla),
Kevin Skadron (University of Virginia), Pam Smallwood (Regis University, Colo-
rado), K. Stuart Smith (Rocky Mountain College), William J. Taffe (Plymouth State
University), Michael E. Thomodakis (Texas A&M University), Ruppa K. Thulasiram
(University of Manitoba, Canada), Ye Tung (University of South Alabama), Steve
VanderLeest (Calvin College), Neal R. Wagner (University of Texas at San Antonio),
and Kent Wilken (University of California, Davis).
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We are grateful too to those who carefully read our draft manuscripts; some
read successive drafts to help ensure new errors didn’t creep in as we revised.
They include Krste Asanovic (Massachusetts Institute of Technology), Jean-Loup
Baer (University of Washington), David Brooks (Harvard University), Doug Clark
(Princeton University), Dan Connors (University of Colorado at Boulder), Matt
Farrens (University of California, Davis), Manoj Franklin (University of Maryland
College Park), John Greiner (Rice University), David Harris (Harvey Mudd Col-
lege), Paul Hilfinger (University of California, Berkeley), Norm Jouppi (Hewlett-
Packard), David Kaeli (Northeastern University), David Oppenheimer (University
of California, Berkeley),  Timothy Pinkston (University of Southern California),
Mark Smotherman (Clemson University), and David Wood (University of Wis-
consin, Madison).

To help us meet our goal of creating 70% new exercises and solutions for this
edition, we recruited several graduate students recommended to us by their pro-
fessors.  We are grateful for their creativity and persistence:  Michael Black (Uni-
versity of Maryland), Lei Chen (University of Rochester), Nirav Dave
(Massachusetts Institute of Technology), Wael El Essawy (University of Roches-
ter), Nikil Mehta (Brown University), Nicholas Nelson (University of Rochester),
Aaron Smith (University of Texas, Austin), and Charlie Wang (Duke University).

We would like to especially thank Mark Smotherman for making a careful final
pass to find technical and writing glitches that significantly improved the quality
of this edition.

We wish to thank the extended Morgan Kaufmann family for agreeing to pub-
lish this book again under the able leadership of Denise Penrose. She developed
the vision of the hybrid paper-CD book and recruited the many people above who
played important roles in developing the book.

Simon Crump managed the book production process, and Summer Block
coordinated the surveying of users and their responses. We thank also the many
freelance vendors who contributed to this volume, especially Nancy Logan and
Dartmouth Publishing, Inc., our compositors. 

The contributions of the nearly 100 people we mentioned here have made this
third edition our best book yet. Enjoy!

David A. Patterson   John L. Hennessy
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Computer
Abstractions
and Technology

Civilization advances by extending 
the number of important operations 
which we can perform without 
thinking about them.

Alfred North Whitehead
An Introduction to Mathematics, 1911
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Welcome to this book! We’re delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary field,
where progress is glacial and where new ideas atrophy from neglect. No! Comput-
ers are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States. This unusual industry embraces innovation at a breathtaking
rate. Since 1985 there have been a number of new computers whose introduction
appeared to revolutionize the computing industry; these revolutions were cut
short only because someone else built an even better computer. 

This race to innovate has led to unprecedented progress since the inception of
electronic computing in the late 1940s. Had the transportation industry kept pace
with the computer industry, for example, today we could travel coast to coast in
about a second for roughly a few cents. Take just a moment to contemplate how
such an improvement would change society—living in Tahiti while working in
San Francisco, going to Moscow for an evening at the Bolshoi Ballet—and you can
appreciate the implications of such a change. 

1.1 Introduction 1.1
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Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolu-
tions. The resulting multiplication of humankind’s intellectual strength and reach
naturally has affected our everyday lives profoundly and also changed the ways in
which the search for new knowledge is carried out. There is now a new vein of sci-
entific investigation, with computational scientists joining theoretical and experi-
mental scientists in the exploration of new frontiers in astronomy, biology,
chemistry, physics, . . .

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications
that were economically infeasible suddenly become practical. In the recent past,
the following applications were “computer science fiction.”

■ Automatic teller machines: A computer placed in the wall of banks to dis-
tribute and collect cash would have been a ridiculous concept in the 1950s,
when the cheapest computer cost at least $500,000 and was the size of a car.

■ Computers in automobiles: Until microprocessors improved dramatically in
price and performance in the early 1980s, computer control of cars was ludi-
crous. Today, computers reduce pollution and improve fuel efficiency via
engine controls and increase safety through the prevention of dangerous
skids and through the inflation of air bags to protect occupants in a crash. 

■ Laptop computers: Who would have dreamed that advances in computer
systems would lead to laptop computers, allowing students to bring com-
puters to coffeehouses and on airplanes?

■ Human genome project: The cost of computer equipment to map and ana-
lyze human DNA sequences is hundreds of millions of dollars. It's unlikely
that anyone would have considered this project had the computer costs been
10 to 100 times higher, as they would have been 10 to 20 years ago.

■ World Wide Web: Not in existence at the time of the first edition of this
book, the World Wide Web has transformed our society. Among its uses are
distributing news, sending flowers, buying from online catalogues, taking
electronic tours to help pick vacation spots, finding others who share your
esoteric interests, and even more mundane topics like finding the lecture
notes of the authors of your textbooks. 

Clearly, advances in this technology now affect almost every aspect of our society.
Hardware advances have allowed programmers to create wonderfully useful soft-
ware, and explain why computers are omnipresent. Tomorrow’s science fiction
computer applications are the cashless society, automated intelligent highways,
and genuinely ubiquitous computing: no one carries computers because they are
available everywhere. 
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Classes of Computing Applications and Their 
Characteristics

Although a common set of hardware technologies (discussed in Sections 1.3 and
1.4) is used in computers ranging from smart home appliances to cell phones to
the largest supercomputers, these different applications have different design
requirements and employ the core hardware technologies in different ways.
Broadly speaking, computers are used in three different classes of applications. 

Desktop computers are possibly the best-known form of computing and are
characterized by the personal computer, which most readers of this book have
probably used extensively. Desktop computers emphasize delivering good perfor-
mance to a single user at low cost and usually are used to execute third-party soft-
ware, also called shrink-wrap software. Desktop computing is one of the largest
markets for computers, and the evolution of many computing technologies is
driven by this class of computing, which is only about 30 years old!

Servers are the modern form of what was once mainframes, minicomputers,
and supercomputers, and are usually accessed only via a network. Servers are ori-
ented to carrying large workloads, which may consist of either single complex
applications, usually a scientific or engineering application, or handling many
small jobs, such as would occur in building a large Web server. These applications
are often based on software from another source (such as a database or simulation
system), but are often modified or customized for a particular function. Servers
are built from the same basic technology as desktop computers, but provide for
greater expandability of both computing and input/output capacity. As we will see
in the Chapter 4, the performance of a server can be measured in several different
ways, depending on the application of interest. In general, servers also place a
greater emphasis on dependability, since a crash is usually more costly than it
would be on a single-user desktop computer. 

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop machine without a screen or keyboard and with
a cost of a thousand dollars. These low-end servers are typically used for file stor-
age, small business applications, or simple web serving. At the other extreme are
supercomputers, which at the present consist of hundreds to thousands of pro-
cessors, and usually gigabytes to terabytes of memory and terabytes to petabytes
of storage, and cost millions to hundreds of millions of dollars. Supercomputers
are usually used for high-end scientific and engineering calculations, such as
weather forecasting, oil exploration, protein structure determination, and other
large-scale problems. Although such supercomputers represent the peak of com-
puting capability, they are a relatively small fraction of the servers and a relatively
small fraction of the overall computer market in terms of total revenue. 

Embedded computers are the largest class of computers and span the widest
range of applications and performance. Embedded computers include the micro-
processors found in your washing machine and car, the computers in a cell phone

desktop computer A com-
puter designed for use by an 
individual, usually incorporat-
ing a graphics display, keyboard, 
and mouse.

Server A computer used for 
running larger programs for 
multiple users often simulta-
neously and typically accessed 
only via a network.

supercomputer A class of 
computers with the highest per-
formance and cost; they are 
configured as servers and typi-
cally cost millions of dollars.

terabyte Originally
1,099,511,627,776 (240) bytes, 
although some communications 
and secondary storage systems 
have redefined it to mean 
1,000,000,000,000 (1012) bytes.

embedded computer A com-
puter inside another device used 
for running one predetermined 
application or collection of soft-
ware.
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or personal digital assistant, the computers in a video game or digital television,
and the networks of processors that control a modern airplane or cargo ship.
Embedded computing systems are designed to run one application or one set of
related applications, which is normally integrated with the hardware and delivered
as a single system; thus, despite the large number of embedded computers, most
users never really see that they are using a computer! 

Embedded applications often have unique application requirements that com-
bine a minimum performance with stringent limitations on cost or power. For
example, consider a cell phone: the processor need only be as fast as necessary to
handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often
have the least tolerance for failure, since the results can vary from upsetting (when
your new television crashes) to devastating (such as might occur when the com-
puter in a plane or car crashes). In consumer-oriented embedded applications,
such as a digital home appliance, dependability is achieved primarily through
simplicity—the emphasis is on doing one function, as perfectly as possible. In
large embedded systems, techniques of redundancy, which are used in servers, are
often employed. Although this book focuses on general-purpose computers, most
of the concepts apply directly, or with slight modifications, to embedded comput-
ers. In several places, we will touch on some of the unique aspects of embedded
computers. 

Figure 1.1 shows that during the last several years, the growth in the number of
embedded computers has been much faster (40% compounded annual growth
rate) than the growth rate among desktop computers and servers (9% annually).
Note that the embedded computers include cell phones, video games, digital TVs
and set-top boxes, personal digital assistants, and a variety of such consumer
devices. Note that this data does not include low-end embedded control devices
that use 8-bit and 16-bit processors.

Elaboration: Elaborations are short sections used throughout the text to provide
more detail on a particular subject, which may be of interest. Disinterested readers
may skip over an elaboration, since the subsequent material will never depend on the
contents of the elaboration.

Many embedded processors are designed using processor cores, a version of a pro-
cessor written in a hardware description language such as Verilog or VHDL. The core
allows a designer to integrate other application-specific hardware with the processor
core for fabrication on a single chip. The availability of synthesis tools that can gener-
ate a chip from a Verilog specification, together with the capacity of modern silicon
chips, has made such special-purpose processors highly attractive. Since the core can
be synthesized for different semiconductor manufacturing lines, using a core provides
flexibility in choosing a manufacturer as well. In the last few years, the use of cores has
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been growing very fast. For example, in 1998 only 31% of the embedded processors
were cores. By 2002, 56% of the embedded processors were cores. Furthermore,
while the overall growth rate in the embedded market has been 40% per year, this
growth has been primarily driven by cores, where the compounded annual growth rate
has been 63%!

Figure 1.2 shows the major architectures sold in these markets with counts for
each architecture, across all three types of products (embedded, desktop, and
server). Only 32-bit and 64-bit processors are included, although 32-bit proces-
sors are the vast majority for most of the architectures. 

FIGURE 1.1 The number of distinct processors sold between 1998 and 2002. These counts
are obtained somewhat differently, so some caution is required in interpreting the results. For example, the
totals for desktops and servers count complete computer systems, because some fraction of these include
multiple processors, the number of processors sold is somewhat higher, but probably by only 10–20% in
total (since the servers, which may average more than one processor per system, are only about 3% of the
desktop sales, which are predominantly single-processor systems). The totals for embedded computers actu-
ally count processors, many of which are not even visible, and in some cases there may be multiple proces-
sors per device. 

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

290

93

1998 1999 2000 2001 2002

3

488

114

3

892

135

4

862

129

4

1122

131

5

M
ill

io
ns

 o
f c

om
pu

te
rs

Embedded computer

Desktops

Servers



8 Chapter 1 Computer Abstractions and Technology

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of
their programs because getting results to the user quickly is critical in creating
successful software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Thus programmers often
followed a simple credo: Minimize memory space to make programs fast. In the
last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems. 

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the hierarchical nature
of memories and the parallel nature of processors. Programmers who seek to
build competitive versions of compilers, operating systems, databases, and even
applications will therefore need to increase their knowledge of computer organi-
zation.

FIGURE 1.2 Sales of microprocessors between 1998 and 2002 by instruction set archi-
tecture combining all uses. The “other” category refers to processors that are either application-
specific or customized architectures. In the case of ARM, roughly 80% of the sales are for cell phones, where
an ARM core is used in conjunction with application-specific logic on a chip. 

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0
1998 2000 2001 2002

M
ill

io
ns

 o
f p

ro
ce

ss
or

s

1999

Other

SPARC

Hitachi SH

PowerPC

Motorola 68K

MIPS

IA-32

ARM



1.1 Introduction 9

We are honored to have the opportunity to explain what’s inside this rev-
olutionary machine, unraveling the software below your program and the hard-
ware under the covers of your computer. By the time you complete this book, we
believe you will be able to answer the following questions:

■ How are programs written in a high-level language, such as C or Java, trans-
lated into the language of the hardware, and how does the hardware execute
the resulting program? Comprehending these concepts forms the basis of
understanding the aspects of both the hardware and software that affect pro-
gram performance.

■ What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These con-
cepts are vital to understanding how to write many kinds of software.

■ What determines the performance of a program, and how can a program-
mer improve the performance? As we will see, this depends on the original
program, the software translation of that program into the computer’s lan-
guage, and the effectiveness of the hardware in executing the program.

■ What techniques can be used by hardware designers to improve perfor-
mance? This book will introduce the basic concepts of modern computer
design. The interested reader will find much more material on this topic in
our advanced book, A Computer Architecture: A Quantitative Approach.

Without understanding the answers to these questions, improving the perfor-
mance of your program on a modern computer, or evaluating what features might
make one computer better than another for a particular application, will be a
complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of software and hard-
ware in perspective, and introduces integrated circuits, the technology that fuels
the computer revolution. In this chapter, and later ones, you will likely see a lot of
new words, or words that you may have heard, but are not sure what they mean.
Don’t panic! Yes, there is a lot of special terminology used in describing modern
computers, but the terminology actually helps since it enables us to describe pre-
cisely a function or capability. In addition, computer designers (including your
authors) love using acronyms, which are easy to understand once you know what
the letters stand for! To help you remember and locate terms, we have included a
highlighted definition of every term, the first time it appears in the text. After a
short time of working with the terminology, you will be fluent, and your friends

acronym A word constructed 
by taking the initial letters of 
string of words. For example: 
RAM is an acronym for Ran-
dom Access Memory, and CPU 
is an acronym for Central Pro-
cessing Unit.
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will be impressed as you correctly use words such as BIOS, DIMM, CPU, cache,
DRAM, ATA, PCI, and many others.

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, “Understanding Program Perfor-
mance,” throughout the book, with the first one appearing below. These elements
summarize important insights into program performance.

Check
Yourself

“Check Yourself” sections are designed to help readers assess whether they have
comprehended the major concepts introduced in a chapter and understand the
implications of those concepts. Some “Check Yourself” questions have simple
answers; others are for discussion among a group. Answers to the specific ques-
tions can be found at the end of the chapter. “Check Yourself” questions appear
only at the end of a section, making it easy to skip them if you are sure you under-
stand the material.

1. Section 1.1 showed that the number of embedded processors sold every
year greatly outnumbers the number of desktop processors. Can you con-
firm or deny this insight based on your own experience? Try to count the
number of embedded processors in your home. How does it compare with
the number of desktop computers in your home?

Understanding
Program

Performance

The performance of a program depends on a combination of the effectiveness of
the algorithms used in the program, the software systems used to create and trans-
late the program into machine instructions, and the effectiveness of the computer
in executing those instructions, which may include I/O operations. The following
table summarizes how the hardware and software affect performance.

Hardware or software 
component

How this component affects 
performance

Where is this 
topic covered?

Algorithm Determines both the number of source-level 
statements and the number of I/O operations 
executed

Other books!

Programming language, 
compiler, and architecture

Determines the number of machine instructions 
for each source-level statement 

Chapters 2 and 3

Processor and memory 
system

Determines how fast instructions can be 
executed

Chapters 5, 6, 
and 7

I/O system (hardware and 
operating system)

Determines how fast I/O operations may be 
executed

Chapter 8
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2. As mentioned earlier, both the software and hardware affect the perfor-
mance of a program. Can you think of examples where each of the follow-
ing is the right place to look for a performance bottleneck?

■ The algorithm chosen

■ The programming language or compiler

■ The operating system

■ The processor

■ The I/O system and devices

A typical application, such as a word processor or a large database system, may
consist of hundreds of thousands to millions of lines of code and rely on sophisti-
cated software libraries that implement complex functions in support of the
application. As we will see, the hardware in a computer can only execute extremely
simple low-level instructions. To go from a complex application to the simple
instructions involves several layers of software that interpret or translate high-
level operations into simple computer instructions.

These layers of software are organized primarily in a hierarchical fashion, with
applications being the outermost ring and a variety of systems software sitting
between the hardware and applications software, as shown in Figure 1.3. 

There are many types of systems software, but two types of systems software are
central to every computer system today: an operating system and a compiler. An
operating system interfaces between a user’s program and the hardware and pro-
vides a variety of services and supervisory functions. Among the most important
functions are

■ handling basic input and output operations

■ allocating storage and memory

■ providing for sharing the computer among multiple applications using it
simultaneously

Examples of operating systems in use today are Windows, Linux, and MacOS.
Compilers perform another vital function: the translation of a program writ-

ten in a high-level language, such as C or Java, into instructions that the hardware

1.2 Below Your Program 1.2

In Paris they simply stared 
when I spoke to them in 
French; I never did succeed 
in making those idiots 
understand their own lan-
guage.

Mark Twain, The Innocents 
Abroad, 1869

systems software Software
that provides services that are 
commonly useful, including 
operating systems, compilers, 
and assemblers.

operating system Supervising 
program that manages the 
resources of a computer for the 
benefit of the programs that run 
on that machine.

compiler A program that 
translates high-level language 
statements into assembly 
language statements.
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can execute. Given the sophistication of modern programming languages and the
simple instructions executed by the hardware, the translation from a high-level
language program to hardware instructions is complex. We will give a brief over-
view of the process and return to the subject in Chapter 2. 

From a High-Level Language to the Language of Hardware

To actually speak to an electronic machine, you need to send electrical signals. The
easiest signals for machines to understand are on and off, and so the machine
alphabet is just two letters. Just as the 26 letters of the English alphabet do not
limit how much can be written, the two letters of the computer alphabet do not
limit what computers can do. The two symbols for these two letters are the num-
bers 0 and 1, and we commonly think of the machine language as numbers in base
2, or binary numbers. We refer to each “letter” as a binary digit or bit. Computers
are slaves to our commands, which are called instructions. Instructions, which are
just collections of bits that the computer understands, can be thought of as num-
bers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 3 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

FIGURE 1.3 A simplified view of hardware and software as hierarchical layers, shown as
concentric circles with hardware in the center and applications software outermost. In
complex applications there are often multiple layers of application software as well. For example, a database
system may run on top of the systems software hosting an application, which in turn runs on top of the
database.

Applications software

Sys
tems software

Hardware

binary digit Also called a bit. 
One of the two numbers in base 
2 (0 or 1) that are the compo-
nents of information.
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The first programmers communicated to computers in binary numbers, but
this was so tedious that they quickly invented new notations that were closer to
the way humans think. At first these notations were translated to binary by hand,
but this process was still tiresome. Using the machine to help program the
machine, the pioneers invented programs to translate from symbolic notation to
binary. The first of these programs was named an assembler. This program trans-
lates a symbolic version of an instruction into the binary version. For example, the
programmer would write

add A,B

and the assembler would translate this notation into

1000110010100000

This instruction tells the computer to add the two numbers A and B. The name
coined for this symbolic language, still used today, is assembly language.

Although a tremendous improvement, assembly language is still far from the
notation a scientist might like to use to simulate fluid flow or that an accountant
might use to balance the books. Assembly language requires the programmer to
write one line for every instruction that the machine will follow, forcing the pro-
grammer to think like the machine. 

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers that
translate programs in such languages into instructions. 

A compiler enables a programmer to write this high-level language expression:

A + B

The compiler would compile it into this assembly language statement:

add A,B

The assembler would translate this statement into the binary instruction that tells
the computer to add the two numbers A and B:

1000110010100000

Figure 1.4 shows the relationships among these programs and languages.
High-level programming languages offer several important benefits. First, they

allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.4). Moreover, they allow languages to

assembler A program that 
translates a symbolic version of 
instructions into the binary ver-
sion.

assembly language A sym-
bolic representation of machine 
instructions.

high-level programming 
language A portable language 
such as C, Fortran, or Java com-
posed of words and algebraic 
notation that can be translated 
by a compiler into assembly 
language.
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be designed according to their intended use. Hence, Fortran was designed for sci-
entific computation, Cobol for business data processing, Lisp for symbol manipu-
lation, and so on. 

The second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in software develop-
ment is that it takes less time to develop programs when they are written in lan-
guages that require fewer lines to express an idea. Conciseness is a clear advantage
of high-level languages over assembly language. 

FIGURE 1.4 C program compiled into assembly language and then assembled into
binary machine language. Although the translation from high-level language to binary machine lan-
guage is shown in two steps, some compilers cut out the middleman and produce binary machine language
directly. These languages and this program are examined in more detail in Chapter 2. 

swap(int v[], int k)
{int temp;
   temp = v[k];
   v[k] = v[k+1];
   v[k+1] = temp;
}

swap:
      muli $2, $5,4
      add  $2, $4,$2
      lw   $15, 0($2)
      lw   $16, 4($2)
      sw   $16, 0($2)
      sw   $15, 4($2)
      jr   $31

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Assembler

Compiler

Binary machine
language
program
(for MIPS)

Assembly
language
program
(for MIPS)

High-level
language
program
(in C)
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The final advantage is that programming languages allow programs to be inde-
pendent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions
of any machine. These three advantages are so strong that today little program-
ming is done in assembly language.

Now that we have looked below your program to uncover the underlying software,
let’s open the covers of the computer to learn about the underlying hardware. The
underlying hardware in any computer performs the same basic functions: input-
ting data, outputting data, processing data, and storing data. How these functions
are performed is the primary topic of this book, and subsequent chapters deal
with different parts of these four tasks. When we come to an important point in
this book, a point so important that we hope you will remember it forever, we
emphasize it by identifying it as a “Big Picture” item. We have about a dozen Big
Pictures in this book, with the first being the five components of a computer that
perform the tasks of inputting, outputting, processing, and storing data.  

Figure 1.6 shows a typical desktop computer with keyboard, mouse, screen,
and a box containing even more hardware. What is not visible in the photograph
is a network that connects the computer to other computers. This photograph
reveals two of the key components of computers: input devices, such as the key-
board and mouse, and output devices, such as the screen. As the names suggest,
input feeds the computer, and output is the result of computation sent to the user.
Some devices, such as networks and disks, provide both input and output to the
computer. 

1.3 Under the Covers 1.3

The five classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.5 shows the standard organization of a computer.
This organization is independent of hardware technology: You can place
every piece of every computer, past and present, into one of these five cat-
egories. To help you keep all this in perspective, the five components of a
computer are shown on the front page of the following chapters, with the
portion of interest to that chapter highlighted.

The BIG
Picture

input device A mechanism 
through which the computer is 
fed information, such as the 
keyboard or mouse.

output device A mechanism 
that conveys the result of a com-
putation to a user or another 
computer.
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Chapter 8 describes input/output (I/O) devices in more detail, but let’s take an
introductory tour through the computer hardware, starting with the external I/O
devices.

Anatomy of a Mouse

Although many users now take mice for granted, the idea of a pointing device
such as a mouse was first shown by Engelbart using a research prototype in 1967.
The Alto, which was the inspiration for all workstations as well as for the Macin-
tosh, included a mouse as its pointing device in 1973. By the 1990s, all desktop
computers included this device, and new user interfaces based on graphics dis-
plays and mice became the norm. 

FIGURE 1.5 The organization of a computer, showing the five classic components. The
processor gets instructions and data from memory. Input writes data to memory, and output reads data
from memory. Control sends the signals that determine the operations of the datapath, memory, input, and
output.

I got the idea for the mouse 
while attending a talk at a 
computer conference. The 
speaker was so boring that I 
started daydreaming and hit 
upon the idea.

Doug Engelbart
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The original mouse was electromechanical and used a large ball that when
rolled across a surface would cause an x and y counter to be incremented. The
amount of increase in each counter told how far the mouse had been moved. 

The electromechanical mouse has largely been replaced by the newer all-optical
mouse. The optical mouse is actually a miniature optical processor including an
LED to provide lighting, a tiny black-and-white camera, and a simple optical pro-
cessor. The LED illuminates the surface underneath the mouse; the camera takes
1500 sample pictures a second under the illumination. Successive pictures are sent
to a simple optical processor that compares the images and determines whether
the mouse has moved and how far. The replacement of the electromechanical
mouse by the electro-optical mouse is an illustration of a common phenomenon
where the decreasing costs and higher reliability of electronics cause an electronic
solution to replace the older electromechanical technology.

FIGURE 1.6 A desktop computer. The liquid crystal display (LCD) screen is the primary output
device, and the keyboard and mouse are the primary input devices. The box contains the processor as well
as additional I/O devices. This system is a Dell Optiplex GX260. 
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Through the Looking Glass

The most fascinating I/O device is probably the graphics display. Based on televi-
sion technology, a cathode ray tube (CRT) display scans an image one line at a
time, 30 to 75 times per second. At this refresh rate, people don’t notice a flicker on
the screen. 

The image is composed of a matrix of picture elements, or pixels, which can be
represented as a matrix of bits, called a bit map. Depending on the size of the
screen and the resolution, the display matrix ranges in size from 512 ¥ 340 to
1920 ¥ 1280 pixels in 2003. The simplest display has 1 bit per pixel, allowing it to
be black or white. For displays that support 256 different shades of black and
white, sometimes called gray-scale displays, 8 bits per pixel are required. A color
display might use 8 bits for each of the three colors (red, blue, and green), for
24 bits per pixel, permitting millions of different colors to be displayed.

All laptop and handheld computers, calculators, cellular phones, and many
desktop computers use flat-panel or liquid crystal displays (LCDs) instead of
CRTs to get a thin, low-power display. The main difference is that the LCD pixel is
not the source of light; instead it controls the transmission of light. A typical LCD
includes rod-shaped molecules in a liquid that form a twisting helix that bends
light entering the display, from either a light source behind the display or less
often from reflected light. The rods straighten out when a current is applied and
no longer bend the light; since the liquid crystal material is between two screens
polarized at 90 degrees, the light cannot pass through unless it is bent. Today,
most LCD displays use an active matrix that has a tiny transistor switch at each
pixel to precisely control current and make sharper images. As in a CRT, a red-
green-blue mask associated with each pixel determines the intensity of the three
color components in the final image; in a color active matrix LCD, there are three
transistor switches at each pixel.

No matter what the display, the computer hardware support for graphics con-
sists mainly of a raster refresh buffer, or frame buffer, to store the bit map. The
image to be represented on-screen is stored in the frame buffer, and the bit pattern
per pixel is read out to the graphics display at the refresh rate. Figure  1.7 shows a
frame buffer with 4 bits per pixel. 

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at
detecting even subtle changes on the screen. For example, when the screen is being
updated, the eye can detect the inconsistency between the portion of the screen
that has changed and that which hasn’t.

Opening the Box

If we open the box containing the computer, we see a fascinating board of thin
green plastic, covered with dozens of small gray or black rectangles. Figure 1.8

Through computer displays 
I have landed an airplane on 
the deck of a moving carrier, 
observed a nuclear particle 
hit a potential well, flown in 
a rocket at nearly the speed 
of light and watched a com-
puter reveal its innermost 
workings.

Ivan Sutherland, the “father” 
of computer graphics, quoted 
in “Computer Software for 
Graphics,” Scientific American,
1984

cathode ray tube (CRT) 
display A display, such as a 
television set, that displays an 
image using an electron beam 
scanned across a screen.

pixel The smallest individual 
picture element. Screen are 
composed of hundreds of thou-
sands to millions of pixels, orga-
nized in a matrix.

flat panel display, liquid crys-
tal display A display technol-
ogy using a thin layer of liquid 
polymers that can be used to 
transmit or block light accord-
ing to whether a charge is 
applied.

active matrix display A liquid 
crystal display using a transistor 
to control the transmission of 
light at each individual pixel. 
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FIGURE 1.7 Each coordinate in the frame buffer on the left determines the shade of the
corresponding coordinate for the raster scan CRT display on the right. Pixel (X0, Y0) contains
the bit pattern 0011, which is a lighter shade of gray on the screen than the bit pattern 1101 in pixel (X1, Y1).
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FIGURE 1.8 Inside the personal computer of Figure 1.6 on page 17. This packaging is sometimes called a clamshell because of the way
it opens with hinges on one side. To see what’s inside, let’s start on the top left-hand side. The shiny metal box on the top far left side is the power sup-
ply. Just below that on the far left is the fan, with its cover pulled back. To the right and below the fan is a printed circuit board (PC board), called the
motherboard in a PC, that contains most of the electronics of the computer; Figure 1.10 is a close-up of that board. The processor is the large raised
rectangle just to the right of the fan. On the right side we see the bays designed to hold types of disk drives. The top bay contains a DVD drive, the mid-
dle bay a Zip drive, and the bottom bay contains a hard disk. 
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shows the contents of the desktop computer in Figure 1.6. This motherboard is
shown vertically on the left with the power supply. Three disk drives—a DVD
drive, Zip drive, and hard drive—appear on the right. 

The small rectangles on the motherboard contain the devices that drive our
advancing technology, integrated circuits or chips. The board is composed of
three pieces: the piece connecting to the I/O devices mentioned earlier, the mem-
ory, and the processor. The I/O devices are connected via the two large boards
attached perpendicularly to the motherboard toward the middle on the right-
hand side. 

The memory is where the programs are kept when they are running; it also
contains the data needed by the running programs. In Figure 1.8, memory is
found on the two small boards that are attached perpendicularly toward the mid-
dle of the motherboard. Each small memory board contains eight integrated cir-
cuits. 

The processor is the active part of the board, following the instructions of a pro-
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate,
and so on. The processor is the large square below the memory boards in the
lower-right corner of Figure 1.8. Occasionally, people call the processor the CPU,
for the more bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of the pro-
cessor in Figure 1.8. The processor comprises two main components: datapath
and control, the respective brawn and brain of the processor. The datapath per-
forms the arithmetic operations, and control tells the datapath, memory, and I/O
devices what to do according to the wishes of the instructions of the program.
Chapter 5 explains the datapath and control for a straightforward implementa-
tion, and Chapter 6 describes the changes needed for a higher-performance
design.

Descending into the depths of any component of the hardware reveals insights
into the machine. The memory in Figure 1.10 is built from DRAM chips. DRAM
stands for dynamic random access memory. Several DRAMs are used together to
contain the instructions and data of a program. In contrast to sequential access
memories such as magnetic tapes, the RAM portion of the term DRAM means
that memory accesses take the same amount of time no matter what portion of
the memory is read. Inside the processor is another type of memory—cache
memory. Cache memory consists of a small, fast memory that acts as a buffer for
the DRAM memory. (The nontechnical definition of cache is a safe place for hid-
ing things.) Cache is built using a different memory technology, static random
access memory (SRAM). SRAM is faster but less dense, and hence more expen-
sive, than DRAM. 

motherboard A plastic board 
containing packages of 
integrated circuits or chips, 
including processor, cache, 
memory, and connectors for I/O 
devices such as networks and 
disks.

integrated circuit Also called 
chip. A device combining doz-
ens to millions of transistors.

memory The storage area in 
which programs are kept when 
they are running and that con-
tains the data needed by the 
running programs.

central processor unit (CPU)
Also called processor. The active 
part of the computer, which 
contains the datapath and con-
trol and which adds numbers, 
tests numbers, signals I/O 
devices to activate, and so on.

datapath The component of 
the processor that performs 
arithmetic operations.

control The component of the 
processor that commands the 
datapath, memory, and I/O 
devices according to the instruc-
tions of the program.

dynamic random access 
memory (DRAM) Memory
built as an integrated circuit, it 
provides random access to any 
location.

cache memory A small, fast 
memory that acts as a buffer for 
a slower, larger memory.
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You may have noticed a common theme in both the software and the hardware
descriptions: delving into the depths of hardware or software reveals more infor-
mation or, conversely, lower-level details are hidden to offer a simpler model at
higher levels. The use of such layers, or abstractions, is a principal technique for
designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hardware
and the lowest-level software. Because of its importance, it is given a special

FIGURE 1.9 Inside the processor chip used on the board shown in Figure 1.8. The left-hand side is a microphotograph of the Pentium
4 processor chip, and the right-hand side shows the major blocks in the processor. 
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name: the instruction set architecture, or simply architecture, of a machine.
The instruction set architecture includes anything programmers need to know to
make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically the operating system will encapsulate the details
of doing I/O, allocating memory, and other low-level system functions, so that
application programmers do not need to worry about such details. The combina-
tion of the basic instruction set and the operating system interface provided for
application programmers is called the application binary interface (ABI). 

An instruction set architecture allows computer designers to talk about func-
tions independently from the hardware that performs them. For example, we can
talk about the functions of a digital clock (keeping time, displaying the time, set-
ting the alarm) independently from the clock hardware (quartz crystal, LED dis-
plays, plastic buttons). Computer designers distinguish architecture from an
implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. These ideas bring us to another
Big Picture.

FIGURE 1.10 Close-up of PC motherboard. This board uses the Intel Pentium 4 processor, which is
located on the left-upper quadrant of the board. It is covered by a set of metal fins, which look like a radia-
tor. This structure is the heat sink, used to help cool the chip. The main memory is contained on one or
more small boards that are perpendicular to the motherboard near the middle. The DRAM chips are
mounted on these boards (called DIMMs, for dual inline memory modules) and then plugged into the con-
nectors. Much of the rest of the board comprises connectors for external I/O devices: audio/MIDI and par-
allel/serial at the right edge, two PCI card slots near the bottom, and an ATA connector used for attaching
hard disks.
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DIMM (dual inline memory 
module) A small board that 
contains DRAM chips on both 
sides. SIMMs have DRAMs on 
only one side. Both DIMMs and 
SIMMs are meant to be plugged 
into memory slots, usually on a 
motherboard.

instruction set architecture
Also called architecture. An 
abstract interface between the 
hardware and the lowest level 
software of a machine that 
encompasses all the information 
necessary to write a machine 
language program that will run 
correctly, including instruc-
tions, registers, memory access, 
I/O, and so on.

application binary interface 
(ABI) The user portion of the 
instruction set plus the operat-
ing system interfaces used by 
application programmers. 
Defines a standard for binary 
portability across computers. 

implementation Hardware
that obeys the architecture 
abstraction.
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A Safe Place for Data

Thus far we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast, a cassette tape for a stereo doesn’t forget the recorded music
when you turn off the power because the tape is magnetic and is thus a nonvola-
tile memory technology. 

To distinguish between the memory used to hold programs while they are run-
ning and this nonvolatile memory used to store programs between runs, the term
primary memory or main memory is used for the former, and secondary mem-
ory for the latter. DRAMs have dominated main memory since 1975, but mag-
netic disks have dominated secondary memory since 1965. In embedded
applications, FLASH, a nonvolatile semiconductor memory is also used. 

Today the primary nonvolatile storage used on all desktop and server comput-
ers is the magnetic hard disk. As Figure 1.11 shows, a magnetic hard disk consists
of a collection of platters, which rotate on a spindle at 5400 to 15,000 revolutions
per minute. The metal platters are covered with magnetic recording material on
both sides, similar to the material found on a cassette or video tape. To read and
write information on a hard disk, a movable arm containing a small electromag-
netic coil called a read/write head is located just above each surface. The entire
drive is permanently sealed to control the environment inside the drive, which, in
turn, allows the disk heads to be much closer to the drive surface.

Diameters of hard disks vary by more than a factor of 3 today, from less than 1
inch to 3.5 inches, and have been shrunk over the years to fit into new products;
workstation servers, personal computers, laptops, palmtops, and digital cameras
have all inspired new disk form factors. Traditionally, the widest disks have the
highest performance, the smallest disks have the lowest unit cost, and the best cost
per megabyte is usually a disk in between. Although most hard drives appear
inside computers (as in Figure 1.8), hard drives can also be attached using external
interfaces such as Firewire or USB. 

The use of mechanical components means that access times for magnetic disks
are much slower than for DRAMs: disks typically take 5–15 milliseconds, while
DRAMs take 40–80 nanoseconds—making DRAMs about 100,000 times faster.
Yet disks have much lower costs than DRAM for the same storage capacity because
the production costs for a given amount of disk storage are lower than for the
same amount of integrated circuit. In 2004, the cost per megabyte of disk is about
100 times less expensive than DRAM.

Thus there are three primary differences between magnetic disks and main
memory: disks are nonvolatile because they are magnetic; they have a slower
access time because they are mechanical devices; and they are cheaper per mega-
byte because they have very high storage capacity at a modest cost.

memory The storage area in 
which programs are kept when 
they are running and that con-
tains the data needed by the 
running programs.

volatile memory Storage, such 
as DRAM, that only retains data 
only if it is receiving power. 

nonvolatile memory A form 
of memory that retains data 
even in the absence of a power 
source and that is used to store 
programs between runs. Mag-
netic disk is nonvolatile and 
DRAM is not.

primary memory Also called 
main memory. Volatile memory 
used to hold programs while 
they are running; typically 
consists of DRAM in today’s 
computers.

secondary memory Non-
volatile memory used to store 
programs and data between 
runs; typically consists of mag-
netic disks in today’s computers.

magnetic disk (also called 
hard disk) A form of nonvola-
tile secondary memory com-
posed of rotating platters coated 
with a magnetic recording 
material.

megabyte Traditionally
1,048,576 (220) bytes, although 
some communications and sec-
ondary storage systems have 
redefined it to mean 1,000,000 
(106) bytes.
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FIGURE 1.11 A disk showing 10 disk platters and the read/write heads.

Both hardware and software consist of hierarchical layers, with each
lower layer hiding details from the level above. This principle of abstrac-
tion is the way both hardware designers and software designers cope with
the complexity of computer systems. One key interface between the levels
of abstraction is the instruction set architecture—the interface between the
hardware and low-level software. This abstract interface enables many
implementations of varying cost and performance to run identical soft-
ware.

The BIG
Picture
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Although hard drives are not removable, there are several storage technologies
in use that include the following:

■ Optical disks, including both compact disks (CDs) and digital video disks
(DVDs), constitute the most common form of removable storage.

■ Magnetic tape provides only slow serial access and has been used to back up
disks, in a role now often replaced by duplicate hard drives.

■ FLASH-based removable memory cards typically attach by a USB (Universal
Serial Bus) connection and are often used to transfer files.

■ Floppy drives and Zip drives are a version of magnetic disk technology with
removable flexible disks. Floppy disks were the original primary storage for
personal computers, but have now largely vanished.

Optical disk technology works in a completely different way than magnetic disk
technology. In a CD, data is recorded in a spiral fashion, with individual bits being
recorded by burning small pits—approximately 1 micron (10–6 meters) in diame-
ter—into the disk surface. The disk is read by shining a laser at the CD surface and
determining by examining the reflected light whether there is a pit or flat (reflec-
tive) surface. DVDs use the same approach of bouncing a laser beam off a series of
pits and flat surfaces. In addition, there are multiple layers that the laser beam can
be focused on, and the size of each bit is much smaller, which together yield a sig-
nificant increase in capacity. 

CD and DVD writers in personal computers use a laser to make the pits in the
recording layer on the CD or DVD surface. This writing process is relatively slow,
taking from tens of minutes (for a full CD) to close to an hour (for a full DVD).
Thus, for large quantities a different technique called pressing is used, which costs
only pennies per CD or DVD. 

Rewritable CDs and DVDs use a different recording surface that has a crystal-
line, reflective material; pits are formed that are not reflective in a manner similar
to that for a write-once CD or DVD. To erase the CD or DVD, the surface is
heated and cooled slowly, allowing an annealing process to restore the surface
recording layer to its crystalline structure. These rewritable disks are the most
expensive, with write-once being cheaper; for read-only disks—used to distribute
software, music, or movies—both the disk cost and recording cost are much
lower.

Communicating with Other Computers

We’ve explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.5 on page 16 is connected to memory and I/O
devices, networks connect whole computers, allowing computer users to extend

floppy disk A portable form of 
secondary memory composed of
a rotating mylar platter coated 
with a magnetic recording 
material.
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the power of computing by including communication. Networks have become so
popular that they are the backbone of current computer systems; a new machine
without an optional network interface would be ridiculed. Networked computers
have several major advantages:

■ Communication: Information is exchanged between computers at high
speeds.

■ Resource sharing: Rather than each machine having its own I/O devices,
devices can be shared by computers on the network.

■ Nonlocal access: By connecting computers over long distances, users need
not be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is the Ethernet. Its
length is limited to about a kilometer, and the most popular version in 2004 takes
about a tenth of a second to send 1 million bytes of data. Its length and speed
make Ethernet useful to connect computers on the same floor of a building;
hence, it is an example of what is generically called a local area network. Local
area networks are interconnected with switches that can also provide routing ser-
vices and security. Wide area networks cross continents and are the backbone of
the Internet, which supports the World Wide Web. They are typically based on
optical fibers and are leased from telecommunication companies. 

Networks have changed the face of computing in the last 25 years both by
becoming much more ubiquitous and by dramatic increases in performance. In
the 1970s, very few individuals had access to electronic mail, the Internet and Web
did not exist, and physically mailing magnetic tapes was the primary way to trans-
fer large amounts of data between two locations. In the 1970s, local area networks
were almost nonexistent, and the few existing wide area networks had limited
capacity and restricted access. 

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the first standardized local area network technology
developed about 25 years ago was a version of Ethernet that had a maximum
capacity (also called bandwidth) of 10 million bits per second, typically shared by
tens, if not a hundred, computers. Today, local area network technology offers a
capacity of from 100 million bits per second to a gigabit per second, usually
shared by at most a few computers. Furthermore, 10-gigabit technology is in
development! Optical communications technology has allowed similar growth in
the capacity of wide area networks from hundreds of kilobits to gigabits, and from
hundreds of computers connected to a worldwide network to millions of comput-
ers connected. This combination of dramatic rise in deployment of networking

local area network (LAN) A
network designed to carry data 
within a geographically confined 
area, typically within a single 
building.

wide area network A network 
extended over hundreds of kilo-
meters which can span a conti-
nent.
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combined with the increases in capacity have made network technology central to
the information revolution of the last 25 years.

Recently, another innovation in networking is reshaping the way computers
communicate. Wireless technology has become widely deployed, and most lap-
tops now incorporate this technology. The ability to make a radio in the same low-
cost semiconductor technology (CMOS) used for memory and microprocessors
enabled a significant improvement in price, leading to an explosion in deploy-
ment. Currently available wireless technologies, called by the IEEE standard name
802.11, allow for transmission rates from 1 to less than 100 million bits per sec-
ond. Wireless technology is quite a bit different from wire-based networks, since
all users in an immediate area share the airwaves. 

Check
Yourself

1. Semiconductor DRAM and disk storage differ significantly. Describe the
fundamental difference for each of the following: volatility, access time, and
cost.

Technologies for Building Processors and Memories

Processors and memory have improved at an incredible rate because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.12 shows the technologies that have
been used over time, with an estimate of the relative performance per unit cost for
each technology. This section explores the technology that has fueled the com-
puter industry since 1975 and will continue to do so for the foreseeable future.
Since this technology shapes what computers will be able to do and how quickly
they will evolve, we believe all computer professionals should be familiar with the
basics of integrated circuits. 

A transistor is simply an on/off switch controlled by electricity. The integrated
circuit (IC) combined dozens to hundreds of transistors into a single chip. To
describe the tremendous increase in the number of transistors from hundreds to

Year Technology used in computers Relative performance/unit cost

1951 Vacuum tube 0,000,001

1965 Transistor 0,000,035

1975 Integrated circuit 0,000,900

1995 Very large scale integrated circuit 2,400,000

2005 Ultra large scale integrated circuit 6,200,000,000

FIGURE 1.12 Relative performance per unit cost of technologies used in computers
over time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors. 

transistor An on/off switch 
controlled by an electric  signal.

vacuum tube An electronic 
component, predecessor of the 
transistor, that consists of a hol-
low glass tube about 5 to 10 cm 
long from which as much air has 
been removed as possible and 
which uses an electron beam to 
transfer data.
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millions, the adjective very large scale is added to the term, creating the
abbreviation VLSI, for very large scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.13
shows the growth in DRAM capacity since 1977. For 20 years, the industry has
consistently quadrupled capacity every 3 years, resulting in an increase in excess of
16,000 times! This increase in transistor count for an integrated circuit is popu-
larly known as Moore’s law, which states that transistor capacity doubles every 18–
24 months. Moore’s law resulted from a prediction of such growth in IC capacity
made by Gordon Moore, one of the founders of Intel during the 1960s.  

Sustaining this rate of progress for almost 40 years has required incredible
innovation in the manufacturing techniques. In Section 1.4, we discuss how inte-
grated circuits are manufactured. 

Each chapter has a section entitled “Real Stuff” that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying the IBM-compatible PC, the Apple Macintosh, a common server, or
an embedded computer. For this first “Real Stuff” section, we look at how inte-
grated circuits are manufactured, with the Pentium 4 as an example. 

FIGURE 1.13 Growth of capacity per DRAM chip over time. The y-axis is measured in Kbits,
where K = 1024 (210 ). The DRAM industry quadrupled capacity almost every 3 years, a 60% increase per
year, for 20 years. This “four times every three years” estimate was called the DRAM growth rule. In recent
years, the rate has slowed down somewhat and is somewhat closer to doubling every two years or four times
every four years. 
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very large scale integrated 
(VLSI) circuit A device con-
taining hundreds of thousands 
to millions of transistors.

I thought [computers] would 
be a universally applicable 
idea, like a book is. But I 
didn’t think it would develop 
as fast as it did, because I 
didn’t envision we’d be able 
to get as many parts on a 
chip as we finally got. The 
transistor came along unex-
pectedly. It all happened 
much faster than we 
expected.

J. Presper Eckert, coinventor of 
ENIAC, speaking in 1991
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Let's start at the beginning. The manufacture of a chip begins with silicon, a
substance found in sand. Because silicon does not conduct electricity well, it is
called a semiconductor. With a special chemical process, it is possible to add
materials to silicon that allow tiny areas to transform into one of three devices:  

■ Excellent conductors of electricity (using either microscopic copper or alu-
minum wire) 

■ Excellent insulators from electricity (like plastic sheathing or glass)

■ Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combi-
nations of conductors, insulators, and switches manufactured in a single, small
package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.14 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8–12 inches in diameter and about 12–24 inches long. An ingot
is finely sliced into wafers no more than 0.1 inch thick. These wafers then go
through a series of processing steps, during which patterns of chemicals are placed

FIGURE 1.14 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.15 on page 31). These pat-
terned wafers are then tested with a wafer tester and a map of the good parts is made. Then, the wafers are
diced into dies (see Figure 1.9 on page 21). In this figure, one wafer produced 20 dies, of which 17 passed
testing. (X means the die is bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are
then bonded into packages and tested one more time before shipping the packaged parts to customers. One
bad packaged part was found in this final test.

silicon A natural element 
which is a semiconductor.

semiconductor A substance 
that does not conduct electricity 
well.

silicon crystal ingot A rod 
composed of a silicon crystal 
that is between 6 and 12 inches 
in diameter and about 12 to 24 
inches long.

wafer A slice from a silicon 
ingot no more than 0.1 inch 
thick, used to create chips.

Slicer

Dicer

20 to 40
processing steps

Bond die to
package

Silicon ingot

Wafer
tester

Part
tester

Ship to
customers

Tested dies Tested
wafer

Blank
wafers

Packaged dies Tested packaged dies

Patterned wafers



30 Chapter 1 Computer Abstractions and Technology

on each wafer, creating the transistors, conductors, and insulators discussed ear-
lier. Today’s integrated circuits contain only one layer of transistors but may have
from two to eight levels of metal conductor, separated by layers of insulators. 

A single microscopic flaw in the wafer itself or in one of the dozens of pattern-
ing steps can result in that area of the wafer failing. These defects, as they are
called, make it virtually impossible to manufacture a perfect wafer. To cope with
imperfection, several strategies have been used, but the simplest is to place many
independent components on a single wafer. The patterned wafer is then chopped
up, or diced, into these components, called dies and more informally known as
chips. Figure 1.15 is a photograph of a wafer containing Pentium 4 microproces-
sors before they have been diced; earlier, Figure  1.9 on page 21 showed an indi-
vidual die of the Pentium 4 and its major components. 

Dicing enables you to discard only those dies that were unlucky enough to con-
tain the flaws, rather than the whole wafer. This concept is quantified by the yield
of a process, which is defined as the percentage of good dies from the total number
of dies on the wafer. 

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of large dies that fit on a wafer. To
reduce the cost, a large die is often “shrunk” by using the next generation process,
which incorporates smaller sizes for both transistors and wires. This improves the
yield and the die count per wafer. (An  Integrated Circuit Cost section on the
CD probes these issues further.)

Once you’ve found good dies, they are connected to the input/output pins of
a package, using a process called bonding. These packaged parts are tested a final
time, since mistakes can occur in packaging, and then they are shipped to cus-
tomers.

Another increasingly important design constraint is power. Power is a chal-
lenge for two reasons. First, power must be brought in and distributed around the
chip; modern microprocessors use hundreds of pins just for power and ground!
Similarly, multiple levels of interconnect are used solely for power and ground dis-
tribution to portions of the chip. Second, power is dissipated as heat and must be
removed. An Intel Pentium 4 at 3.06 GHz burns 82 watts, which must be removed
from a chip whose surface area is just over 1 cm2! Figure 1.16 shows a 3.06 GHz
Pentium 4 mounted on top of its heat sink, which in turn sits right next to the fan
in the box shown in Figure 1.8 (on page 19)!

What determines the power consumed by an integrated circuit? Ignoring tech-
nology and circuit specifics, the power is proportional to the product of the num-
ber of transistors switched times the frequency they are switched. Thus, in general,
higher clock rates or higher transistor counts lead to higher power. For example,
the Intel Itanium 2 has four times the transistors of the Intel Pentium 4; although
its clock rate is only one-half that of the Pentium 4, the Itanium burns 130 watts

defect A microscopic flaw in a 
wafer or in patterning steps that 
can result in the failure of the 
die containing that defect.

die The individual rectangular 
sections that are cut from a 
wafer, more informally known 
as chips.

yield The percentage of good 
dies from the total number of 
dies on the wafer. 
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compared to the 82 watts consumed by the Pentium 4. As we will see in later chap-
ters, both performance and power consumption vary widely. 

Elaboration: In CMOS (Complementary Metal Oxide Semiconductor), which is the
dominant technology for integrated circuits, the primary source of power dissipation is
so-called “dynamic power”—that is, power that is consumed during switching. CMOS
technology, unlike earlier technologies, does not directly consume power when it is
idle—hence the use of low clock rates to allow a processor to “sleep” and conserve
power. The dynamic power dissipation depends on the capacitive loading of each tran-
sistor, the voltage applied, and the frequency that the transistor is switched:

Power = Capacitive load ¥ Voltage2 ¥ Frequency switched

FIGURE 1.15 An 8-inch (200-mm) diameter wafer containing Intel Pentium 4 processors.
The number of Pentium dies per wafer at 100% yield is 165. Figure 1.9 on page 21 is a photomicrograph of
one of these Pentium 4 dies. The die area is 250 mm2, and it contains about 55 million transistors.This die
uses a 0.18 micron technology, which means that the smallest transistors are approximately 0.18 microns in
size, although they are typically somewhat smaller than the actual feature size, which refers to the size of the
transistors as “drawn” versus the final manufactured size. The Pentium 4 is also made using a more
advanced 0.13 micron technology. The several dozen partially rounded chips at the boundaries of the wafer
are useless; they are included because it’s easier to create the masks used to pattern the silicon. 
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Power can be reduced by lowering the voltage, which typically occurs with a new gen-
eration of technology; in 20 years, voltages have gone from 5V to 1.5V, significantly
reducing power. The capacitive load per transistor is a function of both the number of
transistors connected to an output (called the fanout) and the technology, which deter-
mines the capacitance of both wires and transistors. 

Although dynamic power is the primary source of power dissipation in CMOS, static
power dissipation occurs because of leakage current that flows even when a transistor
is off. In 2004, leakage is probably responsible for 20–30% of the power consumption.
Thus, increasing the number of transistors increases power dissipation, even if the
transistors are always off. A variety of design techniques and technology innovations
have been deployed to control leakage. 

FIGURE 1.16 An Intel Pentium 4 (3.06 GHz) mounted on top of its heat sink, which is
designed to remove the 82 watts generated within the die.
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Check
Yourself

A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. It is less work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of vol-
ume; thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts
and therefore have higher yield per wafer. 

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try to
give a counterexample. We also discuss pitfalls, or easily made mistakes. Often pit-
falls are generalizations of principles that are true in a limited context. The pur-
pose of these sections is to help you avoid making these mistakes in the machines
you may design or use.

Fallacy: Computers have been built in the same, old-fashioned way for far too
long, and this antiquated model of computation is running out of steam.

For an antiquated model of computation, it surely is improving quickly.
Figure 1.17 plots the top performance per year of workstations between 1987 and
2003. (Chapter 4 explains the proper way to measure performance.) The graph
shows a line indicating an improvement of 1.54 per year, or doubling performance
approximately every 18 months. In contrast to the statement above, computers are
improving in performance faster today than at any time in their history, with over
a thousandfold improvement between 1987 and 2003!

Pitfall: Ignoring the inexorable progress of hardware when planning a new
machine.

Suppose you plan to introduce a machine in three years, and you claim the
machine will be a terrific seller because it’s three times as fast as anything available
today. Unfortunately, the machine will probably sell poorly because the average

1.5 Fallacies and Pitfalls 1.5

Science must begin with 
myths, and the criticism of 
myths.

Sir Karl Popper, The
Philosophy of Science, 1957
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performance growth rate for the industry will yield machines with the same
performance. For example, assuming a 50% yearly growth rate in performance, a
machine with performance x today can be expected to have performance 1.53x =
3.4x in three years. Your machine would have no performance advantage! Many
projects within computer companies are canceled, either because they ignore this
rule or because the project is completed late and the performance of the delayed
machine is below the industry average. This phenomenon may occur in any
industry, but rapid improvements in cost/performance make it a major concern in
the computer industry.

FIGURE 1.17 Performance increase of workstations, 1987–2003. Here performance is given
as approximately the number of times faster than the VAX-11/780, which was a commonly used yardstick.
The rate of performance improvement is between 1.5 and 1.6 times per year. These performance numbers
are based on SPECint performance (see Chapter 2) and scaled over time to deal with changing benchmark
sets. For processors listed with x/y after their name, x is the model number and y is the speed in megahertz. 
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Although it is difficult to predict exactly what level of cost/performance comput-
ers will have in the future, it’s a safe bet that they will be much better than they are
today. To participate in these advances, computer designers and programmers
must understand a wider variety of issues. 

Both hardware and software designers construct computer systems in hierar-
chical layers, with each lower layer hiding details from the level above. This princi-
ple of abstraction is fundamental to understanding today’s computer systems, but
it does not mean that designers can limit themselves to knowing a single technol-
ogy. Perhaps the most important example of abstraction is the interface between
hardware and low-level software, called the instruction set architecture. Maintain-
ing the instruction set architecture as a constant enables many implementations of
that architecture—presumably varying in cost and performance—to run identical
software. On the downside, the architecture may preclude introducing innova-
tions that require the interface to change.

Key technologies for modern processors are compilers and silicon. Clearly, to
participate you must understand some of the characteristics of both. Equal in
importance to an understanding of integrated circuit technology is an under-
standing of the expected rates of technological change. While silicon fuels the
rapid advance of hardware, new ideas in the organization of computers have
improved price/performance. Two of the key ideas are exploiting parallelism in
the processor, typically via pipelining, and exploiting locality of accesses to a
memory hierarchy, typically via caches.

Road Map for This Book

At the bottom of these abstractions are the five classic components of a
computer: datapath, control, memory, input, and output (refer back to Figure
1.5). These five components also serve as the framework for the rest of the chap-
ters in this book:

■ Datapath: Chapters 3, 5, and 6

■ Control: Chapters 5 and 6

■ Memory: Chapter 7

■ Input: Chapter 8

■ Output: Chapter 8

1.6 Concluding Remarks 1.6

Where . . . the ENIAC is 
equipped with 18,000 
vacuum tubes and weighs 30 
tons, computers in the future 
may have 1,000 vacuum 
tubes and perhaps weigh just 
11/2 tons.

Popular Mechanics, March 
1949
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Chapter 6 describes how processor pipelining exploits parallelism, and Chapter 7
describes how the memory hierarchy exploits locality. The remaining chapters
provide the introduction and the conclusion to this material. Chapter 2 describes
instruction sets—the interface between compilers and the machine—and empha-
sizes the role of compilers and programming languages in using the features of the
instruction set. Chapter 3 describes how computers perform arithmetic opera-
tions and handle arithmetic data. Chapter 4 covers performance and thus
describes how to evaluate the whole computer. Chapter 9 describes multiproces-
sors and is included on the CD. Appendix B, also on the CD, discusses logic
design.

For each chapter in the text, a section devoted to a historical perspective can be
found on the CD that accompanies this book. We may trace the development of
an idea through a series of machines or describe some important projects, and we
provide references in case you are interested in probing further. 

The historical perspective for this chapter provides a background for some of
the key ideas presented in this opening chapter. Its purpose is to give you the
human story behind the technological advances and to place achievements in
their historical context. By understanding the past, you may be better able to
understand the forces that will shape computing in the future. Each historical per-
spectives section on the CD ends with suggestions for further reading, which are
also collected separately on the CD under the section “Further Reading.” The rest
of this  Section 1.7 is on the CD.

The relative time ratings of exercises are shown in square brackets after each exer-
cise number. On average, an exercise rated [10] will take you twice as long as one
rated [5]. Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for example, <§1.2> means you should have read
Section 1.3, “Under the Covers,” to help you solve this exercise. If the solution to
an exercise depends on others, they will be listed in curly brackets; for example,
{Ex.1.1} means that you should answer Exercise 1.1 before trying this exercise.

In More Depth Exercises introduce a new topic or explore a topic in more
detail. Such exercises include sufficient background to understand the concepts, as

Historical Perspective and Further 
Reading 1.7

1.8 Exercises 1.8

An active field of science is 
like an immense anthill; the 
individual almost vanishes 
into the mass of minds tum-
bling over each other, carry-
ing information from place 
to place, passing it around at 
the speed of light.

Lewis Thomas, “Natural 
Science,” in The Lives of a Cell,
1974

1.7
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well as exercises to explore its implication or use. The In More Depth sections
appear on the CD associated with the specific chapter.

Starting in Chapter 2, you will also find For More Practice Exercises. For More
Practice Exercises include additional problems intended to give the interested
reader more practice in dealing with a subject. These exercises have been collected
primarily from earlier editions of this book as well as exercises developed by other
instructors. The For More Practice sections appear on the CD associated with the
specific chapter.

Exercises  1.1 through 1.28 Find the word or phrase from the list below that
best matches the description in the following questions. Use the numbers to the
left of words in the answer. Each answer should be used only once.

1.1 [2] Active part of the computer, following the instructions of the programs to
the letter. It adds numbers, tests numbers, controls other components, and so on.

1.2 [2] Approach to the design of hardware or software. The system consists of hi-
erarchical layers, with each lower layer hiding details from the level above.

1.3 [2] Binary digit.

1.4 [2] Collection of implementations of the same instruction set architecture.
They are usually made by the same company and vary in price and performance.

1 abstraction 15 embedded system

2 assembler 16 instruction

3 bit 17 instruction set architecture

4 cache 18 local area network (LAN)

5 central processor unit (CPU) 19 memory

6 chip 20 operating system

7 compiler 21 semiconductor

8 computer family 22 server

9 control 23 supercomputer

10 datapath 24 transistor

11 desktop or personal computer 25 VLSI (very large scale integrated circuit)

12 Digital Video Disk (DVD) 26 wafer

13 defect 27 wide area network (WAN)

14 DRAM (dynamic random access memory) 28 yield
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1.5 [2] Component of the computer where all running programs and associated
data reside.

1.6 [2] Component of the processor that performs arithmetic operations.

1.7 [2] Component of the processor that tells the datapath, memory, and I/O de-
vices what to do according to the instructions of the program.

1.8 [2] Computer designed for use by an individual, usually incorporating a
graphics display, keyboard, and mouse.

1.9 [2] Computer inside another device used for running one predetermined ap-
plication or collection of software.

1.10 [2] Computer used for running larger programs for multiple users often si-
multaneously and typically accessed only by a network.

1.11 [2] Computer network that connects a group of computers by a common
transmission cable or wireless link within a small geographic area (for example,
within the same floor of a building).

1.12 [2] Computer networks that connect computers spanning great distances,
the backbone of the Internet.

1.13 [2] High-performance machine, costing more than $1 million.

1.14 [2] Integrated circuit commonly used to construct main memory.

1.15 [2] Microscopic flaw in a wafer.

1.16 [2] Nickname for a die or integrated circuit.

1.17 [2] On/off switch controlled by electricity.

1.18 [2] Optical storage medium with a storage capacity of more than 4.7 GB. It
was initially marketed for entertainment and later for computer users.

1.19 [2] Percentage of good dies from the total number of dies on the wafer.

1.20 [2] Program that converts a symbolic version of an instruction into the bi-
nary version.

1.21 [2] Program that manages the resources of a computer for the benefit of the
programs that run on that machine.

1.22 [2] Program that translates from a higher-level notation to assembly lan-
guage.

1.23 [2]Technology in which single chip that contains hundreds of thousands to
millions of transistors.
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1.24 [2] Single software command to a processor.

1.25 [2] Small, fast memory that acts as a buffer for the main memory.

1.26 [2] Specific interface that the hardware provides the low-level software.

1.27 [2] Substance that does not conduct electricity well but is the foundation of
integrated circuits.

1.28 [2] Thin disk sliced from a silicon crystal ingot, which will be later divided
into dies.

Exercises 1.29 through 1.45 Using the categories in the list below, classify
the following examples. Use the letters to the left of the words in the answer.
Unlike the previous exercises, answers in this group may be used more than once.

1.29 [1] Assembler

1.30 [1] C++

1.31 [1] Liquid crystal display (LCD)

1.32 [1] Compiler

1.33 [1] Cray-1

1.34 [1] DRAM

1.35 [1] IBM PC

1.36 [1] Java

1.37 [1] Scanner

1.38 [1] Macintosh

1.39 [1] Microprocessor

1.40 [1] Microsoft Word

1.41 [1] Mouse

1.42 [1] Operating system

a applications software f personal computer

b high-level programming language g semiconductor

c input device h supercomputer

d integrated circuit i systems software

e output device
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1.43 [1] Printer

1.44 [1] Silicon

1.45 [1] Spreadsheet

1.46 [15] <§1.3> In a magnetic disk, the disks containing the data are constantly
rotating. On average it should take half a revolution for the desired data on the disk
to spin under the read/write head. Assuming that the disk is rotating at 7200 revo-
lutions per minute (RPM), what is the average time for the data to rotate under the
disk head? What is the average time if the disk is spinning at 10,000 revolutions per
minute?

1.47 [5] <§1.3> A DVD drive, however, works in the Constant Linear Velocity
(CLV) mode. The read head must interact with the concentric circles at a constant
rate, whether it is accessing data from the inner or outermost portions of the disc.
This is affected by varying the rotation speed of the disc, from 1600 RPM at the
center, to 570 RPM at the outside. Assuming that the DVD drive reads 1.35 MB of
user data per second, how many bytes can the center circle store? How many bytes
can the outside circle store?

1.48 [5] <§1.3> If a computer issues 30 network requests per second and each re-
quest is on average 64 KB, will a 100 Mbit Ethernet link be sufficient?

1.49 [5] <§1.3>What kinds of networks do you use on a regular basis? What
kinds of media do they use? How much bandwidth do they provide?

1.50 [15] <§1.3> End-to-end delay is an important performance metric for net-
works. It is the time between the point when the source starts to send data and the
point when the data is completely delivered to the destination. Consider two hosts
A and B, connected by a single link of rate R bps. Suppose the two hosts are sepa-
rated by m meters, and suppose the propagation speed along the link is s m/sec.
Host A is sending a file of size L bits to host B. 

a. Obtain an expression for the end-to-end delay in terms of R, L, m, and s.

b. Suppose there is a router between A and B, and the data from A must be for-
warded to B by the router. If the forwarding process takes t sec, then what is
the end-to-end delay?

c. Suppose the router is configured to provide QoS (Quality of Service) control
for different kinds of data. If the data is a multimedia stream, such as video
conference data, it will forward it at a shorter delay of t/2 sec. For other
kinds of data, the delay is t sec. If host A is sending a multimedia stream of
size 2L, what is the end-to-end delay?
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1.51 [15] <§§1.4, 1.5> Assume you are in a company that will market a certain IC
chip. The fixed costs, including R&D, fabrication and equipments, and so on, add
up to $500,000. The cost per wafer is $6000, and each wafer can be diced into 1500
dies. The die yield is 50%. Finally, the dies are packaged and tested, with a cost of
$10 per chip. The test yield is 90%; only those that pass the test will be sold to cus-
tomers. If the retail price is 40% more than the cost, at least how many chips have
to be sold to break even?

1.52 [8] <§1.6> In this exercise, you will evaluate the performance difference be-
tween two CPU architectures, CISC (Complex Instruction Set Computing) and
RISC (Reduced Instruction Set Computing). Generally speaking, CISC CPUs have
more complex instructions than RISC CPUs and therefore need fewer instructions
to perform the same tasks. However, typically one CISC instruction, since it is
more complex, takes more time to complete than a RISC instruction.  Assume that
a certain task needs P CISC instructions and 2P RISC instructions, and that one
CISC instruction takes 8T ns to complete, and one RISC instruction takes 2T ns.
Under this assumption, which one has the better performance?

1.53 [15] <§§1.3, 1.6> Suppose there are five computers connected together to
form a local area network. The maximum data transport rate (bandwidth) that the
network cable can provide is 10 Mbps. If we use a low-end device (Hub) to connect
them, all the computers in the network share the 10 Mbps bandwidth. If we use a
high-end device (Switch), then any two of the computers can communicate with
each other without disturbing the other computers. If you want to download a 10
MB file from a remote server, which is located outside your local network, how
long will it take if using a Hub? How long will it take if using a Switch? Assume the
other four computers only communicate with each other, and each has a constant
data rate of 2 Mbps.

1.54 [8] <§1.6> Sometimes software optimization can dramatically improve the
performance of a computer system. Assume that a CPU can perform a multiplica-
tion operation in 10 ns, and a subtraction operation in 1 ns. How long will it take
for the CPU to calculate the result of d = a ¥ b – a ¥ c ? Could you optimize the
equation so that it will take less time?

1.55 [8] <§§1.1–1.5> This book covers abstractions for computer systems at
many different levels of detail. Pick another system with which you are familiar and
write one or two paragraphs describing some of the many different levels of ab-
straction inherent in that system. Some possibilities include automobiles, homes,
airplanes, geometry, the economy, a city, and the government. Be sure to identify
both high-level and low-level abstractions.
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1.56 [15] <§§1.1–1.5> A less technically inclined friend has asked you to explain
how computers work. Write a detailed, one-page description for your friend.

1.57 [10] <§§1.1–1.5> In what ways do you lack a clear understanding of how
computers work? Are there levels of abstraction with which you are particularly
unfamiliar? Are there levels of abstraction with which you are familiar but still have
specific questions about? Write at least one paragraph addressing each of these
questions.

1.58 [15] <§1.3> In this exercise, you will learn more about interfaces or abstrac-
tions. For example, we can provide an abstraction for a disk like this:

Performance characteristics:

■ Capacity (how much data can it store?) 

■ Bandwidth (how fast can data be transferred between the computer and
disk?)

■ Latency (how long does it take to find a specific position for access?)

Functions the interface provides:

■ Read/write data

■ Seek to a specific position

■ Status report (is the disk ready to read/write, etc.?)

Following this pattern, please provide an abstraction for a network card.

1.59 [5] <§§1.4, 1.5>  In More Depth: Integrated Circuit Cost

1.60 [15] <§§1.4, 1.5>  In More Depth: Integrated Circuit Cost

1.61 [10] <§§1.4, 1.5>  In More Depth: Integrated Circuit Cost

1.62 [5] <§§1.4, 1.5>  In More Depth: Integrated Circuit Cost

1.63 [10] <§§1.4, 1.5>  In More Depth: Integrated Circuit Cost

1.64 [10] <§§1.4, 1.5>  In More Depth: Integrated Circuit Cost

Answers to
Check Yourself

§1.1, page 10: Discussion questions: lots of answers are acceptable.
§1.3, page 27: Disk memory: nonvolatile, long access time (milliseconds), and cost
$2–4/GB. Semiconductor memory: volatile, short access time (nanoseconds), and
cost $200–400/GB.
§1.4, page 33: 1, 3, and 4 are valid reasons.
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Computers 
in the 

Real World

Information Technology for the 4 
Billion without IT

Throughout this book you will see sections

entitled “Computers in the Real World.” These

sections describe compelling uses for comput-

ers outside of their typical functions in office

automation and data processing. The goal of

these sections is to illustrate the diversity of

uses for information technology.

Problem to solve: Make information tech-

nology available to the rest of humanity, such

as farmers in rural villages, beyond a multilin-

gual character set like Unicode.

Solution: Develop a computer, software, and

a communication system for a rural farming

village. However, there is no electricity, no

telephone, no technical support, and the vil-

lagers do not read English.

The Jhai Foundation took on this challenge

for five villages in the Hin Heup district of

Laos. This American-Lao foundation was

founded to raise the standard of living for

rural Laos by developing an export economy.

It also built schools, installed wells, and

started a weaving cooperative. When asked

what they wanted next, villagers said they

wanted access to the Internet! First, they

wanted to learn the prices before taking their

crops to the nearest market, which is 35 kilo-

meters away. They could also learn about the

market abroad to make better decisions on

what crops to grow and to increase their bar-

gaining power when it was time to sell them.

Second, they wanted to use Internet telephony

to talk to relatives in Laos and beyond.

The goal was “a rugged computer and

printer assembled from off-the-shelf compo-

nents that draws less than 20 watts in normal

use—less than 70 watts when the printer is

printing—and that can survive dirt, heat, and

immersion in water.”

The resulting Jhai PC design uses flash

memory instead of a disk drive, thereby elimi-

nating moving parts from the PC to make it

more rugged and easier to maintain. Rather

than use a power-hungry cathode ray tube, it

has a liquid-crystal display. To lower costs and

power, it uses an 80486 microprocessor. The

power is supplied by a car battery, which can

be charged by a turning bicycle crank. An old



dot matrix printer completes the hardware,

bringing the cost to about $400. The operating

system is Linux, and the applications are

accounting, email, and letter writing, which

expatriates are tailoring to the Lao language.

The communication solution is to adapt the

WiFi (IEEE 802.11b) wireless network (see

Chapter 8). The plan is to boost the signal

using larger antennas and then place repeater

stations on the hilltops between the village and

the market city. These repeaters get their

power from solar cells. The local phone system

ties to it at the far end, which completes the

connection to the Internet. Twenty-five volun-

teers in Silicon Valley are developing this Jhai

PC network.

An alternative attempt is the simputer,

which stands for “simple, inexpensive, multi-

lingual computer.” Indian computer scientists

designed this personal digital assistant, which

is similar to the Palm Pilot, to meet the needs

of villagers in third world countries. Input is

through a touch screen and speech recogni-

tion so that people need not be able to write to

use it. It uses three AAA batteries, which last 3

to 4 hours. The cost is $250, and there is no

special solution for communication. It’s

unclear whether villagers in the developing

world would spend $250 on a PDA, where

even batteries are a luxury.

To learn more see these references on 
the  library

“Making the Web world-wide,” The Economist, Septem-
ber 26, 2002, www.jhai.org/economist

The Jhai Foundation, www.jhai.org/

“Computers for the Third World,” Scientific American,
October 2002 

A Laotian villager who wanted 
access to the Internet.

Indian villager using the Simputer.
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Instructions:
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I speak Spanish to God,
Italian to women,
French to men,
and German to my horse.

Charles V, King of France
1337–1380
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To command a computer’s hardware, you must speak its language. The words of a
computer's language are called instructions, and its vocabulary is called an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by humans and in the form read by the computer. We
introduce instructions in a top-down fashion. Starting from a notation that looks
like a restricted programming language, we refine it step-by-step until you see the
real language of a real computer. Chapter 3 continues our downward descent,
unveiling the representation of integer and floating-point numbers and the hard-
ware that operates on them.

You might think that the languages of computers would be as diverse as those
of humans, but in reality computer languages are quite similar, more like regional
dialects than like independent languages. Hence, once you learn one, it is easy to
pick up others. This similarity occurs because all computers are constructed from
hardware technologies based on similar underlying principles and because there
are a few basic operations that all computers must provide. Moreover, computer
designers have a common goal: to find a language that makes it easy to build the
hardware and the compiler while maximizing performance and minimizing cost.
This goal is time-honored; the following quote was written before you could buy a
computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction 
sets] that are in abstract adequate to control and cause the execution of any se-
quence of operations. . . . The really decisive considerations from the present 
point of view, in selecting an [instruction set], are more of a practical 
nature: simplicity of the equipment demanded by the [instruction set], and the 
clarity of its application to the actually important problems together with the 
speed of its handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for comput-
ers of the 2000s as it was for those of the 1950s. The goal of this chapter is to
teach an instruction set that follows this advice, showing both how it is repre-
sented in hardware and the relationship between high-level programming lan-
guages and this more primitive one. Our examples are in the C programming
language; Section 2.14 shows how these would change for an object-oriented
language like Java. 

2.1 Introduction 2.1

instruction set The vocabu-
lary of commands understood 
by a given architecture.
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By learning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover you will exercise your “for-
eign language” skills by writing programs in the language of the computer and
running them on the simulator that comes with this book. You will also see the
impact of programming languages and compiler optimization on performance.
We conclude with a look at the historical evolution of instruction sets and an
overview of other computer dialects.

The chosen instruction set comes from MIPS, which is typical of instruction
sets designed since the 1980s. Almost 100 million of these popular microproces-
sors were manufactured in 2002, and they are found in products from ATI Tech-
nologies, Broadcom, Cisco, NEC, Nintendo, Silicon Graphics, Sony, Texas
Instruments, and Toshiba, among others. 

We reveal the MIPS instruction set a piece at a time, giving the rationale along
with the computer structures. This top-down, step-by-step tutorial weaves the
components with their explanations, making assembly language more palatable.
To keep the overall picture in mind, each section ends with a figure summarizing
the MIPS instruction set revealed thus far, highlighting the portions presented in
that section.
˜

Every computer must be able to perform arithmetic. The MIPS assembly language
notation

add a, b, c

instructs a computer to add the two variables b and c and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only

one operation and must always have exactly three variables. For example, suppose
we want to place the sum of variables b, c, d, and e into variable a. (In this section
we are being deliberately vague about what a “variable” is; in the next section we’ll
explain in detail.)

The following sequence of instructions adds the four variables:

add a, b, c # The sum of b and c is placed in a.
add a, a, d # The sum of b, c, and d is now in a.
add a, a, e # The sum of b, c, d, and e is now in a.

2.2 Operations of the Computer Hardware 2.2

stored-program concept The
idea that instructions and data 
of many types can be stored in 
memory as numbers, leading to 
the stored program computer.

There must certainly be 
instructions for performing 
the fundamental arithmetic 
operations.

Burks, Goldstine, and von 
Neumann, 1947
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Thus, it takes three instructions to take the sum of four variables.
The words to the right of the sharp symbol (#) on each line above are comments

for the human reader, and the computer ignores them. Note that unlike other pro-
gramming languages, each line of this language can contain at most one instruction.
Another difference from C is that comments always terminate at the end of a line.

The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three operands, no more and no less, conforms to the
philosophy of keeping the hardware simple: hardware for a variable number of
operands is more complicated than hardware for a fixed number. This situation
illustrates the first of four underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of pro-
grams written in higher-level programming languages to programs in this more
primitive notation. 

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, c, d, and e.
Since Java evolved from C, this example and the next few work for either
high-level programming language:

a = b + c;
d = a – e;

The translation from C to MIPS assembly language instructions is per-
formed by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result in
one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

add a, b, c
sub d, a, e

EXAMPLE

ANSWER
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Figure 2.1 summarizes the portions of MIPS assembly language described in
this section. These instructions are symbolic representations of what the MIPS
processor actually understands. In the next few sections, we will evolve this sym-
bolic representation into the real language of MIPS, with each step making the
symbolic representation more concrete.  

Compiling a Complex C Assignment into MIPS

A somewhat complex statement contains the five variables f, g, h, i, and j:

f = (g + h) – (i + j);

What might a C compiler produce?

The compiler must break this statement into several assembly instructions
since only one operation is performed per MIPS instruction. The first MIPS
instruction calculates the sum of g and h. We must place the result some-
where, so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h

Although the next operation is subtract, we need to calculate the sum of i
and j before we can subtract. Thus, the second instruction places the sum i
and j in another temporary variable created by the compiler, called t1:

add t1,i,j  # temporary variable t1 contains i + j

Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the variable f, completing the compiled code:

sub f,t0,t1 # f gets t0 – t1, which is (g + h)–(i + j)

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic add add a,b,c a = b + c  Always three operands

subtract sub a,b,c a = b – c  Always three operands

FIGURE 2.1 MIPS architecture revealed in Section 2.2. The real computer operands will be
unveiled in the next section. Highlighted portions in such summaries show MIPS assembly language struc-
tures introduced in this section; for this first figure, all is new.

EXAMPLE

ANSWER
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Check
Yourself

For a given function, which programming language likely takes the most lines of
code? Put the three representations below in order.

1. Java

2. C

3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a
software interpreter. The instruction set of this interpreter is called Java bytecodes,
which is quite different from the MIPS instruction set. To get performance close to the
equivalent C program, Java systems today typically compile Java bytecodes into the
native instruction sets like MIPS. Because this compilation is normally done much later
than for C programs, such Java compilers are often called Just-In-Time (JIT) compilers.
Section 2.10 shows how JITs are used later than C compilers in the startup process,
and Section 2.13 shows the performance consequences of compiling versus interpret-
ing Java programs. The Java examples in this chapter skip the Java bytecode step and
just show the MIPS code that are produced by a compiler.

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built
directly in hardware called registers. Registers are the bricks of computer construc-
tion: registers are primitives used in hardware design that are also visible to the
programmer when the computer is completed. The size of a register in the MIPS
architecture is 32 bits; groups of 32 bits occur so frequently that they are given the
name word in the MIPS architecture.

One major difference between the variables of a programming language and
registers is the limited number of registers, typically 32 on current computers.
MIPS has 32 registers. (See Section 2.19 for the history of the number of regis-
ters.) Thus, continuing in our top-down, stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction
that the three operands of MIPS arithmetic instructions must each be chosen
from one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four
underlying design principles of hardware technology:

2.3 Operands of the Computer Hardware 2.3

word The natural unit of access 
in a computer, usually a group 
of 32 bits; corresponds to the 
size of a register in the MIPS 
architecture.
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Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because
it takes electronic signals longer when they must travel farther. 

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be
faster than 32. Yet, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of pro-
grams for more registers with the designer’s desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the instruction format, as Section 2.4 demonstrates.

Chapters 5 and 6 show the central role that registers play in hardware construc-
tion; as we shall see in this chapter, effective use of registers is key to program per-
formance. 

Although we could simply write instructions using numbers for registers, from
0 to 31, the MIPS convention is to use two-character names following a dollar sign
to represent a register. Section 2.7 will explain the reasons behind these names.
For now, we will use $s0, $s1, . . .  for registers that correspond to variables in C
and Java programs and $t0, $t1, . . .  for temporary registers needed to compile
the program into MIPS instructions. 

Compiling a C Assignment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

f = (g + h) – (i + j);

The variables f, g, h, i, and j are assigned to the registers $s0, $s1, $s2,
$s3, and $s4, respectively. What is the compiled MIPS code?

The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h
add $t1,$s3,$s4 # register $t1 contains i + j
sub $s0,$t0,$t1 # f gets $t0 – $t1, which is (g + h)–(i + j)

EXAMPLE

ANSWER
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Memory Operands

Programming languages have simple variables that contain single data elements as
in these examples, but they also have more complex data structures—arrays and
structures. These complex data structures can contain many more data elements
than there are registers in a computer. How can a computer represent and access
such large structures?

Recall the five components of a computer introduced in Chapter 1 and
depicted on page 47. The processor can keep only a small amount of data in regis-
ters, but computer memory contains millions of data elements. Hence, data struc-
tures (arrays and structures) are kept in memory. 

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions. To
access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 2.2, the address of the
third data element is 2, and the value of Memory[2] is 10.

The data transfer instruction that copies data from memory to a register is tra-
ditionally called load. The format of the load instruction is the name of the opera-
tion followed by the register to be loaded, then a constant and register used to
access memory. The sum of the constant portion of the instruction and the con-
tents of the second register forms the memory address. The actual MIPS name for
this instruction is lw, standing for load word. 

FIGURE 2.2 Memory addresses and contents of memory at those locations. This is a sim-
plification of the MIPS addressing; Figure 2.3 shows the actual MIPS addressing for sequential word
addresses in memory. 

data transfer instruction A
command that moves data 
between memory and registers.

address A value used to delin-
eate the location of a specific 
data element within a memory 
array.

Processor Memory

Address Data

1

101

10

100

0

1

2

3
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Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 words and that the compiler has
associated the variables g and h with the registers $s1 and $s2 as before.
Let's also assume that the starting address, or base address, of the array is in
$s3. Compile this C assignment statement:

g = h + A[8];

Although there is a single operation in this assignment statement, one of the
operands is in memory, so we must first transfer A[8] to a register. The ad-
dress of this array element is the sum of the base of the array A, found in reg-
ister $s3, plus the number to select element 8. The data should be placed in a
temporary register for use in the next instruction. Based on Figure 2.2, the
first compiled instruction is

lw $t0,8($s3) # Temporary reg $t0 gets A[8]

(On the next page we’ll make a slight adjustment to this instruction, but we’ll
use this simplified version for now.) The following instruction can operate on
the value in $t0 (which equals A[8]) since it is in a register. The instruction
must add h (contained in $s2) to A[8] ($t0) and put the sum in the register
corresponding to g (associated with $s1):

add $s1,$s2,$t0 # g = h + A[8]

The constant in a data transfer instruction is called the offset, and the register
added to form the address is called the base register.

EXAMPLE

ANSWER
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Hardware
Software
Interface

In addition to associating variables with registers, the compiler allocates data
structures like arrays and structures to locations in memory. The compiler can
then place the proper starting address into the data transfer instructions. 

Since 8-bit bytes are useful in many programs, most architectures address indi-
vidual bytes. Therefore, the address of a word matches the address of one of the 4
bytes within the word. Hence, addresses of sequential words differ by 4. For exam-
ple, Figure 2.3 shows the actual MIPS addresses for Figure 2.2; the byte address of
the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This require-
ment is called an alignment restriction, and many architectures have it. (Chapter
5 suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or “big end”
byte as the word address versus those that use the rightmost or “little end” byte.
MIPS is in the Big Endian camp. (Appendix A, page A-43, shows the two options
to number bytes in a word.) 

Byte addressing also affects the array index. To get the proper byte address in
the code above, the offset to be added to the base register $s3 must be 4 ¥ 8, or 32,
so that the load address will select A[8] and not A[8/4]. (See the related pitfall
of page 144 of Section 2.17.)

alignment restriction
A requirement that data be 
aligned in memory on natural 
boundaries

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words.
The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word
addresses are multiples of four: there are four bytes in a word.

Processor Memory

Address Data

1

101

10

100

0

4

8

12
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The instruction complementary to load is traditionally called store; it copies
data from a register to memory. The format of a store is similar to that of a load:
the name of the operation, followed by the register to be stored, then offset to
select the array element, and finally the base register. Once again, the MIPS
address is specified in part by a constant and in part by the contents of a register.
The actual MIPS name is sw, standing for store word.

Constant or Immediate Operands

Many times a program will use a constant in an operation—for example, incre-
menting an index to point to the next element of an array. In fact, more than half
of the MIPS arithmetic instructions have a constant as an operand when running
the SPEC2000 benchmarks.

Compiling Using Load and Store

Assume variable h is associated with register $s2 and the base address of the
array A is in $s3. What is the MIPS assembly code for the C assignment state-
ment below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the oper-
ands are in memory, so we need even more MIPS instructions. The first two
instructions are the same as the prior example, except this time we use the
proper offset for byte addressing in the load word instruction to select A[8],
and the add instruction places the sum in $t0:

lw   $t0,32($s3) # Temporary reg $t0 gets A[8]

add  $t0,$s2,$t0 # Temporary reg $t0 gets h + A[8]

The final instruction stores the sum into A[12], using 48 as the offset and
register $s3 as the base register.

sw   $t0,48($s3)  # Stores h + A[8] back into A[12]

EXAMPLE

ANSWER
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Using only the instructions we have seen so far, we would have to load a con-
stant from memory to use one. (The constants would have been placed in mem-
ory when the program was loaded.) For example, to add the constant 4 to register
$s3, we could use the code

lw $t0, AddrConstant4($s1) # $t0 = constant 4 
add $s3,$s3,$t0 # $s3 = $s3 + $t0 ($t0 == 4)

assuming that AddrConstant4 is the memory address of the constant 4.
An alternative that avoids the load instruction is to offer versions of the arith-

metic instructions in which one operand is a constant. This quick add instruction
with one constant operand is called add immediate or addi. To add 4 to register
$s3, we just write

addi $s3,$s3,4 # $s3 = $s3 + 4

Immediate instructions illustrate the third hardware design principle, first
mentioned in the Fallacies and Pitfalls of Chapter 1:

Design Principle 3: Make the common case fast.

Constant operands occur frequently, and by including constants inside arithmetic
instructions, they are much faster than if constants were loaded from memory.

Hardware
Software
Interface

Many programs have more variables than computers have registers. Consequently,
the compiler tries to keep the most frequently used variables in registers and
places the rest in memory, using loads and stores to move variables between regis-
ters and memory. The process of putting less commonly used variables (or those
needed later) into memory is called spilling registers. 

The hardware principle relating size and speed suggests that memory must be
slower than registers since registers are smaller. This is indeed the case; data
accesses are faster if data is in registers instead of memory. 

Moreover, data is more useful when in a register. A MIPS arithmetic instruc-
tion can read two registers, operate on them, and write the result. A MIPS data
transfer instruction only reads one operand or writes one operand, without oper-
ating on it. 

Thus, MIPS registers take both less time to access and have higher throughput
than memory––a rare combination––making data in registers both faster to
access and simpler to use. To achieve highest performance, compilers must use
registers efficiently.
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Figure 2.4 summarizes the portions of the symbolic representation of the MIPS
instruction set described in this section. Load word and store word are the
instructions that copy words between memory and registers in the MIPS architec-
ture. Other brands of computers use instructions along with load and store to
transfer data. An architecture with such alternatives is the Intel IA-32, described in
Section 2.16.

Check
Yourself

Given the importance of registers, what is the rate of increase in the number of
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a 64-
bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,
they are officially called MIPS-32 and MIPS-64. In this chapter, we use a subset of
MIPS-32. Appendix D shows the differences between MIPS-32 and MIPS-64.

MIPS operands

Name Example Comments

32 registers
$s0, $s1, . . . ,
$t0, $t1, . . . 

Fast locations for data. In MIPS, data must be in registers to perform arithmetic.

230 memory 
words

Memory[0],

Memory[4], . . . , 

Memory[4294967292]

Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so 

sequential word addresses differ by 4. Memory holds data structures, arrays, and 

spilled registers.

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; data in registers

subtract sub $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; data in registers

add immediate addi $s1,$s2,100 $s1 = $s2 + 100 Used to add constants

Data transfer
load word lw  $s1,100($s2) $s1 = Memory[$s2 + 100] Data from memory to register

store word sw  $s1,100($s2) Memory[$s2 + 100] = $s1 Data from register to memory

FIGURE 2.4 MIPS architecture revealed through Section 2.3. Highlighted portions show MIPS assembly language 
structures introduced in Section 2.3.
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The MIPS offset plus base register addressing is an excellent match to structures as
well as arrays, since the register can point to the beginning of the structure and the off-
set can select the desired element. We’ll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an
index of an array with the offset used for the starting address of an array. Thus, the
base register is also called the index register. Today’s memories are much larger
and the software model of data allocation is more sophisticated, so the base
address of the array is normally passed in a register since it won’t fit in the offset,
as we shall see.

Section 2.4 explains that since MIPS supports negative constants, there is no need
for subtract immediate in MIPS.

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions. First, let’s quickly review how
a computer represents numbers.

Humans are taught to think in base 10, but numbers may be represented in any
base. For example, 123 base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decimal numbers, base 2 numbers are called binary numbers.) A single digit
of a binary number is thus the “atom” of computing, since all information is com-
posed of binary digits or bits. This fundamental building block can be one of two
values, which can be thought of as several alternatives: high or low, on or off, true
or false, or 1 or 0.

Instructions are also kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact, each piece of an instruction
can be considered as an individual number, and placing these numbers side by
side forms the instruction. 

Since registers are part of almost all instructions, there must be a convention to
map register names into numbers. In MIPS assembly language, registers $s0 to
$s7 map onto registers 16 to 23, and registers $t0 to $t7 map onto registers 8 to
15. Hence, $s0 means register 16, $s1 means register 17, $s2 means register
18, . . . , $t0 means register 8, $t1 means register 9, and so on. We’ll describe the
convention for the rest of the 32 registers in the following sections.

2.4 Representing Instructions in the 
Computer 2.4

binary digit Also called binary 
bit. One of the two numbers in 
base 2, 0 or 1, that are the com-
ponents of information.
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To distinguish it from assembly language, we call the numeric version of
instructions machine language and a sequence of such instructions machine code.

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits—
the same size as a data word. In keeping with our design principle that simplicity
favors regularity, all MIPS instructions are 32 bits long.

It would appear that you would now be reading and writing long, tedious strings of
binary numbers. We avoid that tedium by using a higher base than binary that con-

Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refinement of the MIPS language as an example.
We’ll show the real MIPS language version of the instruction represented
symbolically as

add $t0,$s1,$s2

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

Each of these segments of an instruction is called a field. The first and last fields
(containing 0 and 32 in this case) in combination tell the MIPS computer that
this instruction performs addition. The second field gives the number of the reg-
ister that is the first source operand of the addition operation (17 = $s1), and the
third field gives the other source operand for the addition (18 = $s2).The fourth
field contains the number of the register that is to receive the sum (8 = $t0). The
fifth field is unused in this instruction, so it is set to 0. Thus, this instruction adds
register $s1 to register $s2 and places the sum in register $t0.
   This instruction can also be represented as fields of binary numbers as op-
posed to decimal:

EXAMPLE

ANSWER

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

machine language Binary rep-
resentation used for communi-
cation within a computer 
system.

instruction format A form of 
representation of an instruction 
composed of fields of binary 
numbers.
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verts easily into binary. Since almost all computer data sizes are multiples of 4, hexa-
decimal (base 16) numbers are popular. Since base 16 is a power of 2, we can trivially
convert by replacing each group of four binary digits by a single hexadecimal digit,
and vice versa. Figure 2.5 converts hexadecimal to binary, and vice versa. 

Because we frequently deal with different number bases, to avoid confusion we
will subscript decimal numbers with ten, binary numbers with two, and hexadeci-
mal numbers with hex. (If there is no subscript, the default is base 10.) By the way,
C and Java use the notation 0xnnnn for hexadecimal numbers.

Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary Hexadecimal Binary 

0hex 0000two 4hex 0100two 8hex 1000two chex 1100two

1hex 0001two 5hex 0101two 9hex 1001two dhex 1101two

2hex 0010two 6hex 0110two ahex 1010two ehex 1110two

3hex 0011two 7hex 0111two bhex 1011two fhex 1111two

FIGURE 2.5 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary
digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Binary-to-Hexadecimal and Back

Convert the following hexadecimal and binary numbers into the other base: 
eca8 6420hex

0001 0011 0101 0111 1001 1011 1101 1111two

Just a table lookup one way: 

hexadecimal Numbers in 
base 16.

EXAMPLE

ANSWER
eca8 6420hex

1110 1100 1010 1000 0110 0100 0010 0000two

And then the other direction too: 

0001 0011 0101 0111 1001 1011 1101 1111two

1357 9bdfhex
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MIPS Fields

 MIPS fields are given names to make them easier to discuss:

Here is the meaning of each name of the fields in MIPS instructions:

■ op: Basic operation of the instruction, traditionally called the opcode.

■ rs: The first register source operand.

■ rt: The second register source operand.

■ rd: The register destination operand. It gets the result of the operation.

■ shamt: Shift amount. (Section 2.5 explains shift instructions and this term;
it will not be used until then, and hence the field contains zero.)

■ funct: Function. This field selects the specific variant of the operation in the
op field and is sometimes called the function code.

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load word instruction must specify two registers and a
constant. If the address were to use one of the 5-bit fields in the format above, the
constant within the load word instruction would be limited to only 25 or 32. This
constant is used to select elements from arrays or data structures, and it often
needs to be much larger than 32. This 5-bit field is too small to be useful. 

Hence, we have a conflict between the desire to keep all instructions the same
length and the desire to have a single instruction format. This leads us to the final
hardware design principle:

Design Principle 4: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
same length, thereby requiring different kinds of instruction formats for different
kinds of instructions. For example, the format above is called R-type (for register)
or R-format. A second type of instruction format is called I-type (for immediate)
or I-format and is used by the immediate and data transfer instructions. The fields
of I-format are

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

opcode The field that denotes 
the operation and format of an 
instruction.
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The 16-bit address means a load word instruction can load any word within a
region of ± 215 or 32,768 bytes (±213 or 8192 words) of the address in the base reg-
ister rs. Similarly, add immediate is limited to constants no larger than ± 215.
(Chapter 3 explains how to represent negative numbers.) We see that more than
32 registers would be difficult in this format, as the rs and rt fields would each
need another bit, making it harder to fit everything in one word.

Let’s look at the load word instruction from page 57:

lw   $t0,32($s3) # Temporary reg $t0 gets A[8]

Here, 19 (for $s3) is placed in the rs field, 8 (for $t0) is placed in the rt field, and
32 is placed in the address field. Note that the meaning of the rt field has changed
for this instruction: in a load word instruction, the rt field specifies the destina-
tion register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the com-
plexity by keeping the formats similar. For example, the first three fields of the R-
type and I-type formats are the same size and have the same names; the fourth
field in I-type is equal to the length of the last three fields of R-type. 

In case you were wondering, the formats are distinguished by the values in the
first field: each format is assigned a distinct set of values in the first field (op) so
that the hardware knows whether to treat the last half of the instruction as three
fields (R-type) or as a single field (I-type). Figure 2.6 shows the numbers used in
each field for the MIPS instructions covered through Section 2.3. 

Instruction Format op rs rt rd shamt funct address

add R 0 reg reg reg 0 32ten n.a.

sub (subtract) R 0 reg reg reg 0 34ten n.a.

add immediate I 8ten reg reg n.a. n.a. n.a. constant

lw (load word) I 35ten reg reg n.a. n.a. n.a. address

sw (store word) I 43ten reg reg n.a. n.a. n.a. address

FIGURE 2.6 MIPS instruction encoding. In the table above, “reg” means a register number between
0 and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this field does not appear in
this format. Note that add and sub instructions have the same value in the op field; the hardware uses the
funct field to decide the variant of the operation: add (32) or subtract (34).
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Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes to
what the computer executes. If $t1 has the base of the array A and $s2 corre-
sponds to h, the assignment statement 

A[300] = h + A[300];

is compiled into

lw   $t0,1200($t1) # Temporary reg $t0 gets A[300]

add  $t0,$s2,$t0 # Temporary reg $t0 gets h + A[300]

sw   $t0,1200($t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

For convenience, let’s first represent the machine language instructions using
decimal numbers. From Figure 2.6, we can determine the three machine lan-
guage instructions:

The lw instruction is identified by 35 (see Figure 2.6) in the first field
(op). The base register 9 ($t1) is specified in the second field (rs), and the
destination register 8 ($t0) is specified in the third field (rt). The offset to
select A[300] (1200 = 300 ¥ 4) is found in the final field (address). 

The add instruction that follows is specified with 0 in the first field (op)
and 32 in the last field (funct). The three register operands (18, 8, and 8) are
found in the second, third, and fourth fields and correspond to $s2, $t0,
and $t0.

EXAMPLE

ANSWER

op rs rt rd
address/

shamt funct

35 9 8 1200

0 18 8 8 0 32

43 9 8 1200
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Figure 2.7 summarizes the portions of MIPS assembly language described in
this section. As we shall see in Chapters 5 and 6, the similarity of the binary repre-
sentations of related instructions simplifies hardware design. These instructions
are another example of regularity in the MIPS architecture.

Check
Yourself

Why doesn’t MIPS have a subtract immediate instruction?

1. Negative constants appear much less frequently in C and Java, so they are
not the common case and do not merit special support.

2. Since the immediate field holds both negative and positive constants, add
immediate with a negative number is equivalent to subtract immediate
with a positive number, so subtract immediate is superfluous. 

The sw instruction is identified with 43 in the first field. The rest of this
final instruction is identical to the lw instruction. 

The binary equivalent to the decimal form is the following (1200 in base
10 is 0000 0100 1011 0000 base 2):

Note the similarity of the binary representations of the first and last in-
structions. The only difference is in the third bit from the left.

100011 01001 01000 0000 0100 1011 0000

000000 10010 01000 01000 00000 100000

101011 01001 01000 0000 0100 1011 0000

Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the
computing genie out of its bottle. Figure 2.8 shows the power of the concept;
specifically, memory can contain the source code for an editor program, the
corresponding compiled machine code, the text that the compiled program
is using, and even the compiler that generated the machine code. 
One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such “binary compatibility” often leads
industry to align around a small number of instruction set architectures.

The BIG
Picture
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Elaboration:  Representing decimal numbers in base 2 gives an easy way to represent
positive integers in computer words. Chapter 3 explains how to represent negative num-
bers, but for now take it on faith that a 32-bit word can represent integers between –231

and +231 – 1 or –2,147,483,648 to +2,147,483,647, and the 16-bit constant field really
holds –215 to +215 – 1 or –32,768 to 32,767. Such integers are called two’s complement
numbers. Chapter 3 shows how we would encode addi $t0,$t0,-1 or lw $t0, -4($s0),
which require negative numbers in the constant field of the immediate format.

MIPS operands

Name Example Comments

32
registers

$s0, $s1 , . . . , $s7
$t0,$t1 , . . . , $t7

Fast locations for data. In MIPS, data must be in registers to perform arithmetic. 
Registers $s0–$s7 map to 16–23 and $t0–$t7 map to 8–15.

230

memory
words

Memory[0],
Memory[4], . . . , 
Memory[4294967292]

Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so 
sequential word addresses differ by 4. Memory holds data structures, arrays, and 
spilled registers. 

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic
add add $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; data in registers

subtract sub $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; data in registers

Data
transfer

load word lw  $s1,100($s2) $s1 = Memory[$s2 + 100] Data from memory to register

store word sw  $s1,100($s2) Memory[$s2 + 100] = $s1 Data from register to memory

MIPS machine language
Name Format Example Comments

add R 0 18 19 17 0 32 add  $s1,$s2,$s3

sub R 0 18 19 17 0 34 sub  $s1,$s2,$s3

addi I 8 18 17 100 addi  $s1,$s2,100

lw I 35 18 17 100 lw  $s1,100($s2)

sw I 43 18 17 100 sw  $s1,100($s2)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R-format R op rs rt rd shamt funct Arithmetic instruction format

I-format I op rs rt address Data transfer format

FIGURE 2.7 MIPS architecture revealed through Section 2.4. Highlighted portions show MIPS machine language structures
introduced in Section 2.4. The two MIPS instruction formats so far are R and I. The first 16 bits are the same: both contain an op field, giv-
ing the base operation; an rs field, giving one of the sources; and the rt field, which specifies the other source operand, except for load word,
where it specifies the destination register. R-format divides the last 16 bits into an rd field, specifying the destination register; shamt field,
which Section 2.5 explains; and the funct field, which specifies the specific operation of R-format instructions. I-format keeps the last 16
bits as a single address field.



68 Chapter 2 Instructions: Language of the Computer

Although the first computers concentrated on full words, it soon became clear that
it was useful to operate on fields of bits within a word or even on individual bits.
Examining characters within a word, each of which are stored as 8 bits, is one exam-
ple of such an operation. It follows that instructions were added to simplify, among
other things, the packing and unpacking of bits into words. These instructions are
called logical operations. Figure 2.9 shows logical operations in C and Java. 

FIGURE 2.8  The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch hap-
pens simply by loading memory with programs and data and then telling the computer to begin executing
at a given location in memory. Treating instructions in the same way as data greatly simplifies both the
memory hardware and the software of computer systems. Specifically, the memory technology needed for
data can also be used for programs, and programs like compilers, for instance, can translate code written in
a notation far more convenient for humans into code that the computer can understand.

2.5 Logical Operations 2.5

Memory

Accounting program
(machine code)

Processor

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

Source code in C
for editor program

“Contrariwise,” continued 
Tweedledee, “if it was so, it 
might be; and if it were so, it 
would be; but as it isn’t, it 
ain’t. That’s logic.”

Lewis Carroll, Alice’s Adven-
tures in Wonderland, 1865
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The first class of such operations is called shifts. They move all the bits in a
word to the left or right, filling the emptied bits with 0s. For example, if register
$s0 contained

000000000000000000000000000000001001two= 9ten

and the instruction to shift left by 4 was executed, the new value would look like
this:

0000 0000000000000000000000001001 0000two= 144ten

The dual of a shift left is a shift right. The actual name of the two MIPS shift
instructions are called shift left logical (sll) and shift right logical (srl). The fol-
lowing instruction performs the operation above, assuming that the result should
go in register $t2:

sll $t2,$s0,4 # reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt field in the R-format. It stands for shift
amount and is used in shift instructions. Hence, the machine language version of
the instruction above is

The encoding of sll is 0 in both the op and funct fields, rd contains $t2, rt con-
tains $s0, and shamt contains 4. The rs field is unused, and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the
same result as multiplying by 2i (Chapter 3 explains why). For example, the
above sll shifts by 4, which gives the same result as multiplying by 24 or 16.

Logical operations C operators Java operators MIPS instructions

Shift left << << sll

Shift right >> >>> srl

Bit-by-bit AND & & and, andi

Bit-by-bit OR | | or, ori

Bit-by-bit NOT ~ ~ nor

FIGURE 2.9  C and Java logical operators and their corresponding MIPS instructions.

op rs rt rd shamt funct

0 0 16 10 4 0
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The first bit pattern above represents 9, and 9 ¥ 16 = 144, the value of the sec-
ond bit pattern.

Another useful operation that isolates fields is AND. (We capitalize the word to
avoid confusion between the operation and the English conjunction.) AND is a
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands
are 1. For example, if register $t2 still contains

00000000000000000000110100000000two

and register $t1 contains

00000000000000000011110000000000two

then, after executing the MIPS instruction

and $t0,$t1,$t2 # reg $t0 = reg $t1 & reg $t2

the value of register $t0 would be

00000000000000000000110000000000two

As you can see, AND can apply a bit pattern to a set of bits to force 0s where there
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is tradition-
ally called a mask, since the mask “conceals” some bits.

To place a value into one of these seas of 0s, there is the dual to AND, called OR.
It is a bit-by-bit operation that places a 1 in the result if either operand bit is a 1.
To elaborate, if the registers $t1 and $t2 are unchanged from the preceding
example, the result of the MIPS instruction

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

is this value in register $t0:

00000000000000000011110100000000two 

The final logical operation is a contrarian. NOT takes one operand and places a
1 in the result if one operand bit is a 0, and vice versa. In keeping with the two-
operand format, the designers of MIPS decided to include the instruction NOR
(NOT OR) instead of NOT. If one operand is zero, then it is equivalent to NOT.
For example, A NOR 0 = NOT (A OR 0) = NOT (A).

If the register $t1 is unchanged from the preceding example and register $t3
has the value 0, the result of the MIPS instruction

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $t1 | reg $t3)

NOT A logical bit-by-bit oper-
ation with one operand that 
inverts the bits; that is, it 
replaces every 1 with a 0, and 
every 0 with a 1.

NOR A logical bit-by-bit oper-
ation with two operands that 
calculates the NOT of the OR of 
the two operands.
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is this value in register $t0:

11111111111111111100001111111111two

Figure 2.9 above shows the relationship between the C and Java operators and
the MIPS instructions. Constants are useful in AND and OR logical operations as
well as in arithmetic operations, so MIPS also provides the instructions and
immediate (andi) and or immediate (ori). Constants are rare for NOR, since its
main use is to invert the bits of a single operand; thus, the hardware has no imme-
diate version. Figure 2.10, which summarizes the MIPS instructions seen thus far,
highlights the logical instructions.

MIPS operands

Name Example Comments

32

registers

$s0, $s1 , . . . , $s7

$t0,$t1 , . . . , $t7

Fast locations for data. In MIPS, data must be in registers to perform arithmetic. 

Registers $s0–$s7 map to 16–23 and $t0–$t7 map to 8–15.

230

memory

words

Memory[0],

Memory[4], . . . ,

Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so 

sequential word addresses differ by 4. Memory holds data structures, arrays, and 

spilled registers.

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow detected

subtract sub $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow detected

add immediate addi $s1,$s2,100 $s1 = $s2 + 100 + constant; overflow detected

Logical

and and $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor $s1,$s2,$s3 $s1 = ~ ($s2 |$s3) Three reg. operands; bit-by-bit NOR

and immediate andi $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND reg with constant

or immediate ori $s1,$s2,100 $s1 = $s2 | 100 Bit-by-bit OR reg with constant

shift left logical sll $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl $$s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Data
transfer

load word lw $s1,100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw $s1,100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

FIGURE 2.10 MIPS architecture revealed thus far. Color indicates the portions introduced since Figure 2.7 on page 67. The back 
endpapers of this book also list the MIPS machine language.
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What distinguishes a computer from a simple calculator is its ability to make
decisions. Based on the input data and the values created during com-
putation, different instructions execute. Decision making is commonly rep-
resented in programming languages using the if statement, sometimes
combined with go to statements and labels. MIPS assembly language includes
two decision-making instructions, similar to an if statement with a go to. The
first instruction is 

beq register1, register2, L1 

This instruction means go to the statement labeled L1 if the value in register1
equals the value in register2. The mnemonic beq stands for branch if equal.
The second instruction is

bne register1, register2, L1 

It means go to the statement labeled L1 if the value in register1 does not equal
the value in register2. The mnemonic bne stands for branch if not equal.
These two instructions are traditionally called conditional branches.

2.6 Instructions for Making Decisions 2.6

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, i, and j are variables. If the five vari-
ables f through j correspond to the five registers $s0 through $s4, what is
the compiled MIPS code for this C if statement?

if (i == j) f = g + h; else f = g – h;

Figure 2.11 is a flowchart of what the MIPS code should do. The first expres-
sion compares for equality, so it would seem that we would want beq. In gen-
eral, the code will be more efficient if we test for the opposite condition to
branch over the code that performs the subsequent then part of the if (the la-
bel Else is defined below):.

bne $s3,$s4,Else # go to Else if i  j

The utility of an automatic 
computer lies in the possibility 
of using a given sequence of 
instructions repeatedly, the 
number of times it is iterated 
being dependent upon the 
results of the computation. 
When the iteration is com-
pleted a different sequence of 
[instructions] is to be followed, 
so we must, in most cases, give 
two parallel trains of [instruc-
tions] preceded by an instruc-
tion as to which routine is to be 
followed. This choice can be 
made to depend upon the sign 
of a number (zero being reck-
oned as plus for machine pur-
poses). Consequently, we 
introduce an [instruction] (the 
conditional transfer [instruc-
tion]) which will, depending 
on the sign of a given number, 
cause the proper one of two 
routines to be executed.

Burks, Goldstine, and von 
Neumann, 1947

EXAMPLE

ANSWER
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Notice that the assembler relieves the compiler and the assembly language pro-
grammer from the tedium of calculating addresses for branches, just as it does for
calculating data addresses for loads and stores (see Section 2.10).

The next assignment statement performs a single operation, and if all the op-
erands are allocated to registers, it is just one instruction:

add $s0,$s1,$s2 # f = g + h (skipped if i j)

We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruc-
tion says that the processor always follows the branch. To distinguish between
conditional and unconditional branches, the MIPS name for this type of in-
struction is jump, abbreviated as j (the label Exit is defined below).

j Exit # go to Exit

The assignment statement in the else portion of the if statement can again be
compiled into a single instruction. We just need to append the label Else to
this instruction. We also show the label Exit that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub $s0,$s1,$s2 # f = g – h (skipped if i = j)
Exit:

FIGURE 2.11 Illustration of the options in the if statement above. The left box corresponds
to the then part of the if statement, and the right box corresponds to the else part.

conditional branch An
instruction that requires the 
comparison of two values and 
that allows for a subsequent 
transfer of control to a new 
address in the program based on 
the outcome of the comparison.

f=g+h f=g–h

i=j i j
i==j?

Else:

Exit:
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Loops

Decisions are important both for choosing between two alternatives—found in if
statements—and for iterating a computation—found in loops. The same assem-
bly instructions are the building blocks for both cases.  

Hardware
Software
Interface

Compilers frequently create branches and labels where they do not appear in the
programming language. Avoiding the burden of writing explicit labels and
branches is one benefit of writing in high-level programming languages and is a
reason coding is faster at that level.

Compiling a while Loop in C

 Here is a traditional loop in C:

while (save[i] == k) 
i += 1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the
array save is in $s6. What is the MIPS assembly code corresponding to this
C segment? 

The first step is to load save[i] into a temporary register. Before we can
load save[i] into a temporary register, we need to have its address. Before
we can add i to the base of array save to form the address, we must multi-
ply the index i by 4 due to the byte addressing problem. Fortunately, we can
use shift left logical since shifting left by 2 bits multiplies by 4 (see page 69 in
Section 2.5). We need to add the label Loop to it so that we can branch back
to that instruction at the end of the loop:

Loop: sll  $t1,$s3,2 # Temp reg $t1 = 4 * i

To get the address of save[i], we need to add$t1 and the base of save in$s6:

add $t1,$t1,$s6 # $t1 = address of save[i]

Now we can use that address to load save[i] into a temporary register:

lw  $t0,0($t1) # Temp reg $t0 = save[i]

EXAMPLE

ANSWER
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The test for equality or inequality is probably the most popular test, but some-
times it is useful to see if a variable is less than another variable. For example, a for
loop may want to test to see if the index variable is less than 0. Such comparisons are
accomplished in MIPS assembly language with an instruction that compares two
registers and sets a third register to 1 if the first is less than the second; otherwise, it
is set to 0. The MIPS instruction is called set on less than, or slt. For example,

slt     $t0, $s3, $s4

means that register $t0 is set to 1 if the value in register $s3 is less than the value
in register $s4; otherwise, register $t0 is set to 0. 

Constant operands are popular in comparisons. Since register $zero always
has 0, we can already compare to 0. To compare to other values, there is an imme-
diate version of the set on less than instruction. To test if register $s2 is less than
the constant 10, we can just write

slti     $t0,$s2,10     # $t0 = 1 if $s2 < 10

Heeding von Neumann’s warning about the simplicity of the “equipment,” the
MIPS architecture doesn’t include branch on less than because it is too compli-
cated; either it would stretch the clock cycle time or it would take extra clock
cycles per instruction. Two faster instructions are more useful. 

The next instruction performs the loop test, exiting if save[i] k:

bne  $t0,$s5, Exit  # go to Exit if save[i]  k

The next instruction adds 1 to i:

add  $s3,$s3,1 # i = i + 1

The end of the loop branches back to the while test at the top of the loop. We
just add the Exit label after it, and we’re done:

j    Loop # go to Loop
Exit:

(See Exercise 2.33 for an optimization of this sequence.)

Such sequences of instructions that end in a branch are so fundamental to compil-
ing that they are given their own buzzword: a basic block is a sequence of instruc-
tions without branches, except possibly at the end, and without branch targets or
branch labels, except possibly at the beginning. One of the first early phases of
compilation is breaking the program into basic blocks

Hardware
Software
Interface

basic block A sequence of 
instructions without branches 
(except possibly at the end) and 
without branch targets or 
branch labels (except possibly at 
the beginning).
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Case/Switch Statement

Most programming languages have a case or switch statement that allows the pro-
grammer to select one of many alternatives depending on a single value. The sim-
plest way to implement switch is via a sequence of conditional tests, turning the
switch statement into a chain of if-then-else statements. 

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a jump address table, and
the program needs only to index into the table and then jump to the appropriate
sequence. The jump table is then just an array of words containing addresses that
correspond to labels in the code. See the In More Depth exercises in Section 2.20
for more details on jump address tables.

To support such situations, computers like MIPS include a jump register
instruction (jr), meaning an unconditional jump to the address specified in a
register. The program loads the appropriate entry from the jump table into a reg-
ister, and then it jumps to the proper address using a jump register. This instruc-
tion is described in Section 2.7.

Figure 2.12  summarizes the portions of MIPS assembly language described in
this section, and Figure 2.13 summarizes the corresponding MIPS machine lan-
guage. This step along the evolution of the MIPS language has added branches
and jumps to our symbolic representation, and fixes the useful value 0 perma-
nently in a register.              

Elaboration: If you have heard about delayed branches, covered in Chapter 6,
don’t worry: The MIPS assembler makes them invisible to the assembly language
programmer. 

Hardware
Software
Interface

MIPS compilers use the slt, slti, beq, bne, and the fixed value of 0 (always
available by reading register $zero) to create all relative conditions: equal, not
equal, less than, less than or equal, greater than, greater than or equal. (As you
might expect, register $zero maps to register 0.)

jump address table Also
called jump table. A table of 
addresses of alternative instruc-
tion sequences.

Hardware
Software
Interface

Although there are many statements for decisions and loops in programming lan-
guages like C and Java, the bedrock statement that implements them at the next
lower level is the conditional branch.
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Check
Yourself

C has many statements for decisions and loops while MIPS has few. Which of the
following do or do not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is
responsible for execution.

MIPS operands

Name Example Comments

32 registers $s0, $s1, . . . , $s7

$t0,$t1, . . . ,$t7,

$zero

Fast locations for data. In MIPS, data must be in registers to perform arithmetic. Registers $s0–
$s7 map to 16–23 and $t0–$t7 map to 8–15. MIPS register $zero always equals 0.

230 memory 
words

Memory[0],

Memory[4], . . . , 

Memory[4294967292]

Accessed only by data transfer instructions in MIPS. MIPS uses byte addresses, so sequential 
word addresses differ by 4. Memory holds data structures, arrays, and spilled registers. 

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic
add add $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; data in registers

subtract sub $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; data in registers

Data transfer
load word lw $s1,100($s2) $s1 = Memory[$s2 + 100] Data from memory to register

store word sw $s1,100($s2) Memory[$s2 + 100] = $s1 Data from register to memory

Logical

and and $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor $s1,$s2,$s3 $s1 = ~ ($s2 |$s3) Three reg. operands; bit-by-bit NOR

and immediate andi $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND reg with constant

or immediate ori $s1,$s2,100 $s1 = $s2 | 100 Bit-by-bit OR reg with constant

shift left logical sll $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl $$s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional
branch

branch on equal beq $s1,$s2,L if ($s1 == $s2) go to L Equal test and branch

branch on not 

equal

bne $s1,$s2,L if ($s1 != $s2) go to L Not equal test and branch

set on less than slt $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1; 

else $s1 = 0

Compare less than; used with beq, bne

set on less than 

immediate

slt $s1,$s2,100 if ($s2 < 100) $s1 = 1; 

else $s1 = 0

Compare less than immediate; used with 

beq, bne

Unconditional
jump

jump j L go to L Jump to target address

FIGURE 2.12 MIPS architecture revealed through Section 2.6. Highlighted portions show MIPS structures introduced in Section 2.6. 
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3. More decision statements mean fewer lines of code, which generally
reduces coding time.

4. More decision statements mean fewer lines of code, which generally results
in the execution of fewer operations.

Why does C provide two sets of operators for AND (& and &&) and two sets of
operators for OR (| and ||) while MIPS doesn’t?

1. Logical operations AND and OR implement & and | while conditional
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical
operations while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply inher-
ited from the programming language B, the predecessor of C. 

MIPS machine language

Name Format Example Comments

add R 0 18 19 17 0 32 add  $s1,$s2,$s3

sub R 0 18 19 17 0 34 sub  $s1,$s2,$s3

lw I 35 18 17 100 lw  $s1,100($s2)

sw I 43 18 17 100 sw  $s1,100($s2)

and R 0 18 19 17 0 36 and $s1,$s2,$s3

or R 0 18 19 17 0 37 or $s1,$s2,$s3

nor R 0 18 19 17 0 39 nor $s1,$s2,$s3

andi I 12 18 17 100 andi $s1,$s2,100

ori I 13 18 17 100 ori $s1,$s2,100

sll R 0 0 18 17 10 0 sll $s1,$s2,10

srl R 0 0 18 17 10 2 srl $s1,$s2,10

beq I 4 17 18 25 beq  $s1,$s2,100

bne I 5 17 18 25 bne  $s1,$s2,100

slt R 0 18 19 17 0 42 slt  $s1,$s2,$s3

j J 2 2500 j 10000 (see Section 2.9)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R-format R op rs rt rd shamt funct Arithmetic instruction format

I-format I op rs rt address Data transfer, branch format

FIGURE 2.13 MIPS machine language revealed through Section 2.6. Highlighted portions show MIPS structures introduced in Section 2.6.
The J-format, used for jump instructions, is explained in Section 2.9. Section 2.9 also explains the proper values in address fields of branch instructions.
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A procedure or function is one tool C or Java programmers use to structure pro-
grams, both to make them easier to understand and to allow code to be reused.
Procedures allow the programmer to concentrate on just one portion of the task
at a time, with parameters acting as a barrier between the procedure and the rest
of the program and data, allowing it to be passed values and return results. We
describe the equivalent in Java at the end of this section, but Java needs everything
from a computer that C needs.

You can think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his tracks, and then returns to the point of
origin with the desired result. Nothing else should be perturbed once the mission
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy
can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six
steps:

1. Place parameters in a place where the procedure can access them.

2. Transfer control to the procedure.

3. Acquire the storage resources needed for the procedure.

4. Perform the desired task.

5. Place the result value in a place where the calling program can access it.

6. Return control to the point of origin, since a procedure can be called from
several points in a program.

As mentioned above, registers are the fastest place to hold data in a computer,
so we want to use them as much as possible. MIPS software follows the following
convention in allocating its 32 registers for procedure calling:

■ $a0–$a3: four argument registers in which to pass parameters

■ $v0–$v1: two value registers in which to return values

■ $ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an
instruction just for the procedures: it jumps to an address and simultaneously
saves the address of the following instruction in register $ra. The jump-and-link
instruction (jal) is simply written 

2.7 Supporting Procedures in Computer 
Hardware 2.7

procedure A stored subroutine 
that performs a specific task 
based on the parameters with 
which it is provided.

jump-and-link
instruction An instruction 
that jumps to an address and 
simultaneously saves the address 
of the following instruction in a 
register ($ra in MIPS). 



80 Chapter 2 Instructions: Language of the Computer

jal ProcedureAddress

The link portion of the name means that an address or link is formed that points to
the calling site to allow the procedure to return to the proper address. This “link,”
stored in register $ra, is called the return address. The return address is needed
because the same procedure could be called from several parts of the program.

Implicit in the stored-program idea is the need to have a register to hold the
address of the current instruction being executed. For historical reasons, this reg-
ister is almost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instruction address
register. The jal instruction saves PC + 4 in register $ra to link to the following
instruction to set up the procedure return. 

To support such situations, computers like MIPS use a jump register instruction
(jr), meaning an unconditional jump to the address specified in a register:

jr $ra

The jump register instruction jumps to the address stored in register $ra—which
is just what we want. Thus, the calling program, or caller, puts the parameter val-
ues in $a0–$a3 and uses jal X to jump to procedure X (sometimes named the
callee). The callee then performs the calculations, places the results in $v0–$v1,
and returns control to the caller using jr $ra.

Using More Registers

Suppose a compiler needs more registers for a procedure than the four argument
and two return value registers. Since we must cover our tracks after our mission is
complete, any registers needed by the caller must be restored to the values that
they contained before the procedure was invoked. This situation is an example in
which we need to spill registers to memory, as mentioned in the Hardware Soft-
ware Interface section on page 58.

The ideal data structure for spilling registers is a stack—a last-in-first-out
queue. A stack needs a pointer to the most recently allocated address in the stack
to show where the next procedure should place the registers to be spilled or where
old register values are found. The stack pointer is adjusted by one word for each
register that is saved or restored. Stacks are so popular that they have their own
buzzwords for transferring data to and from the stack: placing data onto the stack
is called a push, and removing data from the stack is called a pop.

MIPS software allocates another register just for the stack: the stack pointer
($sp), used to save the registers needed by the callee. By historical precedent,
stacks “grow” from higher addresses to lower addresses. This convention means
that you push values onto the stack by subtracting from the stack pointer. Adding
to the stack pointer shrinks the stack, thereby popping values off the stack.

return address A link to the 
calling site that allows a proce-
dure to return to the proper 
address; in MIPS it is stored in 
register $ra.

program counter (PC) The
register containing the address 
of the instruction in the pro-
gram being executed

caller The program that insti-
gates a procedure and provides 
the necessary parameter values.

callee A procedure that executes 
a series of stored instructions 
based on parameters provided by 
the caller and then returns con-
trol to the caller.

stack A data structure for spill-
ing registers organized as a last-
in-first-out queue.

stack pointer A value denoting 
the most recently allocated 
address in a stack that shows 
where registers should be spilled 
or where old register values can 
be found.
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Compiling a C Procedure That Doesn’t Call Another Procedure

Let’s turn the example on page 51 into a C procedure:

int leaf_example (int g, int h, int i, int j)
{

int f;

f = (g + h) – (i + j);
return f;

}

What is the compiled MIPS assembly code?

The parameter variables g, h, i, and j correspond to the argument registers
$a0, $a1, $a2, and $a3, and f corresponds to $s0. The compiled program
starts with the label of the procedure:

leaf_example:

The next step is to save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the example on page 51,
which uses two temporary registers. Thus, we need to save three registers:
$s0, $t0, and $t1. We “push” the old values onto the stack by creating space
for three words on the stack and then store them:

addi $sp,$sp,-12 # adjust stack to make room for 3 items
sw  $t1, 8($sp) # save register $t1 for use afterwards
sw  $t0, 4($sp) # save register $t0 for use afterwards
sw  $s0, 0($sp) # save register $s0 for use afterwards

Figure 2.14 shows the stack before, during, and after the procedure call. The
next three statements correspond to the body of the procedure, which follows
the example on page 51:

add $t0,$a0,$a1 # register $t0 contains g + h
add $t1,$a2,$a3 # register $t1 contains i + j
sub $s0,$t0,$t1 # f = $t0 – $t1, which is (g + h)–(i + j)

To return the value of f, we copy it into a return value register:

add $v0,$s0,$zero # returns f ($v0 = $s0 + 0)

EXAMPLE

ANSWER
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In the example above we used temporary registers and assumed their old values
must be saved and restored. To avoid saving and restoring a register whose value is
never used, which might happen with a temporary register, MIPS software sepa-
rates 18 of the registers into two groups:

■ $t0–$t9:10 temporary registers that are not preserved by the callee
(called procedure) on a procedure call

■ $s0–$s7:8 saved registers that must be preserved on a procedure call
(if used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since the
caller (procedure doing the calling) does not expect registers $t0 and $t1 to be
preserved across a procedure call, we can drop two stores and two loads from the
code. We still must save and restore $s0, since the callee must assume that the
caller needs its value. 

Before returning, we restore the three old values of the registers we saved by
“popping” them from the stack:

lw  $s0, 0($sp) # restore register $s0 for caller
lw  $t0, 4($sp) # restore register $t0 for caller
lw  $t1, 8($sp) # restore register $t1 for caller
addi $sp,$sp,12 # adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

jr  $ra # jump back to calling routine

FIGURE 2.14 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the “top” of the stack, or the last word in
the stack in this drawing.

High address

Low address a. b. c.

Contents of register $t1

Contents of register $t0

Contents of register $s0

$sp

$sp

$sp
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Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be
simple if all procedures were leaf procedures, but they aren’t. Just as a spy
might employ other spies as part of a mission, who in turn might use even
more spies, so do procedures invoke other procedures. Moreover, recursive
procedures even invoke “clones” of themselves. Just as we need to be careful
when using registers in procedures, more care must also be taken when invok-
ing nonleaf procedures.

For example, suppose that the main program calls procedure A with an
argument of 3, by placing the value 3 into register $a0 and then using jal A.
Then suppose that procedure A calls procedure B via jal B with an argument
of 7, also placed in $a0. Since A hasn’t finished its task yet, there is a conflict
over the use of register $a0. Similarly, there is a conflict over the return
address in register $ra, since it now has the return address for B. Unless we
take steps to prevent the problem, this conflict will eliminate procedure A’s
ability to return to its caller.

One solution is to push all the other registers that must be preserved onto the
stack, just as we did with the saved registers. The caller pushes any argument regis-
ters ($a0–$a3) or temporary registers ($t0–$t9) that are needed after the call.
The callee pushes the return address register $ra and any saved registers ($s0–
$s7) used by the callee. The stack pointer $sp is adjusted to account for the num-
ber of registers placed on the stack. Upon the return, the registers are restored
from memory and the stack pointer is readjusted.

Compiling a Recursive C Procedure, Showing Nested Procedure 
Linking

Let’s tackle a recursive procedure that calculates factorial:

int fact (int n)
{

if (n < 1) return (1); 
else return (n * fact(n-1));

}

What is the MIPS assembly code?

EXAMPLE
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The parameter variable n corresponds to the argument register $a0. The
compiled program starts with the label of the procedure and then saves two
registers on the stack, the return address and $a0:

fact:
addi $sp,$sp,-8 # adjust stack for 2 items
sw $ra, 4($sp) # save the return address
sw $a0, 0($sp) # save the argument n

The first time fact is called, sw saves an address in the program that called
fact. The next two instructions test if n is less than 1, going to L1 if n  1.

slti $t0,$a0,1 # test for n < 1
beq $t0,$zero,L1 # if n >= 1, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1
to 0 and places that sum in $v0. It then pops the two saved values off the
stack and jumps to the return address:

addi $v0,$zero,1 # return 1
addi $sp,$sp,8 # pop 2 items off stack
jr $ra # return to after jal

Before popping two items off the stack, we could have loaded $a0 and $ra. Since
$a0 and $ra don’t change when n is less than 1, we skip those instructions. 

 If n is not less than 1, the argument n is decremented and then fact is
called again with the decremented value:

L1: addi$a0,$a0,-1 # n >= 1: argument gets (n – 1)
jalfact # call fact with (n – 1)

The next instruction is where fact returns. Now the old return address and
old argument are restored, along with the stack pointer:

lw $a0, 0($sp) # return from jal:restore argument n
lw $ra, 4($sp) # restore the return address
addi $sp, $sp,8 # adjust stack pointer to pop 2 items

ANSWER
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Figure 2.15 summarizes what is preserved across a procedure call. Note that sev-
eral schemes preserve the stack. The stack above $sp is preserved simply by making
sure the callee does not write above $sp; $sp is itself preserved by the callee adding
exactly the same amount that was subtracted from it, and the other registers are pre-
served by saving them on the stack (if they are used) and restoring them from there.
These actions also guarantee that the caller will get the same data back on a load
from the stack as it put into the stack on a store because the callee promises to pre-
serve $sp and because the callee also promises not to modify the caller’s portion of
the stack, that is, the area above the $sp at the time of the call. 

Next, the value register $v0 gets the product of old argument $a0 and the
current value of the value register. We assume a multiply instruction is avail-
able, even though it is not covered until Chapter 3:

mul $v0,$a0,$v0 # return n * fact (n – 1)

Finally, fact jumps again to the return address:

jr $ra # return to the caller

 A C variable is a location in storage, and its interpretation depends both on its type
and storage class. Types are discussed in detail in Chapter 3, but examples include
integers and characters. C has two storage classes: automatic and static. Automatic
variables are local to a procedure and are discarded when the procedure exits. Static
variables exist across exits from and entries to procedures. C variables declared out-
side all procedures are considered static, as are any variables declared using the key-
word static. The rest are automatic. To simplify access to static data, MIPS
software reserves another register, called the global pointer, or $gp.

Hardware
Software
Interface

global pointer The register 
that is reserved to point to static 
data.

Preserved Not preserved

Saved registers: $s0–$s7 Temporary registers: $t0–$t9

Stack pointer register: $sp Argument registers: $a0–$a3

Return address register: $ra Return value registers: $v0–$v1

Stack above the stack pointer Stack below the stack pointer

FIGURE 2.15 What is and what is not preserved across a procedure call. If the software
relies on the frame pointer register or on the global pointer register, discussed in the following sections,
they are also preserved.
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Allocating Space for New Data on the Stack

The final complexity is that the stack is also used to store variables that are local to
the procedure that do not fit in registers, such as local arrays or structures. The
segment of the stack containing a procedure’s saved registers and local variables is
called a procedure frame or activation record. Figure 2.16 shows the state of the
stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer ($fp) to point to the first word of
the frame of a procedure. A stack pointer might change during the procedure, and
so references to a local variable in memory might have different offsets depending
on where they are in the procedure, making the procedure harder to understand.
Alternatively, a frame pointer offers a stable base register within a procedure for
local memory references. Note that an activation record appears on the stack
whether or not an explicit frame pointer is used. We’ve been avoiding $fp by
avoiding changes to $sp within a procedure: in our examples, the stack is adjusted
only on entry and exit of the procedure. 

FIGURE 2.16 Illustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer ($fp) points to the first word of the frame, often a saved argument
register, and the stack pointer ($sp) points to the top of the stack. The stack is adjusted to make room for all
the saved registers and any memory-resident local variables. Since the stack pointer may change during pro-
gram execution, it’s easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a
frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $fp.

procedure frame Also called 
activation record. The segment 
of the stack containing a proce-
dure’s saved registers and local 
variables.

frame pointer A value denot-
ing the location of the saved reg-
isters and local variables for a 
given procedure.

High address

Low address a. b. c.

Saved argument
registers (if any)

$sp

$sp

$sp

$fp

$fp

$fp

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)
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Allocating Space for New Data on the Heap

In addition to automatic variables that are local to procedures, C programmers
need space in memory for static variables and for dynamic data structures. Fig-
ure 2.17 shows the MIPS convention for allocation of memory. The stack starts
in the high end of memory and grows down. The first part of the low end of
memory is reserved, followed by the home of the MIPS machine code, tradi-
tionally called the text segment. Above the code is the static data segment, which
is the place for constants and other static variables. Although arrays tend to be
to a fixed length and thus are a good match to the static data segment, data
structures like linked lists tend to grow and shrink during their lifetimes. The
segment for such data structures is traditionally called the heap, and it is placed
next in memory. Note that this allocation allows the stack and heap to grow
toward each other, thereby allowing the efficient use of memory as the two seg-
ments wax and wane.

C allocates and frees space on the heap with explicit functions. malloc() allo-
cates space on the heap and returns a pointer to it, and free() releases space on the
stack to which the pointer points. Memory allocation is controlled by programs in
C, and it is the source of many common and difficult bugs. Forgetting to free space

FIGURE 2.17 The MIPS memory allocation for program and data. These addresses are only a
software convention, and not part of the MIPS architecture. Starting top down, the stack pointer is initial-
ized to 7fff fffchex and grows down toward the data segment. At the other end, the program code
(“text”) starts at 0040 0000hex. The static data starts at 1000 0000hex. Dynamic data, allocated by mal-
loc in C and via new in Java, is next and grows up toward the stack in an area called the heap. The global
pointer, $gp, is set to an address to make it easy to access data. It is initialized to 1000 8000hex so that it
can access from 1000 0000hex to 1000 ffffhex using the positive and negative 16-bit offsets from $gp
(see two’s complement addressing in Chapter 3).

text segment The segment of a 
Unix object file that contains the 
machine language code for rou-
tines in the source file.

Stack

Dynamic data

Static data

Text

Reserved

$sp 7fff fffchex

$gp 1000 8000hex
1000 0000hex

pc 0040 0000hex

0
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leads to a “memory leak” which eventually uses up so much memory that the oper-
ating system may crash. Freeing space too early leads to a “dangling pointers,” which
can cause pointers to point to things that the program never intended.

Figure 2.18 summarizes the register conventions for the MIPS assembly
language. Figures 2.19 and 2.20 summarize the parts of the MIPS assembly instruc-
tions described so far and the corresponding MIPS machine instructions.

Elaboration: What if there are more than four parameters? The MIPS convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first four parameters to be in registers $a0 through $a3 and the rest
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.16, the frame pointer is convenient because
all references to variables in the stack within a procedure will have the same offset.
The frame pointer is not necessary, however. The GNU MIPS C compiler uses a frame
pointer, but the C compiler from MIPS/Silicon Graphics does not; it uses register 30 as
another save register ($s8).

jal actually saves the address of the instruction that follows jal into register $ra,
thereby allowing a procedure return to be simply jr $ra.

Check
Yourself

Which of the following statements about C and Java are generally true?

1. Procedure calls in C are faster than method invocation in Java.

2. C programmers manage data explicitly while it’s automatic in Java.

3. C leads to more pointer bugs and memory leak bugs than does Java.

4. C passes parameters in registers while Java passes them on the stack.

Name Register number Usage
Preserved on 

call?

$zero 0 the constant value 0 n.a.

$v0–$v1 2–3 values for results and expression evaluation no

$a0–$a3 4–7 arguments no

$t0–$t7 8–15 temporaries no

$s0–$s7 16–23 saved yes

$t8–$t9 24–25 more temporaries no

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return address yes

FIGURE 2.18 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see
Section 2.10), and registers 26–27, called $k0–$k1, are reserved for the operating system.
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MIPS operands

Name Example Comments

32 registers
$s0–$s7, $t0–$t9,
$zero,$a0–$a3, $v0–$v1,
$gp, $fp, $sp, $ra

Fast locations for data. In MIPS, data must be in registers to perform arithmetic. MIPS 
register $zero always equals 0. $gp (28) is the global pointer, $sp (29) is the stack 
pointer, $fp (30) is the frame pointer, and $ra (31) is the return address.

230 memory words
Memory[0],
Memory[4], . . . , 
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential 
word addresses differ by 4. Memory holds data structures, arrays, and spilled registers,
such as those saved on procedure calls.

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic
add add $s1,$s2,$s3 $s1 = $s2 + $s3 three register operands

subtract sub $s1,$s2,$s3 $s1 = $s2 – $s3 three register operands

Data transfer
load word lw $s1,100($s2) $s1 = Memory[$s2 + 100] Data from memory to register

store word sw $s1,100($s2) Memory[$s2 + 100] = $s1 Data from register to memory

Logical

and and   $s1,$s2,$s3 $s1 = $s2 & $s3 three reg. operands; bit-by-bit AND

or or    $s1,$s2,$s3 $s1 = $s2 | $s3 three reg. operands; bit-by-bit OR

nor nor   $s1,$s2,$s3 $s1 = ~ ($s2 |$s3) three reg. operands; bit-by-bit NOR

and immediate andi  $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND reg with constant

or immediate ori   $s1,$s2,100 $s1 = $s2 | 100 Bit-by-bit OR reg with constant

shift left logical sll  $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl  $$s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional branch

branch on equal beq  $s1,$s2,L if ($s1 == $s2) go to L Equal test and branch

branch on not equal bne  $s1,$s2,L if ($s1 != $s2) go to L Not equal test and branch

set on less than slt  $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1; 
else $s1 = 0

Compare less than; used with beq,
bne

set on less than 
immediate

slt  $s1,$s2,100 if ($s2 < 100) $s1 = 1; 
else $s1 = 0

Compare less than immediate; used 
with beq, bne

Unconditional jump

jump j      L go to L Jump to target address

jump register jr    $ra go to $ra For procedure return

jump and link jal    L $ra = PC + 4; go to L For procedure call

FIGURE 2.19 MIPS architecture revealed through Section 2.7. Highlighted portions show MIPS assembly language structures intro-
duced in Section 2.7. The J-format, used for jump and jump-and-link instructions, is explained in Section 2.9.
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Computers were invented to crunch numbers, but as soon as they became com-
mercially viable they were used to process text. Most computers today use 8-bit
bytes to represent characters, with the American Standard Code for Information
Interchange (ASCII) being the representation that nearly everyone follows. Figure
2.21 summarizes ASCII.

A series of instructions can extract a byte from a word, so load word and store
word are sufficient for transferring bytes as well as words. Because of the popularity

MIPS machine language

Name Format Example Comments

add R 0 18 19 17 0 32 add $s1,$s2,$s3

sub R 0 18 19 17 0 34 sub $s1,$s2,$s3

lw I 35 18 17 100 lw $s1,100($s2)

sw I 43 18 17 100 sw $s1,100($s2)

and R 0 18 19 17 0 36 and $s1,$s2,$s3

or R 0 18 19 17 0 37 or $s1,$s2,$s3

nor R 0 18 19 17 0 39 nor $s1,$s2,$s3

andi I 12 18 17 100 andi $s1,$s2,100

ori I 13 18 17 100 ori $s1,$s2,100

sll R 0 0 18 17 10 0 sll $s1,$s2,10

srl R 0 0 18 17 10 2 srl $s1,$s2,10

beq I 4 17 18 25 beq $s1,$s2,100

bne I 5 17 18 25 bne $s1,$s2,100

slt R 0 18 19 17 0 42 slt $s1,$s2,$s3

j J 2 2500 j 10000 (see Section 2.9)

jr R 0 31 0 0 0 8 jr $ra

jal J 3 2500 jal 10000 (see Section 2.9)

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R-format R op rs rt rd shamt funct Arithmetic instruction format

I-format I op rs rt address Data transfer, branch format

FIGURE 2.20 MIPS machine language revealed through Section 2.7. Highlighted portions show MIPS assembly language structures
introduced in Section 2.7. The J-format, used for jump and jump-and-link instructions, is explained in Section 2.9. This section also explains why
putting 25 in the address field of beq and bne machine language instructions is equivalent to 100 in assembly language.

2.8 Communicating with People 2.8

!( @ | = > 
(wow open tab at bar is 
great)

Fourth line of the keyboard 
poem “Hatless Atlas,” 1991
(some give names to ASCII 
characters: “!” is “wow,” “(“ is 
open, “|” is bar, and so on)
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of text in some programs, however, MIPS provides instructions to move bytes. Load
byte (lb) loads a byte from memory, placing it in the rightmost 8 bits of a register.
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to
memory. Thus, we copy a byte with the sequence

lb $t0,0($sp) # Read byte from source
sb $t0,0($gp) # Write byte to destination

Characters are normally combined into strings, which have a variable number
of characters. There are three choices for representing a string: (1) the first posi-
tion of the string is reserved to give the length of a string, (2) an accompanying
variable has the length of the string (as in a structure), or (3) the last position of a
string is indicated by a character used to mark the end of a string. C uses the third
choice, terminating a string with a byte whose value is 0 (named null in ASCII).
Thus, the string “Cal” is represented in C by the following 4 bytes, shown as deci-
mal numbers: 67, 97, 108, 0. 

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

ASCII
 value

Char-
acter

32  space 48 0 64 @ 80 P 096 ` 112 p

33 ! 49 1 65 A 81 Q 097 a 113 q

34 " 50 2 66 B 82 R 098 b 114 r

35 # 51 3 67 C 83 S 099 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 ( 56 8 72 H 88 X 104 h 120 x

41 ) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [ 107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93 ] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~

47 / 63 ? 79 O 95 _ 111 o 127 DEL

FIGURE 2.21 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can lead to short-
cuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents backspace, 9 represents a
tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses to mark the end of a string.
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Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string x using the null byte
termination convention of C:

void strcpy (char x[], char y[])
{

int i;

i = 0;
while ((x[i] = y[i]) != ‘\0’) /* copy & test byte */
i += 1;

}

What is the MIPS assembly code?

Below is the basic MIPS assembly code segment. Assume that base addresses
for arrays x and y are found in $a0 and $a1, while i is in $s0. strcpy ad-
justs the stack pointer and then saves the saved register $s0 on the stack:

strcpy:
addi $sp,$sp,-4 # adjust stack for 1 more item
sw $s0, 0($sp) # save $s0 

To initialize i to 0, the next instruction sets $s0 to 0 by adding 0 to 0 and plac-
ing that sum in $s0:

add $s0,$zero,$zero # i = 0 + 0

This is the beginning of the loop. The address of y[i] is first formed by add-
ing i to y[]:

L1: add $t1,$s0,$a1 # address of y[i] in $t1

Note that we don’t have to multiply i by 4 since y is an array of bytes and not
of words, as in prior examples.

To load the character in y[i], we use load byte, which puts the character into
$t2:

lb $t2, 0($t1) # $t2 = y[i]

EXAMPLE

ANSWER
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Since the procedure strcpy above is a leaf procedure, the compiler could allo-
cate i to a temporary register and avoid saving and restoring $s0. Hence, instead of
thinking of the $t registers as being just for temporaries, we can think of them as
registers that the callee should use whenever convenient. When a compiler finds a
leaf procedure, it exhausts all temporary registers before using registers it must save.

Characters and Strings in Java

Unicode is a universal encoding of the alphabets of most human languages. Figure
2.22 is a list of Unicode alphabets; there are about as many alphabets in Unicode as
there are useful symbols in ASCII. To be more inclusive, Java uses Unicode for
characters. By default, it uses 16 bits to represent a character.

A similar address calculation puts the address of x[i] in $t3, and then the
character in $t2 is stored at that address. 

add $t3,$s0,$a0 # address of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]

Next we exit the loop if the character was 0; that is, if it is the last character of
the string:

beq $t2,$zero,L2 # if y[i] == 0, go to L2

If not, we increment i and loop back:

addi $s0, $s0,1 # i = i + 1
j L1 # go to L1

If we don’t loop back, it was the last character of the string; we restore $s0
and the stack pointer, and then return.

L2: lw $s0, 0($sp) # y[i] == 0: end of string; 
# restore old $s0

addi $sp,$sp,4 # pop 1 word off stack
jr $ra # return

String copies usually use pointers instead of arrays in C to avoid the opera-
tions on i in the code above. See Section 2.15 for an explanation of arrays
versus pointers.
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The MIPS instruction set has explicit instructions to load and store such 16-bit
quantities, called halfwords. Load half (lh) loads a halfword from memory, placing it in
the rightmost 16 bits of a register. Store half (sh) takes a halfword from the rightmost
16 bits of a register and writes it to memory. We copy a halfword with the sequence

lh $t0,0($sp) # Read halfword (16 bits) from source
sh $t0,0($gp) # Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefined
methods for concatenation, comparison, and conversion. Unlike C, Java includes
a word that gives the length of the string, similar to Java arrays.

Elaboration: MIPS software tries to keep the stack aligned to word addresses, allow-
ing the program to always use lw and sw (which must be aligned) to access the stack.
This convention means that a char variable allocated on the stack occupies 4 bytes,
even though it needs less. However, a C string variable or an array of bytes will pack 4
bytes per word, and a Java string variable or array of shorts packs 2 halfwords per word.

Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian 

Aboriginal Syllabic

Shavian Optical Character Recognition

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.22 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,” which is
their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at 0370hex, and
Cyrillic at 0400hex. The first three columns show 48 blocks that correspond to human languages in roughly Uni-
code numerical order. The last column has 16 blocks that are multilingual and are not in order. A 16-bit encod-
ing, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII subset as 8 bits and
uses 16–32 bits for the other characters. UTF-32 uses 32 bits per character. To learn more, see www.unicode.org.
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Check
Yourself

Which of the following statements about characters and strings in C and Java are
true?

1. A string in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of characters
in C and Java.

3. Strings in C and Java use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in Java.

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there
are times where it would be convenient to have a 32-bit constant or 32-bit address.
This section starts with the general solution for large constants, and then shows
the optimizations for instruction addresses used in branches and jumps.

32-Bit Immediate Operands

Although constants are frequently short and fit into the 16-bit field, sometimes
they are bigger. The MIPS instruction set includes the instruction load upper
immediate (lui) specifically to set the upper 16 bits of a constant in a register,
allowing a subsequent instruction to specify the lower 16 bits of the constant. Fig-
ure 2.23 shows the operation of lui.

2.9 MIPS Addressing for 32-Bit Immediates 
and Addresses 2.9

FIGURE 2.23 The effect of the lui instruction. The instruction lui transfers the 16-bit immediate con-
stant field value into the leftmost 16 bits of the register, filling the lower 16 bits with 0s.

The machine language version of lui $t0, 255 # $t0 is register 8:

Contents of register $t0 after executing lui $t0, 255:

001111 00000 01000 0000 0000 1111 1111

0000 0000 1111 1111 0000 0000 0000 0000
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Elaboration: Creating 32-bit constants needs care. The instruction addi copies the
leftmost bit of the 16-bit immediate field of the instruction into the upper 16 bits of a
word. Logical or immediate from Section 2.5 loads 0s into the upper 16 bits and hence
is used by the assembler in conjunction with lui to create 32-bit constants.

Hardware
Software
Interface

Either the compiler or the assembler must break large constants into pieces and then
reassemble them into a register. As you might expect, the immediate field’s size restric-
tion may be a problem for memory addresses in loads and stores as well as for constants
in immediate instructions. If this job falls to the assembler, as it does for MIPS software,
then the assembler must have a temporary register available in which to create the long
values. This is a reason for the register $at, which is reserved for the assembler. 

Hence, the symbolic representation of the MIPS machine language is no longer
limited by the hardware, but to whatever the creator of an assembler chooses to
include (see Section 2.10). We stick close to the hardware to explain the architec-
ture of the computer, noting when we use the enhanced language of the assembler
that is not found in the processor.

Loading a 32-Bit Constant

What is the MIPS assembly code to load this 32-bit constant into register $s0?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using lui:

lui $s0, 61   # 61 decimal = 0000 0000 0011 1101 binary

The value of register $s0 afterward is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to add the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000 

The final value in register $s0 is the desired value:

0000 0000 0011 1101 0000 1001 0000 0000

EXAMPLE

ANSWER
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Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final
MIPS instruction format, called the J-type, which consists of 6 bits for the opera-
tion field and the rest of the bits for the address field. Thus,

j 10000  # go to location 10000

could be assembled into this format (it’s actually a bit more complicated, as we
will see on the next page):

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify

two operands in addition to the branch address. Thus,

bne  $s0,$s1,Exit   # go to Exit if $s0  $s1

is assembled into this instruction, leaving only 16 bits for the branch address:

If addresses of the program had to fit in this 16-bit field, it would mean that no
program could be bigger than 216, which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added to
the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 232 and still be able to use condi-
tional branches, solving the branch address size problem. The question is then,
which register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nearby instruction. For example, about half of all conditional branches in
SPEC2000 benchmarks go to locations less than 16 instructions away. Since the
program counter (PC) contains the address of the current instruction, we can

2 10000

6 bits 26 bits

5 16 17 Exit

6 bits 5 bits 5 bits 16 bits
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branch within ±215 words of the current instruction if we use the PC as the regis-
ter to be added to the address. Almost all loops and if statements are much smaller
than 216 words, so the PC is the ideal choice. 

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 5, it is convenient for the hardware to increment the PC early to point to
the next instruction. Hence, the MIPS address is actually relative to the address of
the following instruction (PC + 4) as opposed to the current instruction (PC). 

Like most recent computers, MIPS uses PC-relative addressing for all condi-
tional branches because the destination of these instructions is likely to be close to
the branch. On the other hand, jump-and-link instructions invoke procedures
that have no reason to be near the call, and so they normally use other forms of
addressing. Hence, the MIPS architecture offers long addresses for procedure calls
by using the J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the
branch by having PC-relative addressing refer to the number of words to the next
instruction instead of the number of bytes. Thus, the 16-bit field can branch four
times as far by interpreting the field as a relative word address rather than as a rel-
ative byte address. Similarly, the 26-bit field in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else. The
MIPS jump instruction replaces only the lower 28 bits of the PC, leaving the upper 4
bits of the PC unchanged. The loader and linker (Section 2.9) must be careful to avoid
placing a program across an address boundary of 256 MB (64 million instructions); oth-
erwise a jump must be replaced by a jump register instruction preceded by other
instructions to load the full 32-bit address into a register.      

Showing Branch Offset in Machine Language

The while loop on page 74 was compiled into this MIPS assembler code:

Loop:sll    $t1,$s3,2 # Temp reg $t1 = 4 * i
add $t1,$t1,$s6 # $t1 = address of save[i]
lw  $t0,0($t1) # Temp reg $t0 = save[i]
bne $t0,$s5, Exit # go to Exit if save[i]  k
addi $s3,$s3,1 # i = i + 1
j   Loop # go to Loop

Exit:

If we assume we place the loop starting at location 80000 in memory, what is
the MIPS machine code for this loop?

PC-relative addressing An
addressing regime in which the 
address is the sum of the pro-
gram counter (PC) and a con-
stant in the instruction.

EXAMPLE
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       )

The assembled instructions and their addresses would look like this:

Remember that MIPS instructions have byte addresses, so addresses of se-
quential words differ by 4, the number of bytes in a word. The bne instruction
on the fourth line adds 2 words or 8 bytes to the address of the following instruc-
tion (80016), specifying the branch destination relative to that following in-
struction (8 + 80016) instead of relative to the branch instruction (12 + 80012) or
using the full destination address (80024). The jump instruction on the last line
does use the full address (20000 ¥ 4 = 80000), corresponding to the label Loop.

ANSWER
80000 0 0 19 9 4 0

80004 0 9 22 9 0 32

80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

80024 . . .

Nearly every conditional branch is to a nearby location, but occasionally it
branches far away, farther than can be represented in the 16 bits of the conditional
branch instruction. The assembler comes to the rescue just as it did with large
addresses or constants: it inserts an unconditional jump to the branch target, and
inverts the condition so that the branch decides whether to skip the jump. 

Hardware
Software
Interface

Branching Far Away

Given a branch on register $s0 being equal to register $s1,

beq $s0,$s1, L1

replace it by a pair of instructions that offers a much greater branching distance.

These instructions replace the short-address conditional branch:

bne $s0,$s1, L2
j L1

L2:

EXAMPLE

ANSWER
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MIPS Addressing Mode Summary

Multiple forms of addressing are generically called addressing modes. The MIPS
addressing modes are the following:

1. Register addressing, where the operand is a register

2. Base or displacement addressing, where the operand is at the memory loca-
tion whose address is the sum of a register and a constant in the instruction

3. Immediate addressing, where the operand is a constant within the instruc-
tion itself

4. PC-relative addressing, where the address is the sum of the PC and a con-
stant in the instruction 

5. Pseudodirect addressing, where the jump address is the 26 bits of the
instruction concatenated with the upper bits of the PC 

Note that a single operation can use more than one addressing mode. Add, for
example, uses both immediate (addi) and register (add) addressing. Figure 2.24
shows how operands are identified for each addressing mode.  In More Depth
shows other addressing modes found in the IBM PowerPC.

Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the origi-
nal assembly language. One example is when looking at a core dump. Figure 2.25
shows the MIPS encoding of the fields for the MIPS machine language. This figure
helps when translating by hand between assembly language and machine language.

addressing mode One of sev-
eral addressing regimes 
delimited by their varied use of 
operands and/or addresses.

Hardware
Software
Interface

Although we show the MIPS architecture as having 32-bit addresses, nearly all micro-
processors (including MIPS) have 64-bit address extensions (see Appendix D).
These extensions were in response to the needs of software for larger programs. The
process of instruction set extension allows architectures to expand in a way that lets
software move compatibly upward to the next generation of architecture. 
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FIGURE 2.24 Illustration of the five MIPS addressing modes. The operands are shaded in
color. The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions
of load and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction
itself. Modes 4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits
to the PC and mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC.

1.  Immediate addressing

2. Register addressing

3.  Base addressing

4.  PC-relative addressing

5.  Pseudodirect addressing

Immediateop rs rt

op rs rt . . . functrd

Register

Registers

op rs rt Address

Word

Memory

+Register HalfwordByte

op rs rt Address

Word

Memory

+PC

op

Word

Memory

PC

Address
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Figure 2.26 shows all the MIPS instruction formats. Figure 2.27 shows the
MIPS assembly language revealed in Chapter 2; the remaining hidden portion
of MIPS instructions deals mainly with arithmetic covered in the next chapter.

Decoding Machine Code 

What is the assembly language statement corresponding to this machine 
instruction?

00af8020hex

The first step in converting hexadecimal to binary is to find the op fields: 

(Bits: 31 28 26 5 2 0)
0000 0000 1010 1111 1000 0000 0010 0000

We look at the op field to determine the operation. Referring to Figure 2.25,
when bits 31–29 are 000 and bits 28–26 are 000, it is an R-format instruction.
Let’s reformat the binary instruction into R-format fields, listed in Figure 2.26:

op rs rt rd shamt funct
000000 00101 01111 10000 00000 100000

The bottom portion of Figure 2.25 determines the operation of an R-format
instruction. In this case, bits 5–3 are 100 and bits 2–0 are 000, which means
this binary pattern represents an add instruction. 

We decode the rest of the instruction by looking at the field values. The deci-
mal values are 5 for the rs field, 15 for rt, 16 for rd (shamt is unused). Figure
2.18 says these numbers represent registers $a1, $t7, and $s0. Now we can
show the assembly instruction:

add $s0,$a1,$t7

EXAMPLE

ANSWER
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op(31:26)

28–26

31–29

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) R-format Bltz/gez jump jump & link branch eq branch
ne

blez bgtz

1(001) add
immediate

addiu set less
than imm.

sltiu andi ori xori load upper imm

2(010) TLB FlPt

3(011)

4(100) load byte load half lwl load word lbu lhu lwr

5(101) store byte store
half

swl store word swr

6(110) lwc0 lwc1

7(111) swc0 swc1

op(31:26)=010000 (TLB), rs(25:21)

23–21

25–24

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(00) mfc0 cfc0 mtc0 ctc0

1(01)

2(10)

3(11)

op(31:26)=000000 (R-format), funct(5:0)

2–0

5–3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) shift left
logical

shift right
logical

sra sllv srlv srav

1(001) jump reg. jalr syscall break

2(010) mfhi mthi mflo mtlo

3(011) mult multu div divu

4(100) add addu subtract subu and or xor not or (nor)

5(101) set l.t. sltu

6(110)

7(111)

FIGURE 2.25 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion of the
figure shows load word in row number 4 (100two for bits 31–29 of the instruction) and column number 3 (011two for bits 28–26 of the instruction),
so the corresponding value of the op field (bits 31–26) is 100011two. Underscore means the field is used elsewhere. For example, R-format in row 0
and column 0 (op = 000000two) is defined in the bottom part of the figure. Hence, subtract in row 4 and column 2 of the bottom section means
that the funct field (bits 5–0) of the instruction is 100010two and the op field (bits 31–26) is 000000two. The FlPt value in row 2, column 1 is defined
in Figure 3.20 in Chapter 3. Bltz/gez is the opcode for four instructions found in Appendix A: bltz, bgez, bltzal, and bgezal. Chapter
2 describes instructions given in full name using color, while Chapter 3 describes instructions given in mnemonics using color. Appendix A covers all
instructions.
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Check
Yourself

What is the range of addresses for conditional branches in MIPS (K = 1024)?

1. Addresses between 0 and 64K – 1

2. Addresses between 0 and 256K – 1

3. Addresses up to about 32K before the branch to about 32K after

4. Addresses up to about 128K before the branch to about 128K after

What is the range of addresses for jump and jump and link in MIPS (M = 1024K)?

1. Addresses between 0 and 64M – 1

2. Addresses between 0 and 256M – 1

3. Addresses up to about 32M before the branch to about 32M after

4. Addresses up to about 128M before the branch to about 128M after

5. Anywhere within a block of 64M addresses where the PC supplies the upper
6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the
upper 4 bits

What is the MIPS assembly language instruction corresponding to the machine
instruction with the value 0000 0000hex?

1. j
2. R-format
3. addi
4. sll
5. mfc0

6. Undefined opcode: there is no legal instruction that corresponds to 0.

Name Fields Comments

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

R-format op rs rt rd shamt funct Arithmetic instruction format

I-format op rs rt address/immediate Transfer, branch, imm. format

J-format op target address Jump instruction format

FIGURE 2.26 MIPS instruction formats in Chapter 2. Highlighted portions show instruction formats introduced 
in this section.
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MIPS operands

Name Example Comments

32 registers
$s0–$s7, $t0–$t9, $zero, $a0–
$a3, $v0–$v1, $gp, $fp, $sp,
$ra, $at

Fast locations for data. In MIPS, data must be in registers to perform arithmetic. MIPS 
register $zero always equals 0. Register $at is reserved for the assembler to handle 
large constants.

230 memory 
words

Memory[0],
Memory[4], . . . , 
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential 
word addresses differ by 4. Memory holds data structures, arrays, and spilled 
registers, such as those saved on procedure calls. 

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add  $s1,$s2,$s3 $s1 = $s2 + $s3 Three register operands

subtract sub  $s1,$s2,$s3 $s1 = $s2 – $s3 Three register operands

add immediate addi $s1,$s2,100 $s1 = $s2 + 100 Used to add constants

Data transfer

load word lw  $s1,100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw  $s1,100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

load half lh  $s1,100($s2) $s1 = Memory[$s2 + 100] Halfword memory to register

store half sh  $s1,100($s2) Memory[$s2 + 100] = $s1 Halfword register to memory

load byte lb  $s1,100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb  $s1,100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper immed. lui  $s1,100 $s1 = 100 * 216 Loads constant in upper 16 bits

Logical

and and   $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or    $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor   $s1,$s2,$s3 $s1 = ~ ($s2 |$s3) Three reg. operands; bit-by-bit NOR

and immediate andi  $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND reg with constant

or immediate ori   $s1,$s2,100 $s1 = $s2 | 100 Bit-by-bit OR reg with constant

shift left logical sll  $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl  $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional
branch

branch on equal beq  $s1,$s2,25 if ($s1 == $s2) go to 
PC + 4 + 100

Equal test; PC-relative branch

branch on not equal bne  $s1,$s2,25 if ($s1 != $s2) go to 
PC + 4 + 100

Not equal test; PC-relative

set on less than slt  $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1; 
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1,$s2,100 if ($s2 < 100) $s1 = 1; 
else $s1 = 0

Compare less than constant

Uncondi-
tional jump

jump j   2500 go to 10000 Jump to target address

jump register jr   $ra go to $ra For switch, procedure return

jump and link jal  2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 2.27 MIPS assembly language revealed in Chapter 2. Highlighted portions show portions from Sections 2.8 and 2.9.
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This section describes the four steps in transforming a C program in a file on disk
into a program running on a computer. Figure 2.28 shows the translation hierar-
chy. Some systems combine these steps to reduce translation time, but these are
the logical four phases that programs go through. This section follows this trans-
lation hierarchy. 

2.10 Translating and Starting a Program 2.10

FIGURE 2.28 A translation hierarchy for C. A high-level-language program is first compiled into
an assembly language program and then assembled into an object module in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the
machine code into the proper memory locations for execution by the processor. To speed up the translation
process, some steps are skipped or combined together. Some compilers produce object modules directly,
and some systems use linking loaders that perform the last two steps. To identify the type of file, UNIX fol-
lows a suffix convention for files: C source files are named x.c, assembly files are x.s, object files are
named x.o, statically linked library routines are x.a, dynamically linked library routes are x.so, and exe-
cutable files by default are called a.out. MS-DOS uses the suffixes .C, .ASM, .OBJ, .LIB, .DLL, and .EXE
to the same effect.

C program

Compiler

Assembly language program

Assembler

Object:  Machine language module Object:  Library routine (machine language)

Linker

Loader

Memory

Executable:  Machine language program
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Compiler

The compiler transforms the C program into an assembly language program, a
symbolic form of what the machine understands. High-level-language programs
take many fewer lines of code than assembly language, so programmer productiv-
ity is much higher. 

In 1975, many operating systems and assemblers were written in assembly lan-
guage because memories were small and compilers were inefficient. The 128,000-
fold increase in memory capacity per single DRAM chip has reduced program size
concerns, and optimizing compilers today can produce assembly language pro-
grams nearly as good as an assembly language expert, and sometimes even better
for large programs. 

Assembler

As mentioned on page 96, since assembly language is the interface to higher-level soft-
ware, the assembler can also treat common variations of machine language instruc-
tions as if they were instructions in their own right. The hardware need not implement
these instructions; however, their appearance in assembly language simplifies transla-
tion and programming. Such instructions are called pseudoinstructions.

As mentioned above, the MIPS hardware makes sure that register $zero
always has the value 0. That is, whenever register $zero is used, it supplies a 0,
and the programmer cannot change the value of register $zero. Register $zero is
used to create the assembly language instruction move that copies the contents of
one register to another. Thus the MIPS assembler accepts this instruction even
though it is not found in the MIPS architecture:

move $t0,$t1 # register $t0 gets register $t1

The assembler converts this assembly language instruction into the machine lan-
guage equivalent of the following instruction:

add  $t0,$zero,$t1 # register $t0 gets 0 + register $t1

The MIPS assembler also converts blt (branch on less than) into the two
instructions slt and bne mentioned in the example on page 96. Other examples
include bgt, bge, and ble. It also converts branches to faraway locations into a
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants
to be loaded into a register despite the 16-bit limit of the immediate instructions. 

In summary, pseudoinstructions give MIPS a richer set of assembly language
instructions than those implemented by the hardware. The only cost is reserving
one register, $at, for use by the assembler. If you are going to write assembly pro-
grams, use pseudoinstructions to simplify your task. To understand the MIPS

assembly language A sym-
bolic language that can be trans-
lated into binary.

pseudoinstruction A com-
mon variation of assembly lan-
guage instructions often treated 
as if it were an instruction in its 
own right.
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architecture and to be sure to get best performance, however, study the real MIPS
instructions found in Figures 2.25 and 2.27.

Assemblers will also accept numbers in a variety of bases. In addition to binary
and decimal, they usually accept a base that is more succinct than binary yet con-
verts easily to a bit pattern. MIPS assemblers use hexadecimal, 

Such features are convenient, but the primary task of an assembler is assembly
into machine code. The assembler turns the assembly language program into an
object file, which is a combination of machine language instructions, data, and
information needed to place instructions properly in memory. 

To produce the binary version of each instruction in the assembly language pro-
gram, the assembler must determine the addresses corresponding to all labels.
Assemblers keep track of labels used in branches and data transfer instructions in a
symbol table. As you might expect, the table contains pairs of symbol and address.

The object file for UNIX systems typically contains six distinct pieces:

■ The object file header describes the size and position of the other pieces of
the object file.

■ The text segment contains the machine language code.

■ The static data segment contains data allocated for the life of the program.
(UNIX allows programs to use either static data, which is allocated through-
out the program, or dynamic data, which can grow or shrink as needed by
the program.)

■ The relocation information identifies instructions and data words that
depend on absolute addresses when the program is loaded into memory.

■ The symbol table contains the remaining labels that are not defined, such as
external references.

■ The debugging information contains a concise description of how the mod-
ules were compiled so that a debugger can associate machine instructions
with C source files and make data structures readable.

The next subsection shows how to attach such routines that have already been
assembled, such as library routines.

Linker

What we have presented so far suggests that a single change to one line of one proce-
dure requires compiling and assembling the whole program. Complete retransla-
tion is a terrible waste of computing resources. This repetition is particularly
wasteful for standard library routines because programmers would be compiling
and assembling routines that by definition almost never change. An alternative is to

machine language Binary
representation used for commu-
nication within a computer 
system.

symbol table A table that 
matches names of labels to the 
addresses of the memory words 
that instructions occupy.
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compile and assemble each procedure independently, so that a change to one line
would require compiling and assembling only one procedure. This alternative
requires a new systems program, called a link editor or linker, which takes all the
independently assembled machine language programs and “stitches” them together.

There are three steps for the linker:

1. Place code and data modules symbolically in memory.

2. Determine the addresses of data and instruction labels.

3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object
module to resolve all undefined labels. Such references occur in branch instruc-
tions, jump instructions, and data addresses, so the job of this program is much
like that of an editor: It finds the old addresses and replaces them with the new
addresses. Editing is the origin of the name “link editor,” or linker for short. The
reason a linker makes sense is that it is much faster to patch code than it is to
recompile and reassemble.

If all external references are resolved, the linker next determines the memory
locations each module will occupy. Recall that Figure 2.17 on page 87 shows the
MIPS convention for allocation of program and data to memory. Since the files
were assembled in isolation, the assembler could not know where a module’s
instructions and data will be placed relative to other modules. When the linker
places a module in memory, all absolute references, that is, memory addresses that
are not relative to a register, must be relocated to reflect its true location. 

The linker produces an executable file that can be run on a computer. Typi-
cally, this file has the same format as an object file, except that it contains no unre-
solved references. It is possible to have partially linked files, such as library
routines, which still have unresolved addresses and hence result in object files.

Linking Object Files

Link the two object files below. Show updated addresses of the first few in-
structions of the completed executable file. We show the instructions in as-
sembly language just to make the example understandable; in reality, the
instructions would be numbers.

Note that in the object files we have highlighted the addresses and symbols
that must be updated in the link process: the instructions that refer to the
addresses of procedures A and B and the instructions that refer to the
addresses of data words X and Y.

linker Also called link editor.
A systems program that com-
bines independently assembled 
machine language programs and 
resolves all undefined labels into 
an executable file.

executable file A functional 
program in the format of an 
object file that contains no unre-
solved references, relocation 
information, symbol table, or 
debugging information.

EXAMPLE
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Procedure A needs to find the address for the variable labeled X to put in the
load instruction and to find the address of procedure B to place in the jal in-
struction. Procedure B needs the address of the variable labeled Y for the
store instruction and the address of procedure A for its jal instruction.

From Figure 2.17 on page 87, we know that the text segment starts at address
40 0000hex and the data segment at 1000 0000hex. The text of procedure A is
placed at the first address and its data at the second. The object file header for pro-
cedure A says that its text is 100hex bytes and its data is 20hex bytes, so the starting ad-
dress for procedure B text is 40 0100hex, and its data starts at 1000 0020hex.

Object file header

Name Procedure A

Text size 100hex

Data size 20hex

Text segment Address Instruction

0 lw $a0, 0($gp)

4 jal 0

… …

Data segment 0 (X)

… …

Relocation information Address Instruction type Dependency

 0 lw X

4 jal B

Symbol table Label Address

X —

B —

Object file header

Name Procedure B

Text size 200hex

Data size 30hex

Text segment Address Instruction

0 sw $a1, 0($gp)

4 jal 0

… …

Data segment 0 (Y)

… …

Relocation information Address Instruction type Dependency

 0 sw Y

4 jal A

Symbol table Label Address

Y —

A —

ANSWER
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From Figure 2.17 on page 87, we know that the text segment starts at address
40 0000hex and the data segment at 1000 0000hex. The text of procedure A
is placed at the first address and its data at the second. The object file header
for procedure A says that its text is 100hex bytes and its data is 20hex bytes, so
the starting address for procedure B text is 40 0100hex, and its data starts at
1000 0020hex.

Now the linker updates the address fields of the instructions. It uses the
instruction type field to know the format of the address to be edited. We have
two types here:

1. The jals are easy because they use pseudodirect addressing. The jal at
address 40 0004hex gets 40 0100hex (the address of procedure B) in its
address field, and the jal at 40 0104hex gets 40 0000hex (the address
of procedure A) in its address field. 

2. The load and store addresses are harder because they are relative to a
base register. This example uses the global pointer as the base register.
Figure 2.17 shows that $gp is initialized to 1000 8000hex. To get the
address 1000 0000hex (the address of word X), we place 8000hex in the
address field of lw at address 40 0000hex. Chapter 3 explains 16-bit
two’s complement computer arithmetic, which is why 8000hex in the
address field yields 1000 0000hex as the address. Similarly, we place
8020hex in the address field of sw at address 40 0100hex to get the
address 1000 0020hex (the address of word Y).

Executable file header

Text size 300hex

Data size 50hex

Text segment Address Instruction

0040 0000hex lw $a0, 8000hex($gp)

0040 0004hex jal 40 0100hex
… …

0040 0100hex sw $a1, 8020hex($gp)

0040 0104hex jal 40 0000hex
… …

Data segment Address

1000 0000hex (X)

… …

1000 0020hex (Y)

… …
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Loader

Now that the executable file is on disk, the operating system reads it to memory
and starts it. It follows these steps in UNIX systems:

1. Reads the executable file header to determine size of the text and data segments.

2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable file into memory.

4. Copies the parameters (if any) to the main program onto the stack.

5. Initializes the machine registers and sets the stack pointer to the first free
location.

6. Jumps to a start-up routine that copies the parameters into the argument reg-
isters and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an exit system call.

Sections A.3 and A.4 in  Appendix A describe linkers and loaders in more
detail.

Dynamically Linked Libraries

The first part of this section describes the traditional approach to linking libraries
before the program is run. Although this static approach is the fastest way to call
library routines, it has a few disadvantages:

■ The library routines become part of the executable code. If a new version of
the library is released that fixes bugs or supports new hardware devices, the
statically linked program keeps using the old version.

■ It loads the whole library even if all of the library is not used when the pro-
gram is run. The library can be large relative to the program; for example,
the standard C library is 2.5 MB.

These disadvantages lead to dynamically linked libraries (DLLs), where the
library routines are not linked and loaded until the program is run. Both the pro-
gram and library routines keep extra information on the location of nonlocal pro-
cedures and their names. In the initial version of DLLs, the loader ran a dynamic
linker, using the extra information in the file to find the appropriate libraries and
to update all external references.

The downside of the initial version of DLLs was that it still linked all routines of
the library that might be called versus those that are called during the running of
the program. This observation led to the lazy procedure linkage version of DLLs,
where each routine is linked only after it is called. 

loader A systems program that 
places an object program in 
main memory so that it is ready 
to execute.
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Like many instances in our field, this trick relies on a level of indirection. Figure
2.29 shows the technique. It starts with the nonlocal routines calling a set of
dummy routines at the end of the program, with one entry per nonlocal routine.
These dummy entries each contain an indirect jump.

The first time the library routine is called, the program calls the dummy entry
and follows the indirect jump. It points to code that puts a number in a register to
identify the desired library routine and then jumps to the dynamic linker-loader.

FIGURE 2.29 Dynamically linked library via lazy procedure linkage. (a) Steps for the first
time a call is made to the DLL routine. (b) The steps to find the routine, remap it, and link it are skipped on
subsequent calls. As we will see in Chapter 7, the operating system may avoid copying the desired routine by
remapping it using virtual memory management.
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The linker-loader finds the desired routine, remaps it, and changes the address in
the indirect jump location to point to that routine. It then jumps to it. When the
routine completes, it returns to the original calling site. Thereafter, it jumps indi-
rectly to the routine without the extra hops. 

In summary, DLLs require extra space for the information needed for dynamic
linking, but do not require that whole libraries be copied or linked. They pay a
good deal of overhead the first time a routine is called, but only a single indirect
jump thereafter. Note that the return from the library pays no extra overhead.
Microsoft’s Windows relies extensively on lazy dynamically linked libraries, and it
is also the normal way of executing programs on UNIX systems today.

Starting a Java Program

The discussion above captures the traditional model of executing a program,
where the emphasis is on fast execution time for a program targeted to a specific
instruction set architecture, or even a specific implementation of that architec-
ture. Indeed, it is possible to execute Java programs just like C. Java was invented
with a different set of goals, however. One was to quickly run safely on any com-
puter, even if it might slow execution time. 

Figure 2.30 shows the typical translation and execution steps for Java. Rather
than compile to the assembly language of a target computer, Java is compiled
first to instructions that are easy to interpret: the Java bytecode instruction set.
This instruction set is designed to be close to the Java language so that this com-

FIGURE 2.30 A translation hierarchy for Java. A Java program is first compiled into a binary version
of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready to run on the
interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java library while
the program is running. To achieve greater performance, the JVM can invoke the Just In Time (JIT) compiler,
which selectively compiles methods into the native machine language of the machine on which it is running.

Java bytecode Instruction
from an instruction set designed 
to interpret Java programs.

Java program

Compiler

Class files (Java bytecodes)

Java Virtual Machine

Compiled Java methods (machine language)

Java Library routines (machine language)

Just In Time
compiler
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pilation step is trivial. Virtually no optimizations are performed. Like the C
compiler, the Java compiler checks the types of data and produces the proper
operation for each type. Java programs are distributed in the binary version of
these bytecodes. 

A software interpreter, called a Java Virtual Machine (JVM), can execute Java
bytecodes. An interpreter is a program that simulates an instruction set architec-
ture. For example, the MIPS simulator used with this book is an interpreter. There
is no need for a separate assembly step since either the translation is so simple that
the compiler fills in the addresses or JVM finds them at runtime.

The upside of interpretation is portability. The availability of software Java vir-
tual machines meant that most could write and run Java programs shortly after
Java was announced. Today Java virtual machines are found in millions of devices,
in everything from cell phones to Internet browsers.

The downside of interpretation is low performance. The incredible advances in
performance of the 1980s and 1990s made interpretation viable for many impor-
tant applications, but the factor of 10 slowdown when compared to traditionally
compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java
development was compilers that translated while the program was running. Such
Just In Time compilers (JIT) typically profile the running program to find where
the “hot” methods are, and then compile them into the native instruction set on
which the virtual machine is running. The compiled portion is saved for the next
time the program is run, so that it can run faster each time it is run. This balance
of interpretation and compilation evolves over time, so that frequently run Java
programs suffer little of the overhead of interpretation. 

As computers get faster so that compilers can do more, and as researchers
invent betters ways to compile Java on the fly, the performance gap between Java
and C or C++ is closing. Section 2.14 goes into much greater depth on the imple-
mentation of Java, Java bytecodes, JVM, and JIT compilers.

Check
Yourself

Which of the advantages of an interpreter over a translator do you think was most
important for the designers of Java? 

1. Ease of writing an interpreter

2. Better error messages

3. Smaller object code

4. Machine independence

Java Virtual Machine 
(JVM) The program that 
interprets Java bytecodes.

Just In Time Compiler 
(JIT) The name commonly 
given to a compiler that operates 
at runtime, translating the inter-
preted code segments into the 
native code of the computer.
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Because the compiler will significantly affect the performance of a computer, under-
standing compiler technology today is critical to understanding performance. The
purpose of this section is to give a brief overview of optimizations a compiler uses to
achieve performance. The following section introduces the internal anatomy of a
compiler. To start, Figure 2.31 shows the structure of recent compilers, and we
describe the optimizations in the order of the passes of that structure.

High-Level Optimizations

High-level optimizations are transformations that are done at something close to
the source level. 

The most common high-level transformation is probably procedure inlining,
which replaces a call to a function by the body of the function, substituting the
caller’s arguments for the procedure’s parameters. Other high-level optimizations

2.11 How Compilers Optimize 2.11

FIGURE 2.31 The structure of a modern optimizing compiler consists of a numbers of
passes or phases. Logically each pass can be thought of as running to completion before the
next occurs. In practice, some passes may handle a procedure at a time, essentially interleaving
with another pass.
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involve loop transformations that can reduce loop overhead, improve memory
access, and exploit the hardware more effectively. For example, in loops that execute
many iterations, such as those traditionally controlled by a for statement, the opti-
mization of loop unrolling is often useful. Loop unrolling involves taking a loop
and replicating the body multiple times and executing the transformed loop fewer
times. Loop unrolling reduces the loop overhead and provides opportunities for
many other optimizations. Other types of high-level transformations include
sophisticated loop transformations such as interchanging nested loops and blocking
loops to obtain better memory behavior; see Chapter 7 for examples.

Local and Global Optimizations

Within the pass dedicated to local and global optimization, three classes of opti-
mizations are performed:

1. Local optimization works within a single basic block. A local optimization
pass is often run as a precursor and successor to global optimization to
“clean up” the code before and after global optimization.

2. Global optimization works across multiple basic blocks; we will see an
example of this shortly.

3. Global register allocation allocates variables to registers for regions of the
code. Register allocation is crucial to getting good performance in modern
processors.

Several optimizations are performed both locally as well as globally, including
common subexpression elimination, constant propagation, copy propagation,
dead store elimination, and strength reduction. Let’s look at some simple exam-
ples of these optimizations. 

Common subexpression elimination finds multiple instances of the same expres-
sion and replaces the second one by a reference to the first. Consider, for example,
a code segment to add 4 to an array element: 

x[i] = x[i] + 4

The address calculation for x[i] occurs twice and is identical since neither the
starting address of x nor the value of i changes. Thus, the calculation can be reused.
Let’s look at the intermediate code for this fragment, since it allows several other
optimizations to be performed. Here is the unoptimized intermediate code on the
left, and on the right is the code with common subexpression elimination replacing
the second address calculation with the first. Note that the register allocation has not
yet occurred, so the compiler is using virtual register numbers like R100 here. 

loop unrolling A technique to 
get more performance from 
loops that access arrays, in 
which multiple copies of the 
loop body are made and instruc-
tions from different iterations 
are scheduled together.
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If the same optimization was possible across two basic blocks, it would then be an
instance of global common subexpression elimination. 

Let’s consider some of the other optimizations:

■ Strength reduction replaces complex operations by simpler ones and can be
applied to this code segment, replacing the mult by a shift left.

■ Constant propagation and its sibling constant folding find constants in code
and propagates them, collapsing constant values whenever possible. 

■ Copy propagation propagates values that are simple copies, eliminating the
need to reload values and possibly enabling other optimizations such as
common subexpression elimination. 

■ Dead store elimination finds stores to values that are not used again and
eliminates the store; its “cousin” is dead code elimination, which finds
unused code––code that cannot affect the final result of the program––and
eliminates it. With the heavy use of macros, templates, and the similar tech-
niques designed to reuse code in high-level languages, dead code occurs sur-
prisingly often.

# x[i] + 4

li R100,x

lw R101,i

mult R102,R101,4

add R103,R100,R102

lw R104,0(R103) 

# value of x[i] is in R104

add R105,R104,4

# x[i] =

li R106,x

lw R107,i

mult R108,R107,4

add R109,R106,R107

sw R105,0(R109)

# x[i] + 4

li R100,x

lw R101,i

mult R102,R101,4

add R103,R100,R102

lw R104,0(R103) 

# value of x[i] is in R104

add R105,R104,4

# x[i] =

sw R105,0(R103)
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Compilers must be conservative. The first task of a compiler is to produce
correct code; its second task is usually to produce fast code although other fac-
tors such as code size may sometimes be important as well. Code that is fast but
incorrect—for any possible combination of inputs—is simply wrong. Thus,
when we say a compiler is “conservative,” we mean that it performs an optimiza-
tion only if it knows with 100% certainty that, no matter what the inputs, the
code will perform as the user wrote it. Since most compilers translate and opti-
mize one function or procedure at a time, most compilers, especially at lower
optimization levels, assume the worst about function calls and about their own
parameters. 

Global Code Optimizations
Many global code optimizations have the same aims as those used in the local
case, including common subexpression elimination, constant propagation, copy
propagation, and dead store and dead code elimination. 

There are two other important global optimizations: code motion and induc-
tion variable elimination. Both are loop optimizations; that is, they are aimed at
code in loops. Code motion finds code that is loop invariant: a particular piece of
code computes the same value on every loop iteration and, hence, may be com-
puted once outside the loop. Induction variable elimination is a combination of

Programmers concerned about performance of critical loops, especially in real-
time or embedded applications, often find themselves staring at the assembly lan-
guage produced by a compiler and wondering why the compiler failed to perform
some global optimization or to allocate a variable to a register throughout a loop.
The answer often lies in the dictate that the compiler be conservative. The oppor-
tunity for improving the code may seem obvious to the programmer, but then the
programmer often has knowledge that the compiler does not have, such as the
absence of aliasing between two pointers or the absence of side effects by a func-
tion call. The compiler may indeed be able to perform the transformation with a
little help, which could eliminate the worst-case behavior that it must assume.
This insight also illustrates an important observation: programmers who use
pointers to try to improve performance in accessing variables, especially pointers
to values on the stack that also have names as variables or as elements of arrays,
are likely to disable many compiler optimizations. The end result is that the lower-
level pointer code may run no better, or perhaps even worse, than the higher-level
code optimized by the compiler. 

Understanding
Program
Performance
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transformations that reduce overhead on indexing arrays, essentially replacing
array indexing with pointer accesses. Rather than examine induction variable
elimination in depth, we point the reader to Section 2.15, which compares the
use of array indexing and pointers; for most loops, the transformation from the
more obvious array code to the pointer code can be performed by a modern
optimizing compiler. 

Optimization Summary
Figure 2.32 gives examples of typical optimizations, and the last column indi-
cates where the optimization is performed in the gcc compiler. It is sometimes
difficult to separate some of the simpler optimizations—local and processor-
dependent optimizations—from transformations done in the code generator,
and some optimizations are done multiple times, especially local optimizations,
which may be performed before and after global optimization as well as during
code generation.   

Optimization name Explanation gcc level

High level At or near the source level; processor independent

Procedure integration Replace procedure call by procedure body O3

Local Within straight-line code

Common subexpression elimination Replace two instances of the same computation by single copy O1

Constant propagation Replace all instances of a variable that is assigned a constant with the 
constant

O1

Stack height reduction Rearrange expression tree to minimize resources needed for expression 
evaluation

O1

Global Across a branch

Global common subexpression elimination Same as local, but this version crosses branches O2

Copy propagation Replace all instances of a variable A that has been assigned X (i.e., A = X) with X O2

Code motion Remove code from a loop that computes same value each iteration of the loop O2

Induction variable elimination Simplify/eliminate array addressing calculations within loops O2

Processor dependent Depends on processor knowledge

Strength reduction Many examples; replace multiply by a constant with shifts O1

Pipeline scheduling Reorder instructions to improve pipeline performance O1

Branch offset optimization Choose the shortest branch displacement that reaches target O1

FIGURE 2.32 Major types of optimizations and examples in each class. The third column shows when these occur at different
levels of optimization in gcc. The Gnu organization calls the three optimization levels medium (O1), full (O2), and full with integration of
small procedures (O3).
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The purpose of this section is to give a brief overview of the compiler function,
which will help the reader understand both how the compiler translates a high-
level language program into machine instructions. Keep in mind that the subject
of compiler construction is usually taught in a one- or two-semester course; our
introduction will necessarily only touch on the basics. The rest of this section is on
the CD. 

One danger of showing assembly language code in snippets is that you will have
no idea what a full assembly language program looks like. In this section, we
derive the MIPS code from two procedures written in C: one to swap array ele-
ments and one to sort them. 

Today essentially all programming for desktop and server applications is done in
high-level languages, as is most programming for embedded applications. This
development means that since most instructions executed are the output of a
compiler, an instruction set architecture is essentially a compiler target. With
Moore’s law comes the temptation of adding sophisticated operations in an
instruction set. The challenge is that they may not exactly match what the com-
piler needs to produce or be so general that they aren’t fast. For example, consider
special loop instructions found in some computers. Suppose that instead of decre-
menting by one, the compiler wanted to increment by four, or instead of branch-
ing on not equal zero, the compiler wanted to branch if the index was less than or
equal to the limit. The loop instruction may be a mismatch. When faced with such
objections, the instruction set designer might then generalize the operation, add-
ing another operand to specify the increment and perhaps an option on which
branch condition to use. Then the danger is that a common case, say, increment-
ing by one, will be slower than a sequence of simple operations. 

Hardware
Software
Interface

How Compilers Work: 
An Introduction 2.12

2.13 A C Sort Example to Put It All Together 2.13

2.12
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The Procedure swap
Let’s start with the code for the procedure swap in Figure 2.33. This procedure
simply swaps two locations in memory. When translating from C to assembly lan-
guage by hand, we follow these general steps:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.

3. Preserve registers across the procedure invocation.

This section describes the swap procedure in these three pieces, concluding by
putting all the pieces together.

Register Allocation for swap
As mentioned on page 79, the MIPS convention on parameter passing is to use
registers $a0, $a1, $a2, and $a3. Since swap has just two parameters, v and k,
they will be found in registers $a0 and $a1. The only other variable is temp,
which we associate with register $t0 since swap is a leaf procedure (see page 83).
This register allocation corresponds to the variable declarations in the first part of
the swap procedure in Figure 2.33. 

Code for the Body of the Procedure swap
The remaining lines of C code in swap are

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

Recall that the memory address for MIPS refers to the byte address, and so
words are really 4 bytes apart. Hence we need to multiply the index k by 4 before

FIGURE 2.33 A C procedure that swaps two locations in memory. The next subsection uses
this procedure in a sorting example. 

void swap(int v[], int k)
{
 int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}



2.13 A C Sort Example to Put It All Together 123

adding it to the address. Forgetting that sequential word addresses differ by 4 instead
of by 1 is a common mistake in assembly language programming. Hence the first step
is to get the address of v[k] by multiplying k by 4:

sll $t1, $a1,2 # reg $t1 = k * 4 
add $t1, $a0,$t1 # reg $t1 = v + (k * 4) 

# reg $t1 has the address of v[k]

Now we load v[k] using $t1, and then v[k+1] by adding 4 to $t1:

lw $t0, 0($t1) # reg $t0 (temp) = v[k]
lw $t2, 4($t1) # reg $t2 = v[k + 1]

# refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

sw $t2, 0($t1) # v[k] = reg $t2
sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations
of the procedure. What is missing is the code for preserving the saved registers
used within swap. Since we are not using saved registers in this leaf procedure,
there is nothing to preserve. 

The Full swap Procedure
We are now ready for the whole routine, which includes the procedure label and
the return jump. To make it easier to follow, we identify in Figure 2.34 each block
of code with its purpose in the procedure.

The Procedure sort
To ensure that you appreciate the rigor of programming in assembly language,
we’ll try a second, longer example. In this case, we’ll build a routine that calls the
swap procedure. This program sorts an array of integers, using bubble or
exchange sort, which is one of the simplest if not the fastest sorts. Figure 2.35
shows the C version of the program. Once again, we present this procedure in sev-
eral steps, concluding with the full procedure. 

Register Allocation for sort
The two parameters of the procedure sort, v and n, are in the parameter registers
$a0 and $a1, and we assign register $s0 to i and register $s1 to j.
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Code for the Body of the Procedure sort
The procedure body consists of two nested for loops and a call to swap that
includes parameters. Let’s unwrap the code from the outside to the middle.

The first translation step is the first for loop:

for (i = 0; i < n; i += 1) {

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the first part of the
for statement:

move $s0, $zero # i = 0

(Remember that move is a pseudoinstruction provided by the assembler for the
convenience of the assembly language programmer; see page 107.) It also takes
just one instruction to increment i, the last part of the for statement:

addi $s0, $s0, 1 # i += 1

Procedure body

swap: sll $t1, $a1, 2 # reg $t1 = k * 4
add $t1, $a0, $t1 # reg $t1 = v + (k * 4)

# reg $t1 has the address of v[k]
lw $t0, 0($t1) # reg $t0 (temp) = v[k]
lw $t2, 4($t1) # reg $t2 = v[k + 1]

# refers to next element of v
sw $t2, 0($t1) # v[k] = reg $t2
sw $t0, 4($t1) # v[k+1] = reg $t0 (temp)

Procedure return

jr $ra # return to calling routine

FIGURE 2.34 MIPS assembly code of the procedure swap in Figure 2.33.

FIGURE 2.35 A C procedure that performs a sort on the array v.

void sort (int v[], int n)
{

int i, j;
for (i = 0; i < n; i += 1) {

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {
 swap(v,j);
}

}
}
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The loop should be exited if i < n is not true or, said another way, should be exited
if i n. The set on less than instruction sets register $t0 to 1 if $s0 < $a1 and 0
otherwise. Since we want to test if $s0 $a1, we branch if register $t0 is 0. This
test takes two instructions:

for1tst:slt $t0, $s0, $a1  # reg $t0 = 0 if $s0  $a1 (i n)
beq $t0, $zero,exit1 # go to exit1 if $s0 $a1 (i n)

The bottom of the loop just jumps back to the loop test:

j for1tst  # jump to test of outer loop
exit1:

The skeleton code of the first for loop is then

move $s0, $zero # i = 0
for1tst:slt $t0, $s0, $a1 # reg $t0 = 0 if $s0  $a1 (i n)

beq $t0, $zero,exit1 # go to exit1 if $s0 $a1 (i n)
...
(body of first for loop)
...

addi $s0, $s0, 1 # i += 1
j for1tst # jump to test of outer loop

exit1:

Voila! Exercise 2.14 explores writing faster code for similar loops.
The second for loop looks like this in C:

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j -= 1) {

The initialization portion of this loop is again one instruction:

addi $s1, $s0, –1 # j = i – 1

The decrement of j at the end of the loop is also one instruction:

addi $s1, $s1, –1 # j -= 1

The loop test has two parts. We exit the loop if either condition fails, so the first
test must exit the loop if it fails (j < 0):

for2tst:slti$t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1<0 (j < 0)

This branch will skip over the second condition test. If it doesn’t skip, j  0.
The second test exits if v[j] > v[j + 1] is not true, or exits if v[j] £

v[j + 1]. First we create the address by multiplying j by 4 (since we need a byte
address) and add it to the base address of v:
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sll $t1, $s1,2 # reg $t1 = j * 4
add $t2, $a0,$t1 # reg $t2 = v + (j * 4) 

Now we load v[j]:

lw $t3, 0($t2) # reg $t3   = v[j]

Since we know that the second element is just the following word, we add 4 to the
address in register $t2 to get v[j + 1]:

lw $t4, 4($t2) # reg $t4   = v[j + 1]

The test of v[j] £ v[j + 1] is the same as v[j + 1]  v[j], so the two
instructions of the exit test are

slt $t0, $t4, $t3  # reg $t0 = 0 if $t4  $t3  
beq $t0, $zero,exit2 # go to exit2 if $t4  $t3  

The bottom of the loop jumps back to the inner loop test:

j for2tst # jump to test of inner loop

Combining the pieces together, the skeleton of the second for loop looks like
this:

addi $s1, $s0, –1 # j = i – 1
for2tst:slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j<0)
 bne $t0, $zero,exit2 # go to exit2 if $s1<0 (j<0)

sll $t1, $s1,2 # reg $t1 = j * 4 
add $t2, $a0,$t1 # reg $t2 = v + (j * 4) 
lw $t3, 0($t2) # reg $t3   = v[j]
lw $t4, 4($t2) # reg $t4   = v[j + 1]
slt $t0, $t4, $t3 # reg $t0 = 0 if $t4  $t3  
beq $t0, $zero,exit2 # go to exit2 if $t4  $t3  

...
(body of second for loop)
...

addi $s1, $s1, –1 # j -= 1
j for2tst # jump to test of inner loop

exit2:

The Procedure Call in sort
The next step is the body of the second for loop:

swap(v,j);
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Calling swap is easy enough:

jal swap

Passing Parameters in sort
The problem comes when we want to pass parameters because the sort proce-
dure needs the values in registers $a0 and $a1, yet the swap procedure needs to
have its parameters placed in those same registers. One solution is to copy the
parameters for sort into other registers earlier in the procedure, making registers
$a0 and $a1 available for the call of swap. (This copy is faster than saving and
restoring on the stack.) We first copy $a0 and $a1 into $s2 and $s3 during the
procedure:

move $s2, $a0 # copy parameter $a0 into $s2
move $s3, $a1 # copy parameter $a1 into $s3 

Then we pass the parameters to swap with these two instructions:

move $a0, $s2 # first swap parameter is v
move $a1, $s1 # second swap parameter is j

Preserving Registers in sort
The only remaining code is the saving and restoring of registers. Clearly we must
save the return address in register $ra, since sort is a procedure and is called
itself. The sort procedure also uses the saved registers $s0, $s1, $s2, and $s3,
so they must be saved. The prologue of the sort procedure is then

addi $sp,$sp,–20 # make room on stack for 5 regs
sw $ra,16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $s1 on stack
sw $s0, 0($sp) # save $s0 on stack

The tail of the procedure simply reverses all these instructions, then adds a jr to
return.

The Full Procedure sort
Now we put all the pieces together in Figure 2.36, being careful to replace refer-
ences to registers $a0 and $a1 in the for loops with references to registers $s2 and
$s3. Once again to make the code easier to follow, we identify each block of code
with its purpose in the procedure. In this example, 9 lines of the sort procedure
in C became 35 lines in the MIPS assembly language.
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Elaboration: One optimization that works with this example is procedure inlining,
mentioned in Section 2.11. Instead of passing arguments in parameters and invoking
the code with a jal instruction, the compiler would copy the code from the body of the
swap procedure where the call to swap appears in the code. Inlining would avoid four

Saving registers

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $s1 on stack
sw $s0, 0($sp) # save $s0 on stack

Procedure body

Move parameters
move $s2, $a0 # copy parameter $a0 into $s2 (save $a0)
move $s3, $a1 # copy parameter $a1 into $s3 (save $a1)

Outer loop
move $s0, $zero # i = 0

for1tst:slt $t0, $s0, $s3 #  reg $t0 = 0 if $s0 $s3 (i n)
beq $t0, $zero, exit1 # go to exit1 if $s0 $s3 (i n)

Inner loop

addi $s1, $s0, –1 # j = i – 1
for2tst:slti $t0, $s1, 0 # reg $t0 = 1 if $s1 < 0 (j < 0)

bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
sll $t1, $s1, 2 # reg $t1 = j * 4
add $t2, $s2, $t1 # reg $t2 = v + (j * 4)
lw $t3, 0($t2) # reg $t3 = v[j]
lw $t4, 4($t2) # reg $t4 = v[j + 1]
slt $t0, $t4, $t3 # reg $t0 = 0 if $t4 $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 $t3

Pass parameters
and call

move $a0, $s2 # 1st parameter of swap is v (old $a0)
move $a1, $s1 # 2nd parameter of swap is j
jal swap # swap code shown in Figure 2.34

Inner loop addi $s1, $s1, –1 # j -= 1
j for2tst # jump to test of inner loop

Outer loop exit2: addi $s0, $s0, 1 # i += 1
j for1tst # jump to test of outer loop

Restoring registers

exit1: lw $s0, 0($sp) # restore $s0 from stack
lw $s1, 4($sp) # restore $s1 from stack
lw $s2, 8($sp) # restore $s2 from stack
lw $s3,12($sp) # restore $s3 from stack
lw $ra,16($sp) # restore $ra from stack
addi $sp,$sp, 20 # restore stack pointer

Procedure return

jr $ra # return to calling routine

FIGURE 2.36 MIPS assembly version of procedure sort in Figure 2.35 on page 124.
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instructions in this example. The downside of the inlining optimization is that the com-
piled code would be bigger if the inlined procedure is called from several locations.
Such a code expansion might turn into lower performance if it increased the cache miss
rate; see Chapter 7.

The MIPS compilers always save room on the stack for the arguments in case they
need to be stored, so in reality they always decrement $sp by 16 to make room for all
four argument registers (16 bytes). One reason is that C provides a vararg option that
allows a pointer to pick, say, the third argument to a procedure. When the compiler
encounters the rare vararg, it copies the four argument registers onto the stack into
the four reserved locations. 

Figure 2.37 shows the impact of compiler optimization on sort program perfor-
mance, compile time, clock cycles, instruction count, and CPI. Note that unopti-
mized code has the best CPI and O1 optimization has the lowest instruction
count, but O3 is the fastest, reminding us that time is the only accurate measure of
program performance.

Figure 2.38 compares the impact of programming languages, compilation
versus interpretation, and algorithms on performance of sorts. The fourth col-
umn shows that the unoptimized C program is 8.3 times faster than the inter-
preted Java code for Bubble Sort. Using the Just In Time Java compiler makes
Java 2.1 times faster than the unoptimized C and within a factor of 1.13 of the
highest optimized C code. (The next section gives more details on interpreta-
tion versus compilation of Java and the Java and MIPS code for Bubble Sort.)
The ratios aren’t as close for Quicksort in column 5, presumably because it is
harder to amortize the cost of runtime compilation over the shorter execution
time. The last column demonstrates the impact of a better algorithm, offering
three orders of magnitude performance increase when sorting 100,000 items.
Even comparing interpreted Java in column 5 to the C compiler at highest opti-
mization in column 4, Quicksort beats Bubble Sort by a factor of 50 (0.05 ¥
2468 or 123 versus 2.41).

Understanding
Program
Performance

gcc optimization
Relative

performance
Clock cycles 

(millions)
Instruction count 

(millions) CPI

none 1.00 158,615  114,938  1.38 

O1 (medium) 2.37  66,990 37,470  1.79 

O2 (full) 2.38  66,521 39,993  1.66 

O3 (procedure integration) 2.41  65,747 44,993  1.46 

FIGURE 2.37 Comparing performance, instruction count, and CPI using compiler optimi-
zation for Bubble Sort. The programs sorted 100,000 words with the array initialized to random values.
These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus with 2
GB of PC2100 DDR SDRAM memory. It used Linux version 2.4.20.
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This section is for readers interested in seeing how an objected-oriented language
like Java executes on a MIPS architecture. It shows the Java bytecodes used for
interpretation and the MIPS code for the Java version of some of the C segments
in prior sections, including Bubble Sort. The rest of this section is on the CD.

A challenging topic for any new programmer is understanding pointers. Compar-
ing assembly code that uses arrays and array indices to the assembly code that uses
pointers offers insights about pointers. This section shows C and MIPS assembly
versions of two procedures to clear a sequence of words in memory: one using
array indices and one using pointers. Figure 2.39 shows the two C procedures. 

The purpose of this section is to show how pointers map into MIPS instructions,
and not to endorse a dated programming style. We’ll see the impact of modern com-
piler optimization on these two procedures at the end of the section.

Array Version of Clear

Let’s start with the array version, clear1, focusing on the body of the loop and
ignoring the procedure linkage code. We assume that the two parameters array and
size are found in the registers $a0 and $a1, and that i is allocated to register $t0.

Language Execution method Optimization
Bubble Sort relative 

performance
Quicksort relative 

performance
Speedup Quicksort 

vs. Bubble Sort

C compiler none 1.00 1.00 2468

compiler O1 2.37 1.50 1562

compiler O2 2.38 1.50 1555

compiler O3 2.41 1.91 1955

Java interpreter — 0.12 0.05 1050

Just In Time compiler — 2.13 0.29 338

FIGURE 2.38 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative to
unoptimized C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and execution
option. These programs were run on the same system as Figure 2.37. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspot version 1.3.1.

Implementing an Object-Oriented 
Language 2.14

2.15 Arrays versus Pointers 2.15

2.14

object-oriented language A
programming language that is 
oriented around objects rather 
than actions, or data versus 
logic.
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The initialization of i, the first part of the for loop, is straightforward:

move $t0,$zero # i = 0 (register $t0 = 0)

To set array[i] to 0 we must first get its address. Start by multiplying i by 4 to
get the byte address:

loop1: sll $t1,$t0,2 # $t1 = i * 4

Since the starting address of the array is in a register, we must add it to the index
to get the address of array[i] using an add instruction:

add $t2,$a0,$t1 # $t2 = address of array[i]

(This example is an ideal situation for indexed addressing; see  In More Depth
in Section 2.20 on page 147.) Finally, we can store 0 in that address:

sw $zero, 0($t2) # array[i] = 0

This instruction is the end of the body of the loop, so the next step is to increment i:

addi $t0,$t0,1 # i = i + 1

FIGURE 2.39 Two C procedures for setting an array to all zeros. Clear1 uses indices, while
clear2 uses pointers. The second procedure needs some explanation for those unfamiliar with C. The
address of a variable is indicated by &, and referring to the object pointed to by a pointer is indicated by *.
The declarations declare that array and p are pointers to integers. The first part of the for loop in clear2
assigns the address of the first element of array to the pointer p. The second part of the for loop tests to
see if the pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last
part of the for loop, means moving the pointer to the next sequential object of its declared size. Since p is a
pointer to integers, the compiler will generate MIPS instructions to increment p by four, the number of
bytes in a MIPS integer. The assignment in the loop places 0 in the object pointed to by p.

clear1(int array[], int size) 
{
  int i;
  for (i = 0; i < size; i += 1) 

array[i] = 0;
}

clear2(int *array, int size) 
{
  int *p;
  for (p = &array[0]; p < &array[size]; p = p + 1) 

*p = 0;
}



132 Chapter 2 Instructions: Language of the Computer

The loop test checks if i is less than size:

slt $t3,$t0,$a1 # $t3 = (i < size)
bne $t3,$zero,loop1 # if (i < size) go to loop1

We have now seen all the pieces of the procedure. Here is the MIPS code for
clearing an array using indices:

move $t0,$zero # i = 0
loop1: sll $t1,$t0,2 # $t1 = i * 4

add $t2,$a0,$t1 # $t2 = address of array[i]
sw $zero, 0($t2) # array[i] = 0
addi $t0,$t0,1 # i = i + 1
slt $t3,$t0,$a1 # $t3 = (i < size)
bne $t3,$zero,loop1 # if (i < size) go to loop1

(This code works as long as size is greater than 0.)

Pointer Version of Clear

The second procedure that uses pointers allocates the two parameters array and
size to the registers $a0 and $a1 and allocates p to register $t0. The code for the
second procedure starts with assigning the pointer p to the address of the first ele-
ment of the array:

move $t0,$a0  # p = address of array[0]

The next code is the body of the for loop, which simply stores 0 into p:

loop2: sw $zero,0($t0)  # Memory[p] = 0

This instruction implements the body of the loop, so the next code is the iteration
increment, which changes p to point to the next word:

addi $t0,$t0,4  # p = p + 4

Incrementing a pointer by 1 means moving the pointer to the next sequential
object in C. Since p is a pointer to integers, each of which use 4 bytes, the compiler
increments p by 4.

The loop test is next. The first step is calculating the address of the last element
of array. Start with multiplying size by 4 to get its byte address:

add $t1,$a1,$a1  # $t1 = size * 2
add $t1,$t1,$t1  # $t1 = size * 4

and then we add the product to the starting address of the array to get the address
of the first word after the array:
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add $t2,$a0,$t1 # $t2 = address of array[size]

The loop test is simply to see if p is less than the last element of array:

slt $t3,$t0,$t2 # $t3 = (p<&array[size])
bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

With all the pieces completed, we can show a pointer version of the code to
zero an array:

move $t0,$a0 # p = address of array[0]
loop2:sw$zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4 # p = p + 4
add $t1,$a1,$a1 # $t1 = size * 2
add $t1,$t1,$t1 # $t1 = size * 4
add $t2,$a0,$t1 # $t2 = address of array[size]
slt $t3,$t0,$t2 # $t3 = (p<&array[size])
bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

As in the first example, this code assumes size is greater than 0.
Note that this program calculates the address of the end of the array in every

iteration of the loop, even though it does not change. A faster version of the code
moves this calculation outside the loop:

move $t0,$a0  # p = address of array[0]
sll $t1,$a1,2  # $t1 = size * 4
add $t2,$a0,$t1  # $t2 = address of array[size]

loop2:sw $zero,0($t0)  # Memory[p] = 0
addi $t0,$t0,4  # p = p + 4
slt $t3,$t0,$t2  # $t3 = (p<&array[size])
bne $t3,$zero,loop2 # if (p<&array[size]) go to loop2

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the difference between
array indices and pointers (the changes introduced by the pointer version are
highlighted):

move $t0,$zero # i = 0

loop1:sll $t1,$t0,2 # $t1 = i * 4

add $t2,$a0,$t1 # $t2 = &array[i]

sw $zero, 0($t2) # array[i] = 0

addi $t0,$t0,1 # i = i + 1

slt $t3,$t0,$a1 # $t3 = (i < size)

bne $t3,$zero,loop1# if () go to loop1

move $t0,$a0 # p = & array[0]

sll $t1,$a1,2 # $t1 = size * 4

add $t2,$a0,$t1 # $t2 = &array[size]

loop2:sw $zero,0($t0) # Memory[p] = 0

addi $t0,$t0,4 # p = p + 4

slt $t3,$t0,$t2 # $t3=(p<&array[size])

bne $t3,$zero,loop2# if () go to loop2
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The version on the left must have the “multiply” and add inside the loop because i
is incremented and each address must be recalculated from the new index; the
memory pointer version on the right increments the pointer p directly. The
pointer version reduces the instructions executed per iteration from 7 to 4. This
manual optimization corresponds to the compiler optimization of strength reduc-
tion (shift instead of multiply) and induction variable elimination (eliminating
array address calculations within loops). 

Elaboration: The C compiler would add a test to be sure that size is greater than 0.
One way would be to add a jump just before the first instruction of the loop to the slt
instruction.

Designers of instruction sets sometimes provide more powerful operations than
those found in MIPS. The goal is generally to reduce the number of instructions
executed by a program. The danger is that this reduction can occur at the cost of
simplicity, increasing the time a program takes to execute because the instructions
are slower. This slowness may be the result of a slower clock cycle time or of
requiring more clock cycles than a simpler sequence (see Section 4.8). 

The path toward operation complexity is thus fraught with peril. To avoid these
problems, designers have moved toward simpler instructions. Section 2.17 dem-
onstrates the pitfalls of complexity.

The Intel IA-32
MIPS was the vision of a single small group in 1985; the pieces of this architecture
fit nicely together, and the whole architecture can be described succinctly. Such is
not the case for the IA-32; it is the product of several independent groups who
evolved the architecture over almost 20 years, adding new features to the original

Understanding
Program

Performance

People used to be taught to use pointers in C to get greater efficiency than avail-
able with arrays: “Use pointers, even if you can’t understand the code.” Modern
optimizing compilers can produce just as good code for the array version. Most
programmers today prefer that the compiler do the heavy lifting.

2.16 Real Stuff: IA-32 Instructions 2.16

Beauty is altogether in the 
eye of the beholder.

Margaret Wolfe Hungerford, 
Molly Bawn, 1877
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instruction set as someone might add clothing to a packed bag. Here are impor-
tant IA-32 milestones:

■ 1978: The Intel 8086 architecture was announced as an assembly-language-
compatible extension of the then-successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Unlike MIPS, the registers have dedicated uses, and hence the 8086 is not con-
sidered a general-purpose register architecture. 

■ 1980: The Intel 8087 floating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 floating-point instructions. Instead
of using registers, it relies on a stack (see Section 2.19 and Section 3.9). 

■ 1982: The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory-mapping and protection
model (see Chapter 7), and by adding a few instructions to round out the
instruction set and to manipulate the protection model.

■ 1985: The 80386 extended the 80286 architecture to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the
80386 added new addressing modes and additional operations. The added
instructions make the 80386 nearly a general-purpose register machine. The
80386 also added paging support in addition to segmented addressing (see
Chapter 7). Like the 80286, the 80386 has a mode to execute 8086 programs
without change. 

■ 1989–95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium Pro
in 1995 were aimed at higher performance, with only four instructions
added to the user-visible instruction set: three to help with multiprocessing
(Chapter 9) and a conditional move instruction. 

■ 1997: After the Pentium and Pentium Pro were shipping, Intel announced
that it would expand the Pentium and the Pentium Pro architectures with
MMX (Multi Media Extensions). This new set of 57 instructions uses the
floating-point stack to accelerate multimedia and communication applica-
tions. MMX instructions typically operate on multiple short data elements
at a time, in the tradition of single instruction, multiple data (SIMD) archi-
tectures (see Chapter 9). Pentium II did not introduce any new instructions.

■ 1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD
Extensions) as part of Pentium III. The primary changes were to add eight
separate registers, double their width to 128 bits, and add a single-precision
floating-point data type. Hence four 32-bit floating-point operations can be
performed in parallel. To improve memory performance, SSE included
cache prefetch instructions plus streaming store instructions that bypass the
caches and write directly to memory.

general-purpose register 
(GPR) A register that can be 
used for addresses or for data 
with virtually any instruction.
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■ 2001: Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit
floating-point operations in parallel. Almost all of these 144 instructions are
versions of existing MMX and SSE instructions that operate on 64 bits of
data in parallel. Not only does this change enable more multimedia opera-
tions, it gives the compiler a different target for floating-point operations
than the unique stack architecture. Compilers can choose to use the eight
SSE registers as floating-point registers like those found in other computers.
This change has boosted floating-point performance on the Pentium 4, the
first microprocessor to include SSE2 instructions. 

■ 2003: A company other than Intel enhanced the IA-32 architecture this time.
AMD announced a set of architectural extensions to increase the address space
from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address space
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases
the number of registers to 16 and increases the number of 128-bit SSE regis-
ters to 16. The primary ISA change comes from adding a new mode called
long mode that redefines the execution of all IA-32 instructions with 64-bit
addresses and data. To address the larger number of registers, it adds a new
prefix to instructions. Depending how you count, long mode also adds 4 to 10
new instructions and drops 27 old ones. PC-relative data addressing is another
extension. AMD64 still has a mode that is identical to IA-32 (legacy mode) plus
a mode that restricts user programs to IA-32 but allows operating systems to
use AMD64 (compatability mode). These modes allow a more graceful transi-
tion to 64-bit addressing than the HP/Intel IA-64 architecture.

■ 2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory
64 Technology (EM64T). The major difference is that Intel added a 128-bit
atomic compare and swap instruction, which probably should have been
included in AMD64. At the same time, Intel announced another generation of
media extensions. SSE3 adds 13 instructions to support complex arithmetic,
graphics operations on arrays of structures, video encoding, floating point
conversion, and thread synchronization (see Chapter 9). AMD will offer SSE3
in subsequent chips and it will almost certainly add the missing atomic swap
instruction to AMD64 to maintain binary compatibility with Intel.

This history illustrates the impact of the “golden handcuffs” of compatibility on
the IA-32, as the existing software base at each step was too important to jeopar-
dize with significant architectural changes. 

Whatever the artistic failures of the IA-32, keep in mind that there are more
instances of this architectural family on desktops than of any other architecture,
increasing by 100 million per year. Nevertheless, this checkered ancestry has led to
an architecture that is difficult to explain and impossible to love. 

Brace yourself for what you are about to see! Do not try to read this section
with the care you would need to write IA-32 programs; the goal instead is to give
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you familiarity with the strengths and weaknesses of the world’s most popular
desktop architecture.

Rather than show the entire 16-bit and 32-bit instruction set, in this section we
concentrate on the 32-bit subset that originated with the 80386, as this portion of
the architecture is what is used. We start our explanation with the registers and
addressing modes, move on to the integer operations, and conclude with an
examination of instruction encoding.

IA-32 Registers and Data Addressing Modes 
The registers of the 80386 shows the evolution of the instruction set (Figure 2.40).
The 80386 extended all 16-bit registers (except the segment registers) to 32 bits,

FIGURE 2.40 The 80386 register set. Starting with the 80386, the top eight registers were extended 
to 32 bits and could also be used as general-purpose registers.

GPR 0

GPR 1

GPR 2

GPR 3

GPR 4

GPR 5

GPR 6

GPR 7

Code segment pointer

Stack segment pointer (top of stack)

Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

Use
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EAX

ECX

EDX

EBX
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EBP

ESI

EDI
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SS

DS

ES

FS

GS
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EFLAGS
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prefixing an E to their name to indicate the 32-bit version. We’ll refer to them
generically as GPRs (general-purpose registers). The 80386 contains only eight
GPRs. This means MIPS programs can use four times as many. 

The arithmetic, logical, and data transfer instructions are two-operand instruc-
tions that allow the combinations shown in Figure 2.41. There are two important
differences here. The IA-32 arithmetic and logical instructions must have one
operand act as both a source and a destination; MIPS allows separate registers for
source and destination. This restriction puts more pressure on the limited regis-
ters, since one source register must be modified. The second important difference
is that one of the operands can be in memory. Thus virtually any instruction may
have one operand in memory, unlike MIPS and PowerPC.

The seven data memory-addressing modes, described in detail below, offer two
sizes of addresses within the instruction. These so-called displacements can be 8
bits or 32 bits. 

Although a memory operand can use any addressing mode, there are restric-
tions on which registers can be used in a mode. Figure 2.42 shows the IA-32
addressing modes and which GPRs cannot be used with that mode, plus how you
would get the same effect using MIPS instructions. 

IA-32 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The
80386 adds 32-bit addresses and data (double words) in the IA-32. The data type
distinctions apply to register operations as well as memory accesses. Almost every
operation works on both 8-bit data and on one longer data size. That size is deter-
mined by the mode and is either 16 bits or 32 bits. 

Clearly some programs want to operate on data of all three sizes, so the 80386
architects provide a convenient way to specify each version without expanding
code size significantly. They decided that either 16-bit or 32-bit data dominates

Source/destination operand type Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

FIGURE 2.41 Instruction types for the arithmetic, logical, and data transfer instructions.
The IA-32 allows the combinations shown. The only restriction is the absence of a memory-memory mode.
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.40
(not EIP or EFLAGS). 
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most programs, and so it made sense to be able to set a default large size. This
default data size is set by a bit in the code segment register. To override the default
data size, an 8-bit prefix is attached to the instruction to tell the machine to use the
other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default seg-
ment register, lock the bus to support a semaphore (see Chapter 9), or repeat the
following instruction until the register ECX counts down to 0. This last prefix was
intended to be paired with a byte move instruction to move a variable number of
bytes. The 80386 also added a prefix to override the default address size.

The IA-32 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal
arithmetic operations

3. Control flow, including conditional branches, unconditional jumps, calls,
and returns

4. String instructions, including string move and string compare

The first two categories are unremarkable, except that the arithmetic and
logic instruction operations allow the destination to be either a register or a
memory location. Figure 2.43 shows some typical IA-32 instructions and their
functions.

Mode Description
Register

restrictions MIPS equivalent

Register indirect Address is in a register. not ESP or EBP lw $s0,0($s1)

Based mode with 8- or 32-bit 
displacement

Address is contents of base register plus 
displacement.

not ESP or EBP lw $s0,100($s1) # £16-bit
       # displacement

Base plus scaled index The address is
Base + (2Scale x Index) 

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

mul $t0,$s2, 4
add $t0,$t0,$s1
lw $s0,0($t0)

Base plus scaled index with
8- or 32-bit displacement

The address is
Base + (2Scale x Index) + displacement

where Scale has the value 0, 1, 2, or 3.

Base: any GPR
Index: not ESP

mul $t0,$s2, 4
add $t0,$t0,$s1
lw $s0,100($t0) # £16-bit

# displacement

FIGURE 2.42 IA-32 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled Index
addressing mode, not found in MIPS or the PowerPC, is included to avoid the multiplies by four (scale factor of 2) to turn an index in a register into a
byte address (see Figures 2.34 and 2.36). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. Scale factor of 0 means the
address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode would need two more
instructions: a lui to load the upper 16 bits of the displacement and an add to sum the upper address with the base register $s1. (Intel gives two dif-
ferent names to what is called Based addressing mode—Based and Indexed—but they are essentially identical and we combine them here.)
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Conditional branches on the IA-32 are based on condition codes or flags.
Condition codes are set as a side effect of an operation; most are used to com-
pare the value of a result to 0. Branches then test the condition codes. The
argument for condition codes is that they occur as part of normal operations
and are faster to test than it is to compare registers, as MIPS does for beq and
bne. The argument against condition codes is that the compare to 0 extends
the time of the operation, since it uses extra hardware after the operation, and
that often the programmer must use compare instructions to test a value that is
not the result of an operation. Moreover, PC-relative branch addresses must be
specified in the number of bytes, since unlike MIPS, 80386 instructions are not
all 4 bytes in length.

String instructions are part of the 8080 ancestry of the IA-32 and are not com-
monly executed in most programs. They are often slower than equivalent software
routines (see the fallacy on page 143).

Figure 2.44 lists some of the integer IA-32 instructions. Many of the instruc-
tions are available in both byte and word formats. 

IA-32 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80836 is complex,
with many different instruction formats. Instructions for the 80386 may vary
from 1 byte, when there are no operands, up to 17 bytes. 

Figure 2.45 shows the instruction format for several of the example instructions
in Figure 2.43. The opcode byte usually contains a bit saying whether the operand is

Instruction Function

JE name if equal(condition code) {EIP=name};
EIP–128 £ name < EIP+128

JMP  name EIP=name

CALL name SP=SP–4; M[SP]=EIP+5; EIP=name;

MOVW EBX,[EDI+45] EBX=M[EDI+45]

PUSH ESI SP=SP–4; M[SP]=ESI

POP EDI EDI=M[SP]; SP=SP+4

ADD EAX,#6765 EAX= EAX+6765

TEST EDX,#42 Set condition code (flags) with EDX and 42

MOVSL M[EDI]=M[ESI];
EDI=EDI+4; ESI=ESI+4

FIGURE 2.43 Some typical IA-32 instructions and their functions. A list of frequent operations
appears in Figure 2.44. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)
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8 bits or 32 bits. For some instructions, the opcode may include the addressing
mode and the register; this is true in many instructions that have the form “register
= register op immediate.” Other instructions use a “postbyte” or extra opcode byte,
labeled “mod, reg, r/m,” which contains the addressing mode information. This
postbyte is used for many of the instructions that address memory. The base plus
scaled index mode uses a second postbyte, labeled “sc, index, base.”

Figure 2.46 shows the encoding of the two postbyte address specifiers for both
16-bit and 32-bit mode. Unfortunately, to fully understand which registers and
which addressing modes are available, you need to see the encoding of all address-
ing modes and sometimes even the encoding of the instructions.

Instruction Meaning

Control Conditional and unconditional branches

JNZ, JZ Jump if condition to EIP + 8-bit offset; JNE (for JNZ), JE (for JZ) are alternative 

names

JMP Unconditional jump—8-bit or 16-bit offset 

CALL Subroutine call—16-bit offset; return address pushed onto stack

RET Pops return address from stack and jumps to it

LOOP Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX 0

Data transfer Move data between registers or between register and memory

MOV Move between two registers or between register and memory

PUSH, POP Push source operand on stack; pop operand from stack top to a register

LES Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

ADD, SUB Add source to destination; subtract source from destination; register-memory 

format

CMP Compare source and destination; register-memory format

SHL, SHR, RCR Shift left; shift logical right; rotate right with carry condition code as fill

CBW Convert byte in 8 rightmost bits of EAX to 16-bit word in right of EAX

TEST Logical AND of source and destination sets condition codes

INC, DEC Increment destination, decrement destination

OR, XOR Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefix

MOVS Copies from string source to destination by incrementing ESI and EDI; may be 

repeated

LODS Loads a byte, word, or double word of a string into the EAX register

FIGURE 2.44 Some typical operations on the IA-32. Many operations use register-memory for-
mat, where either the source or the destination may be memory and the other may be a register or immedi-
ate operand.
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IA-32 Conclusion

Intel had a 16-bit microprocessor two years before its competitors’ more elegant
architectures, such as the Motorola 68000, and this headstart led to the selection
of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge
that the IA-32 is more difficult to build than machines like MIPS, but the much

FIGURE 2.45 Typical IA-32 instruction formats. Figure 2.46 shows the encoding of the postbyte.
Many instructions contain the 1-bit field w, which says whether the operation is a byte or double word. The d
field in MOV is used in instructions that may move to or from memory and shows the direction of the move.
The ADD instruction requires 32 bits for the immediate field because in 32-bit mode the immediates are either
8 bits or 32 bits. The immediate field in the TEST is 32 bits long because there is no 8-bit immediate for test in
32-bit mode. Overall, instructions may vary from 1 to 17 bytes in length. The long length comes from extra 1-
byte prefixes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 2 bytes,
and using the scaled index mode specifier, which adds another byte. 

a. JE EIP + displacement

b. CALL

c. MOV      EBX, [EDI + 45]

d. PUSH ESI

e. ADD EAX, #6765

f. TEST EDX, #42

ImmediatePostbyteTEST

ADD

PUSH

MOV

CALL

JE

w

w ImmediateReg

Reg

wd Displacement
r/m

Postbyte

Offset

DisplacementCondi-
tion

4 4 8

8 32

6 81 1 8

5 3

4 323 1

7 321 8



2.17 Fallacies and Pitfalls 143

larger market means Intel can afford more resources to help overcome the added
complexity. What the IA-32 lacks in style is made up in quantity, making it beauti-
ful from the right perspective.

The saving grace is that the most frequently used IA-32 architectural components
are not too difficult to implement, as Intel has demonstrated by rapidly improving
performance of integer programs since 1978. To get that performance, compilers
must avoid the portions of the architecture that are hard to implement fast.

Fallacy: More powerful instructions mean higher performance. 

Part of the power of the Intel IA-32 is the prefixes that can modify the execu-
tion of the following instruction. One prefix can repeat the following instruc-
tion until a counter counts down to 0. Thus, to move data in memory, it
would seem that the natural instruction sequence is to use move with the
repeat prefix to perform 32-bit memory-to-memory moves. 

An alternative method, which uses the standard instructions found in all com-
puters, is to load the data into the registers and then store the registers back to

reg w = 0 w = 1 r/m mod = 0 mod = 1 mod = 2 mod = 3

16b 32b 16b 32b 16b 32b 16b 32b

0 AL AX EAX 0 addr=BX+SI =EAX same same same same same

1 CL CX ECX 1 addr=BX+DI =ECX addr as addr as addr as addr as as

2 DL DX EDX 2 addr=BP+SI =EDX mod=0 mod=0 mod=0 mod=0 reg

3 BL BX EBX 3 addr=BP+SI =EBX + disp8 + disp8 + disp16 + disp32 field

4 AH SP ESP 4 addr=SI =(sib) SI+disp8 (sib)+disp8 SI+disp8 (sib)+disp32 “

5 CH BP EBP 5 addr=DI =disp32 DI+disp8 EBP+disp8 DI+disp16 EBP+disp32 “

6 DH SI ESI 6 addr=disp16 =ESI BP+disp8 ESI+disp8 BP+disp16 ESI+disp32 “

7 BH DI EDI 7 addr=BX =EDI BX+disp8 EDI+disp8 BX+disp16 EDI+disp32 “

FIGURE 2.46 The encoding of the first address specifier of the IA-32, “mod, reg, r/m.” The first four columns show the encoding of
the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386). The
remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the address
size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod = 1 adding an 8-bit
displacement and mod = 2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptions are r/m = 6 when mod = 1 or
mod = 2 in 16-bit mode selects BP plus the displacement; r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects EBP plus displacement; and r/m =
4 in 32-bit mode when mod 3, where (sib) means use the scaled index mode shown in Figure 2.42. When mod = 3, the r/m field indicates a register,
using the same encoding as the reg field combined with the w bit.

2.17 Fallacies and Pitfalls 2.17
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memory. This second version of this program, with the code replicated to reduce
loop overhead, copies at about 1.5 times faster. A third version, which used the
larger floating-point registers instead of the integer registers of the IA-32, copies at
about 2.0 times faster than the complex instruction.

Fallacy: Write in assembly language to obtain the highest performance. 

At one time compilers for programming languages produced naive instruction
sequences; the increasing sophistication of compilers means the gap between
compiled code and code produced by hand is closing fast. In fact, to compete
with current compilers, the assembly language programmer needs to thor-
oughly understand the concepts in Chapters 6 and 7 (processor pipelining and
memory hierarchy).

This battle between compilers and assembly language coders is one situation
in which humans are losing ground. For example, C offers the programmer a
chance to give a hint to the compiler about which variables to keep in registers
versus spilled to memory. When compilers were poor at register allocation, such
hints were vital to performance. In fact, some C textbooks spent a fair amount
of time giving examples that effectively use register hints. Today’s C compilers
generally ignore such hints because the compiler does a better job at allocation
than the programmer.

Even if writing by hand resulted in faster code, the dangers of writing in assem-
bly language are longer time spent coding and debugging, the loss in portability,
and the difficulty of maintaining such code. One of the few widely accepted axi-
oms of software engineering is that coding takes longer if you write more lines,
and it clearly takes many more lines to write a program in assembly language than
in C. Moreover, once it is coded, the next danger is that it will become a popular
program. Such programs always live longer than expected, meaning that someone
will have to update the code over several years and make it work with new releases
of operating systems and new models of machines. Writing in higher-level lan-
guage instead of assembly language not only allows future compilers to tailor the
code to future machines, it also makes the software easier to maintain and allows
the program to run on more brands of computers. 

Pitfall: Forgetting that sequential word addresses in machines with byte address-
ing do not differ by one. 

Many an assembly language programmer has toiled over errors made by assuming
that the address of the next word can be found by incrementing the address in a
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure. 

A common mistake in dealing with pointers is to pass a result from a procedure that
includes a pointer to an array that is local to that procedure. Following the stack dis-
cipline in Figure 2.16, the memory that contains the local array will be reused as
soon as the procedure returns. Pointers to automatic variables can lead to chaos.
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The two principles of the stored-program computer are the use of instructions that
are indistinguishable from numbers and the use of alterable memory for pro-
grams. These principles allow a single machine to aid environmental scientists,
financial advisers, and novelists in their specialties. The selection of a set of
instructions that the machine can understand demands a delicate balance among
the number of instructions needed to execute a program, the number of clock
cycles needed by an instruction, and the speed of the clock. Four design principles
guide the authors of instruction sets in making that delicate balance:

1. Simplicity favors regularity. Regularity motivates many features of the MIPS
instruction set: keeping all instructions a single size, always requiring three
register operands in arithmetic instructions, and keeping the register fields
in the same place in each instruction format.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 regis-
ters rather than many more. 

3. Make the common case fast. Examples of making the common MIPS case
fast include PC-relative addressing for conditional branches and immediate
addressing for constant operands.

4. Good design demands good compromises. One MIPS example was the com-
promise between providing for larger addresses and constants in instruc-
tions and keeping all instructions the same length.

Above this machine level is assembly language, a language that humans can
read. The assembler translates it into the binary numbers that machines can
understand, and it even “extends” the instruction set by creating symbolic instruc-
tions that aren’t in the hardware. For instance, constants or addresses that are too
big are broken into properly sized pieces, common variations of instructions are
given their own name, and so on. Figure 2.47 lists the MIPS instructions we have
covered so far, both real and pseudoinstructions. 

These instructions are not born equal; the popularity of the few dominates the
many. For example, Figure 2.48 shows the popularity of each class of instructions
for SPEC2000. The varying popularity of instructions plays an important role in
the chapters on performance, datapath, control, and pipelining.

Each category of MIPS instructions is associated with constructs that appear in
programming languages:

2.18 Concluding Remarks 2.18

Less is more.

Robert Browning, Andrea del 
Sarto, 1855
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MIPS instructions Name Format Pseudo MIPS Name Format

add add R move move R

subtract sub R multiply mult R

add immediate addi I multiply immediate multi I

load word lw I load immediate li I

store word sw I branch less than blt I

load half lh I branch less than or equal ble I

store half sh I branch greater than bgt I

load byte lb I branch greater than or equal bge I

store byte sb I

load upper immediate lui I

and and R

or or R

nor nor R

and immediate andi I

or immediate ori I

shift left logical sll R

shift right logical srl R

branch on equal beq I

branch on not equal bne I

set less than slt R

set less than 

immediate

slti I

jump j J

jump register jr R

jump and link jal J

FIGURE 2.47 The MIPS instruction set covered so far, with the real MIPS instructions on
the left and the pseudoinstructions on the right. Appendix A (Section A.10, on page A-45)
describes the full MIPS architecture. Figure 2.27 shows more details of the MIPS architecture revealed in
this chapter.

Instruction class MIPS examples HLL correspondence

Frequency

Integer Ft. pt.

Arithmetic add, sub, addi operations in assignment statements 24% 48%

Data transfer lw, sw, lb, sb, lui references to data structures, such as arrays 36% 39%

Logical and, or, nor, andi, ori,

sll, srl

operations in assignment statements 18% 4%

Conditional branch beq, bne, slt, slti if statements and loops 18% 6%

Jump j, jr, jal procedure calls, returns, and case/switch statements 3% 0%

FIGURE 2.48 MIPS instruction classes, examples, correspondence to high-level program language constructs, and percent-
age of MIPS instructions executed by category for average of five SPEC2000 integer programs and five SPEC2000 floating
point programs. Figure 3.26 shows the percentage of the individual MIPS instructions executed.
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■ The arithmetic instructions correspond to the operations found in assign-
ment statements. 

■ Data transfer instructions are most likely to occur when dealing with data
structures like arrays or structures. 

■ The conditional branches are used in if statements and in loops. 

■ The unconditional jumps are used in procedure calls and returns and for
case/switch statements.

After we explain computer arithmetic in Chapter 3, we reveal more of the MIPS
instruction set architecture.

This section surveys the history of instruction set architraves over time, and we
give a short history of programming languages and compilers. ISAs include accu-
mulator architectures, general-purpose register architectures, stack architectures,
and a brief history of the IA-32. We also review the controversial subjects of high-
level-language computer architectures and reduced instruction set computer
architectures. The history of programming languages includes Fortran, Lisp,
Algol, C, Cobol, Pascal, Simula, Smalltalk, C++, and Java, and the history of com-
pilers includes the key milestones and the pioneers who achieved them. The rest
of this section  is on the CD.

Appendix A describes the MIPS simulator, which is helpful for these exercises.
Although the simulator accepts pseudoinstructions, try not to use pseudoinstruc-
tions for any exercises that ask you to produce MIPS code. Your goal should be to
learn the real MIPS instruction set, and if you are asked to count instructions,
your count should reflect the actual instructions that will be executed and not the
pseudoinstructions. 

Historical Perspective and 
Further Reading 2.19

2.20 Exercises 2.20

2.19
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There are some cases where pseudoinstructions must be used (for example, the
la instruction when an actual value is not known at assembly time). In many
cases, they are quite convenient and result in more readable code (for example, the
li and move instructions). If you choose to use pseudoinstructions for these rea-
sons, please add a sentence or two to your solution stating which pseudoinstruc-
tions you have used and why.

2.1 [15] <§2.4>   For More Practice: Instruction Formats

2.2 [5] <§2.4> What binary number does this hexadecimal number represent:
7fff fffahex? What decimal number does it represent?

2.3 [5] <§2.4> What hexadecimal number does this binary number represent:
11001010111111101111101011001110two?

2.4 [5] <§2.4> Why doesn’t MIPS have a subtract immediate instruction?

2.5 [15] <§2.5>  For More Practice: MIPS Code and Logical Operations

2.6 [15] <§2.5> Some computers have explicit instructions to extract an arbitrary
field from a 32-bit register and to place it in the least significant bits of a register.
The figure below shows the desired operation:

Find the shortest sequence of MIPS instructions that extracts a field for the con-
stant values i = 5 and j = 22 from register $t3 and places it in register $t0. (Hint:
It can be done in two instructions.)

2.7 [10] <§2.5>  For More Practice: Logical Operations in MIPS

2.8 [20] <§2.5>  In More Depth: Bit Fields in C

2.9 [20] <§2.5>  In More Depth: Bit Fields in C

2.10 [20] <§2.5>  In More Depth: Jump Tables

2.11 [20] <§2.5>  In More Depth: Jump Tables

2.12 [20] <§2.5>  In More Depth: Jump Tables

31 0ij

field

31 0

field0... 0 0 0 0

31 – j bits i + 1 bitsj – i bits

j – i bits32 – (j – i) bits
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2.13 [10] <§2.6> Construct a control flow graph (like the one shown in Fig. 2.11)
for the following section of C or Java code:

      for (i=0; i<x; i=i+1)

y = y + i;

2.14 [10] <§2.6>  For More Practice: Writing Assembly Code

2.15 [25] <§2.7> Implement the following C code in MIPS, assuming that
set_array is the first function called:

int i;
void set_array(int num) {

int array[10];
for (i=0; i<10; i++) {

array[i] = compare(num, i);
}

}
int compare(int a, int b) {

if (sub(a, b) >= 0)
return 1;

else
return 0;

}
int sub (int a, int b) {

return a-b;
}

Be sure to handle the stack and frame pointers appropriately. The variable code
font is allocated on the stack, and i corresponds to $s0. Draw the status of the
stack before calling set_array and during each function call. Indicate the names
of registers and variables stored on the stack and mark the location of $sp and
$fp.

2.16 [30] <§2.7>  In More Depth: Tail Recursion

2.17 [30] <§2.7>  In More Depth: Tail Recursion

2.18 [20] <§2.7>  In More Depth: Tail Recursion

2.19 [5] <§2.8> Iris and Julie are students in computer engineering who are
learning about ASCII and Unicode character sets.  Help them by spelling their
names and your first name in both ASCII (using decimal notation) and Unicode
(using hex notation and the Basic Latin character set).
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2.20 [10] <§2.8> Compute the decimal byte values that form the null-terminated
ASCII representation of the following string:

A byte is 8 bits

2.21 [30] <§§2.7, 2.8>  For More Practice: MIPS Coding and ASCII Strings

2.22 [20] <§§2.7, 2.8>  For More Practice: MIPS Coding and ASCII Strings

2.23 [20] <§§2.7, 2.8> {Ex. 2.22}  For More Practice: MIPS Coding and ASCII
Strings

2.24 [30] <§§2.7, 2.8>  For More Practice: MIPS Coding and ASCII Strings

2.25 <§2.8> For More Practice: Comparing C/Java to MIPS

2.26 <§2.8> For More Practice: Translating MIPS to C

2.27 <§2.8> For More Practice: Understanding MIPS Code

2.28 <§2.8> For More Practice: Understanding MIPS Code

2.29 [5] <§§2.3, 2.6, 2.9> Add comments to the following MIPS code and de-
scribe in one sentence what it computes.  Assume that $a0 and $a1 are used for
the input and both initially contain the integers a and b, respectively. Assume that
$v0 is used for the output.

add $t0, $zero, $zero
loop: beq $a1, $zero, finish

add $t0, $t0, $a0
sub $a1, $a1, 1
j loop

finish: addi $t0, $t0, 100
add $v0, $t0, $zero

2.30 [12] <§§2.3, 2.6, 2.9> The following code fragment processes two arrays and
produces an important value in register $v0.  Assume that each array consists of
2500 words indexed 0 through 2499, that the base addresses of the arrays are stored
in $a0 and $a1 respectively, and their sizes (2500) are stored in $a2 and $a3, re-
spectively.  Add comments to the code and describe in one sentence what this code
does.  Specifically, what will be returned in $v0?

sll $a2, $a2, 2
sll $a3, $a3, 2

      add $v0, $zero, $zero
      add $t0, $zero, $zero
      outer: add $t4, $a0, $t0
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      lw $t4, 0($t4)
      add $t1, $zero, $zero
      inner: add $t3, $a1, $t1
      lw $t3, 0($t3)
      bne $t3, $t4, skip
      addi $v0, $v0, 1
      skip: addi$ t1, $t1, 4
      bne $t1, $a3, inner
      addi $t0, $t0, 4

bne $t0, $a2, outer

2.31 [10] <§§2.3, 2.6, 2.9> Assume that the code from Exercise 2.30 is run on a ma-
chine with a 2 GHz clock that requires the following number of cycles for each instruc-
tion:

In the worst case, how many seconds will it take to execute this code?

2.32 [5] <§2.9> Show the single MIPS instruction or minimal sequence of in-
structions for this C statement:

b = 25 | a;

Assume that a corresponds to register $t0 and b corresponds to register $t1.

2.33 [10] <§2.9>  For More Practice: Translating from C to MIPS

2.34 [10] <§§ 2.3, 2.6, 2.9> The following program tries to copy words from the
address in register $a0 to the address in register $a1, counting the number of
words copied in register $v0. The program stops copying when it finds a word
equal to 0. You do not have to preserve the contents of registers $v1, $a0, and $a1.
This terminating word should be copied but not counted.

addi $v0, $zero, 0 # Initialize count

loop: lw $v1, 0($a0) # Read next word from source

sw $v1, 0($a1) # Write to destination

addi $a0, $a0, 4 # Advance pointer to next source

addi $a1, $a1, 4 # Advance pointer to next destination

Instruction Cycles

add,addi,sll 1

lw, bne 2
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beq $v1, $zero, loop  # Loop if word copied != zero

There are multiple bugs in this MIPS program; fix them and turn in a bug-free ver-
sion. Like many of the exercises in this chapter, the easiest way to write MIPS programs
is to use the simulator described in Appendix A.

2.35 [10] <§§2.2, 2.3, 2.6, 2.9>   For More Practice: Reverse Translation from
MIPS to C

2.36 <§2.9>  For More Practice: Translating from C to MIPS

2.37 [25] <§2.10> As discussed on page 107 (Section 2.10, “Assembler”),
pseudoinstructions are not part of the MIPS instruction set but often appear in
MIPS programs. For each pseudoinstruction in the following table, produce a
minimal sequence of actual MIPS instructions to accomplish the same thing.
You may need to use $at for some of the sequences. In the following table, big
refers to a specific number that requires 32 bits to represent and small to a
number that can fit in 16 bits.

2.38 [5] <§§2.9, 2.10> Given your understanding of PC-relative addressing, ex-
plain why an assembler might have problems directly implementing the branch in-
struction in the following code sequence:

here: beq $s0, $s2, there
…
there add $s0, $s0, $s0

Show how the assembler might rewrite this code sequence to solve these problems.

2.39 <§2.10> For More Practice: MIPS Pseudoinstructions

2.40 <§2.10> For More Practice: Linking MIPS Code

Pseudoinstruction  What it accomplishes

move $t1, $t2 $t1 = $t2

clear $t50 $t0 = 0

beq $t1, small, L if ($t1 = small) go to L

beq $t2, big, L if ($t2 = big) go to L

li $t1, small $t1 = small

li $t2, big $t2 = big

ble $t3, $t5, L if ($t3 <= $t5) go to L

bgt $t4, $t5, L if ($t4 > $t5) go to L

bge $t5, $t3, L if ($t5 >= $t3) go to L

addi $t0, $t2, big $t0 = $t2 + big

lw $t5, big($t2) $t5 = Memory[$t2 + big]
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2.41 <§2.10> For More Practice: Linking MIPS Code

2.42 [20] <§2.11>Find a large program written in C (for example, gcc, which can
be obtained from http://gcc.gnu.org) and compile the program twice, once with op-
timizations (use –O3) and once without.  Compare the compilation time and run
time of the program.  Are the results what you expect?

2.43 [20] <§2.12>   For More Practice: Enhancing MIPS Addressing Modes

2.44 [10] <§2.12>  For More Practice: Enhancing MIPS Addressing Modes

2.45 [10] <§2.12>  In More Depth: The IBM/Motorola versus MIPS in C

2.46 [15] <§§2.6, 2.13> The MIPS translation of the C (or Java) segment

while (save[i] == k)
i += 1;

on page 129 (Section 2.6, “Compiling a While Loop in C”) uses both a conditional
branch and an unconditional jump each time through the loop. Only poor com-
pilers would produce code with this loop overhead. Assuming that this code is in
Java (not C), rewrite the assembly code so that it uses at most one branch or jump
each time through the loop. Additionally, add code to perform the Java checking
for index out of bounds and ensure that this code uses at most one branch or
jump each time through the loop. How many instructions are executed before and
after the optimization if the number of iterations of the loop is 10 and the value of
i is never out of bounds?

2.47 [30] <§§2.6, 2.13> Consider the following fragment of Java code:

for (i=0; i<=100; i=i+1)
a[i] = b[i] + c;

Assume that a and b are arrays of words and the base address of a is in $a0 and
the base address of b is in $a1. Register $t0 is associated with variable i and reg-
ister $s0 with the value of c. You may also assume that any address constants you
need are available to be loaded from memory. Write the code for MIPS. How
many instructions are executed during the running of this code if there are no
array out-of-bounds exceptions thrown? How many memory data references will
be made during execution?

2.48 [5] <§2.13> Write the MIPS code for the Java method compareTo (found
in Figure 2.35 on page 124).

2.49 [15] <§2.17> When designing memory systems, it becomes useful to know
the frequency of memory reads versus writes as well as the frequency of accesses for
instructions versus data.  Using the average instruction mix information for MIPS
for the program SPEC2000int in Figure 2.48 (on page 141), find the following:
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a. The percentage of all memory accesses (both data and instruction) that are
for data.

b. The percentage of all memory accesses (both data and instruction) that are
for reads. Assume that two-thirds of data transfers are loads.

2.50 [10] <§2.17> Perform the same calculations as for Exercise 2.49, but replace
the program SPEC2000int with SPEC2000fp.

2.51 [15] <§2.17> Suppose we have made the following measurements of average
CPI for instructions:

Compute the effective CPI for MIPS. Average the instruction frequencies for
SPEC2000int and SPEC2000fp in Figure 2.48 on page 146 to obtain the instruc-
tion mix.

2.52 [20] <§2.18>  In More Depth: Instruction Set Styles 

2.53 [20] <§2.18>  In More Depth: Instruction Set Styles

2.54 [10] <§2.18>  In More Depth: The Single Instruction Computer

2.55 [20] <§2.18>  In More Depth: The Single Instruction Computer

2.56 [5] <§2.19>The stored-program concept, introduced in the late 1940s, brought
about a significant change in how computers were designed and operated.  What is a
possible example of a nonstored-program machine, and what are the problems with
such a machine?  How can these problems be overcome by a stored-program machine?

2.57 [5] <§2.19>  In More Depth: The IBM/Motorola versus MIPS in C

2.58 [15] <§2.19>  In More Depth: The IBM/Motorola versus MIPS in C

2.59 [15] <§2.19>  In More Depth: Logical Instructions

Instruction Average CPI

Arithmetic 1.0 clock cycles

Data transfer 1.4 clock cycles

Conditional branch 1.7 clock cycles

Jump 1.2 clock cycles
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Computers 
in the 

Real World

Helping Save Our 
Environment with Data

Problem to solve: Monitor plants and ani-

mals of our environment to collect information

that may influence environmental polices.

Solution: Develop rugged, battery-operated,

embedded computers with  sensors, wireless

communication, and  appropriate software.

Stanford biologist Barbara Block studies

bluefin tuna. One policy question was whether

the tuna on one side of the Atlantic are differ-

ent from those on the other side. If so, then

each region could set its own quotas. If not,

then we need oceanwide quotas.

To answer this question, she started implant-

ing tuna with devices that could monitor their

journeys. Every two minutes a pop-up satellite

archival tag (PSAT) records water pressure,

ambient light, temperature, time of day, and

other measurements. Data are saved in 1 MB of

flash memory. The onboard 8-bit microproces-

sor estimates depth from the water pressure. It

finds longitude using light intensity data and

time of day. It determines sunrise, sunset, and

therefore high noon, and calculates the time shift

between local noon and Greenwich Mean Time

noon, like a navigator using a sextant and chro-

nometer. The water temperature is later matched

to satellite records to determine latitude. Block

does not rely on fishermen to catch the tuna and

return PSATs. A PSAT is attached to a fish with a

pin that dissolves via electrolysis after the com-

puter turns on a battery. The tag then floats to

the surface and begins transmitting data to satel-

lites. The floating tag can transmit for up to two

weeks, sending the data directly to Block’s lab. 

Block and students tag a bluefin tuna, which can 
grow to 2000 pounds and 10 feet in length. 

A pop-up archival satellite tag and internal 
electronics.



Block discovered that bluefin tuna travel more

than 10,000 miles per year; tuna tagged near the

East Coast of the United States will cross the

Atlantic and spawn in both the Gulf of Mexico

and the Eastern Mediterranean. Her discovery

changed regulations so that tuna are no longer

managed separately in the Eastern and Western

Atlantic. She is now developing a census of

Pacific marine life using smaller tags for smaller

animals and tags that transmit each time a fish

surfaces. She speculates that tagged tuna could

be ideal “vehicles” to monitor ocean change.

Berkeley biologist Todd Dawson studies the

ecology of the coastal redwood, Sequoia sem-

pervirens, particularly the interaction of sea

fog with trees. For years his research involved

installing 50 kilograms of gear and kilometers

of wire strung to sensors. This work is often

done more than 80 meters above the ground.

Data could only be retrieved by climbing up to

a printer-sized data logger.

Berkeley computer scientist David Culler

proposed a new approach. Dawson is now plac-

ing miniature wireless sensors the size of film

canisters in these trees. Each micromote is less

than 3 cubic inches, can transmit up to 40 KB/

sec, and can run for months on a C battery.

Since micromotes are small and cheap, many

can be placed in a tree. Data is collected with a

compatible laptop by simply walking to the

base of the tree.

Dawson found that summertime fog

accounts for 25% to 40% of the water that the

redwoods receive for the whole year. The trees

may even be drinking water directly from fog

via a symbiotic relationship with fungi living

on their leaves. 

Dawson predicts wireless sensor networks

will change the way people do ecological

research.

To learn more see these references on 
the  library

Block et al., “Migratory movements, depth preferences,
and thermal biology of atlantic bluefin tuna,” Science
293: 1310–14, 2001

“Redwoods,” Prof. Dawson’s laboratory site 

“Redwood's drinking water from fog,” The Forestry
Source, Nov. 2002

“Tagging of the Pacific Pelagics,” www.toppcensus.org

Professor Dawson and student climbing a sequoia 
to install fog monitors.

The Mica micromote with C battery. It is about the 
size of a film canister.
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Computer words are composed of bits; thus words can be represented as binary
numbers. Although the natural numbers 0, 1, 2, and so on can be represented
either in decimal or binary form, what about the other numbers that commonly
occur? For example:

■ How are negative numbers represented?

■ What is the largest number that can be represented in a computer word?

■ What happens if an operation creates a number bigger than can be repre-
sented?

■ What about fractions and real numbers?

And underlying all these questions is a mystery: How does hardware really multi-
ply or divide numbers? 

The goal of this chapter is to unravel this mystery, including representation of
numbers, arithmetic algorithms, hardware that follows these algorithms, and the
implications of all this for instruction sets. These insights may even explain quirks
that you have already encountered with computers. (If you are familiar with
signed binary numbers, you may wish to skip the next section and go to Section
3.3 on page 170.)

Numbers can be represented in any base; humans prefer base 10 and, as we exam-
ined in Chapter 2, base 2 is best for computers. To avoid confusion we subscript
decimal numbers with ten and binary numbers with two.

In any number base, the value of ith digit d is

where i starts at 0 and increases from right to left. This leads to an obvious way to
number the bits in the word: Simply use the power of the base for that bit. For
example,

1011two

3.1 Introduction 3.1

3.2 Signed and Unsigned Numbers 3.2

d Basei¥



3.2 Signed and Unsigned Numbers 161

represents

(1 ¥ 23) + (0 ¥ 22) + (1 ¥ 21) + (1 ¥ 20)ten 
= (1 ¥ 8) + (0 ¥ 4) + (1 ¥ 2) + (1 ¥ 1)ten 
=    8 +    0     +    2     +    1ten 
= 11ten

Hence the bits are numbered 0, 1, 2, 3,  .  .  .  from right to left in a word. The
drawing below shows the numbering of bits within a MIPS word and the place-
ment of the number 1011two:

Since words are drawn vertically as well as horizontally, leftmost and rightmost
may be unclear. Hence, the phrase least significant bit is used to refer to the right-
most bit (bit 0 above) and most significant bit to the leftmost bit (bit 31).

The MIPS word is 32 bits long, so we can represent 232 different 32-bit patterns.
It is natural to let these combinations represent the numbers from 0 to 232 – 1
(4,294,967,295ten):

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = 2ten
... ...
1111 1111 1111 1111 1111 1111 1111 1101two = 4,294,967,293ten
1111 1111 1111 1111 1111 1111 1111 1110two = 4,294,967,294ten
1111 1111 1111 1111 1111 1111 1111 1111two = 4,294,967,295ten

That is, 32-bit binary numbers can be represented in terms of the bit value times a
power of 2 (here xi means the ith bit of x):

(x31 ¥ 231) + (x30 ¥ 230) + (x29 ¥ 229) + . . .  + (x1 ¥ 21) + (x0 ¥ 20)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

(32 bits wide)

least significant bit The right-
most bit in a MIPS word.

most significant bit The left-
most bit in a MIPS word.

Base 2 is not natural to human beings; we have 10 fingers and so find base 10 nat-
ural. Why didn’t computers use decimal? In fact, the first commercial computer
did offer decimal arithmetic. The problem was that the computer still used on and
off signals, so a decimal digit was simply represented by several binary digits. Dec-
imal proved so inefficient that subsequent computers reverted to all binary, con-
verting to base 10 only for the relatively infrequent input/output events.

Hardware
Software
Interface
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Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all being
0 except for a few of the rightmost digits. We just don’t normally show leading 0s.

Hardware can be designed to add, subtract, multiply, and divide these binary
bit patterns. If the number that is the proper result of such operations cannot be
represented by these rightmost hardware bits, overflow is said to have occurred. It’s
up to the operating system and program to determine what to do if overflow
occurs.

Computer programs calculate both positive and negative numbers, so we need
a representation that distinguishes the positive from the negative. The most obvi-
ous solution is to add a separate sign, which conveniently can be represented in a
single bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s
not obvious where to put the sign bit. To the right? To the left? Early computers
tried both. Second, adders for sign and magnitude may need an extra step to set
the sign because we can’t know in advance what the proper sign will be. Finally, a
separate sign bit means that sign and magnitude has both a positive and negative
zero, which can lead to problems for inattentive programmers. As a result of these
shortcomings, sign and magnitude was soon abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large number
from a small one. The answer is that it would try to borrow from a string of lead-
ing 0s, so the result would have a string of leading 1s. 

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers
(see Figure 2.21 on page 91). How much does storage increase if the number
1 billion is represented in ASCII versus a 32-bit integer?

One billion is 1 000 000 000, so it would take 10 ASCII digits, each 8 bits
long. Thus the storage expansion would be (10 ¥ 8)/32 or 2.5. In addition to
the expansion in storage, the hardware to add, subtract, multiply, and divide
such numbers is difficult. Such difficulties explain why computing profes-
sionals are raised to believe that binary is natural and that the occasional dec-
imal computer is bizarre.

EXAMPLE

ANSWER
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Given that there was no obvious better alternative, the final solution was to
pick the representation that made the hardware simple: leading 0s mean positive,
and leading 1s mean negative. This convention for representing signed binary
numbers is called two’s complement representation:

00000000000000000000000000000000two = 0ten
00000000000000000000000000000001two = 1ten
00000000000000000000000000000010two = 2ten
... ...

01111111111111111111111111111101two = 2,147,483,645ten
01111111111111111111111111111110two = 2,147,483,646ten
01111111111111111111111111111111two = 2,147,483,647ten
10000000000000000000000000000000two = –2,147,483,648ten
10000000000000000000000000000001two = –2,147,483,647ten
10000000000000000000000000000010two = –2,147,483,646ten
... ...

11111111111111111111111111111101two = –3ten
11111111111111111111111111111110two = –2ten
11111111111111111111111111111111two = –1ten

The positive half of the numbers, from 0 to 2,147,483,647ten (231 – 1), use the
same representation as before. The following bit pattern (1000 . . . 0000two) rep-
resents the most negative number –2,147,483,648ten (–231). It is followed by a
declining set of negative numbers: –2,147,483,647ten (1000 . . . 0001two) down to
–1ten (1111 . . . 1111two). 

Two’s complement does have one negative number, –2,147,483,648ten, that has
no corresponding positive number. Such imbalance was a worry to the inattentive
programmer, but sign and magnitude had problems for both the programmer and
the hardware designer. Consequently, every computer today uses two’s comple-
ment binary representations for signed numbers.

Two’s complement representation has the advantage that all negative numbers
have a 1 in the most significant bit. Consequently, hardware needs to test only this
bit to see if a number is positive or negative (with 0 considered positive). This bit
is often called the sign bit. By recognizing the role of the sign bit, we can represent
positive and negative 32-bit numbers in terms of the bit value times a power of 2:

(x31 ¥ –231) + (x30 ¥ 230) + (x29 ¥ 229) + . . .  + (x1 ¥ 21) + (x0 ¥ 20)

The sign bit is multiplied by –231, and the rest of the bits are then multiplied by
positive versions of their respective base values.
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Just as an operation on unsigned numbers can overflow the capacity of hard-
ware to represent the result, so can an operation on two’s complement numbers.
Overflow occurs when the leftmost retained bit of the binary bit pattern is not the
same as the infinite number of digits to the left (the sign bit is incorrect): a 0 on
the left of the bit pattern when the number is negative or a 1 when the number is
positive.

Binary to Decimal Conversion

What is the decimal value of this 32-bit two’s complement number?

1111 1111 1111 1111 1111 1111 1111 1100two

Substituting the number’s bit values into the formula above:

(1 ¥ –231) + (1 ¥ 230) + (1 ¥ 229) + . . . + (1 ¥ 22) + (0 ¥ 21) + (0 ¥ 20)
= –231      +      230     +     229      + . . . +      22     +      0      +     0
= –2,147,483,648ten + 2,147,483,644ten
= – 4ten

We’ll see a shortcut to simplify conversion soon.

EXAMPLE

ANSWER

Hardware
Software
Interface

Signed versus unsigned applies to loads as well as to arithmetic. The function of a
signed load is to copy the sign repeatedly to fill the rest of the register—called sign
extension—but its purpose is to place a correct representation of the number
within that register. Unsigned loads simply fill with 0s to the left of the data, since
the number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and
unsigned loads are identical. MIPS does offer two flavors of byte loads: load byte
(lb) treats the byte as a signed number and thus sign-extends to fill the 24 left-
most bits of the register, while load byte unsigned (lbu) works with unsigned inte-
gers. Since C programs almost always use bytes to represent characters rather than
consider bytes as very short signed integers, lbu is used practically exclusively for
byte loads. For similar reasons, load half (lh) treats the halfword as a signed num-
ber and thus sign-extends to fill the 16 leftmost bits of the register, while load half-
word unsigned (lhu) works with unsigned integers.



3.2 Signed and Unsigned Numbers 165

Unlike the numbers discussed above, memory addresses naturally start at 0 and
continue to the largest address. Put another way, negative addresses make no
sense. Thus, programs want to deal sometimes with numbers that can be positive
or negative and sometimes with numbers that can be only positive. Some pro-
gramming languages reflect this distinction. C, for example, names the former
integers (declared as int in the program) and the latter unsigned integers
(unsigned int). Some C style guides even recommend declaring the former as
signed int to keep the distinction clear.

Comparison instructions must deal with this dichotomy. Sometimes a bit pat-
tern with a 1 in the most significant bit represents a negative number and, of
course, is less than any positive number, which must have a 0 in the most signifi-
cant bit. With unsigned integers, on the other hand, a 1 in the most significant bit
represents a number that is larger than any that begins with a 0. (We’ll take advan-
tage of this dual meaning of the most significant bit to reduce the cost of the array
bounds checking in a few pages.)

MIPS offers two versions of the set on less than comparison to handle these
alternatives. Set on less than (slt) and set on less than immediate (slti) work
with signed integers. Unsigned integers are compared using set on less than
unsigned (sltu) and set on less than immediate unsigned (sltiu).

Hardware
Software
Interface

Signed versus Unsigned Comparison

Suppose register $s0 has the binary number

1111 1111 1111 1111 1111 1111 1111 1111two

and that register $s1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001two

What are the values of registers $t0 and $t1 after these two instructions?

slt $t0, $s0, $s1 # signed comparison
sltu $t1, $s0, $s1 # unsigned comparison

EXAMPLE
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Before going on to addition and subtraction, let’s examine a few useful short-
cuts when working with two’s complement numbers. 

The first shortcut is a quick way to negate a two’s complement binary number.
Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This short-
cut is based on the observation that the sum of a number and its inverted repre-
sentation must be 111 . . . 111two, which represents –1. Since , therefore

 or x + 1 = –x.

The value in register $s0 represents –1 if it is an integer and 4,294,967,295ten
if it is an unsigned integer. The value in register $s1 represents 1 in either
case. Then register $t0 has the value 1, since –1ten < 1ten, and register $t1
has the value 0, since 4,294,967,295ten > 1ten.

Negation Shortcut

Negate 2ten, and then check the result by negating –2ten.

2ten = 0000 0000 0000 0000 0000 0000 0000 0010two
Negating this number by inverting the bits and adding one,

 11111111111111111111111111111101two
+                                 1two

= 11111111111111111111111111111110two
= –2ten

 Going the other direction,

 11111111111111111111111111111110two

 is first inverted and then incremented:

 00000000000000000000000000000001two
+                                  1two

= 00000000000000000000000000000010two
= 2ten

ANSWER

x x+ 1–
x x 1+ + 0=

EXAMPLE

ANSWER
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The second shortcut tells us how to convert a binary number represented in n
bits to a number represented with more than n bits. For example, the immediate
field in the load, store, branch, add, and set on less than instructions contains a
two’s complement 16-bit number, representing –32,768ten (–215) to 32,767ten
(215 – 1). To add the immediate field to a 32-bit register, the computer must con-
vert that 16-bit number to its 32-bit equivalent. The shortcut is to take the most
significant bit from the smaller quantity—the sign bit—and replicate it to fill the
new bits of the larger quantity. The old bits are simply copied into the right por-
tion of the new word. This shortcut is commonly called sign extension.

This trick works because positive two’s complement numbers really have an
infinite number of 0s on the left and those that are negative two’s complement

Sign Extension Shortcut

Convert 16-bit binary versions of 2ten and –2ten to 32-bit binary numbers.

The 16-bit binary version of the number 2 is

0000000000000010two = 2ten

It is converted to a 32-bit number by making 16 copies of the value in the
most significant bit (0) and placing that in the left-hand half of the word. The
right half gets the old value:

00000000000000000000000000000010two = 2ten

 Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000000000000010two 

becomes

1111111111111101two
+              1two

= 1111111111111110two

Creating a 32-bit version of the negative number means copying the sign
bit 16 times and placing it on the left:

11111111111111111111111111111110two = –2ten

EXAMPLE

ANSWER
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numbers have an infinite number of 1s. The binary bit pattern representing a
number hides leading bits to fit the width of the hardware; sign extension simply
restores some of them.

The third shortcut reduces the cost of checking if 0 £ x < y, which matches the
index out-of-bounds check for arrays. The key is that negative integers in two’s
complement notation look like large numbers in unsigned notation; that is, the
most significant bit is a sign bit in the former notation but a large part of the num-
ber in the latter. Thus, an unsigned comparison of x < y  also checks if x is nega-
tive. 

Summary

The main point of this section is that we need to represent both positive and neg-
ative integers within a computer word, and although there are pros and cons to
any option, the overwhelming choice since 1965 has been two’s complement.
Figure 3.1 shows the additions to the MIPS assembly language revealed in this sec-
tion. (The MIPS machine language is also illustrated on the back endpapers of
this book.)

Check
Yourself

Which type of variable that can contain 1,000,000,000ten takes the most memory
space?

1. int in C

2. string in C

3. string in Java (which uses Unicode)

Bounds Check Shortcut

Use this shortcut to reduce an index-out-of-bounds check: jump to Index-
OutOfBounds if $a1 $t2 or if $a1 is negative. 

The checking code just uses sltu to do both checks:

sltu $t0,$a1,$t2 # Temp reg $t0=0 if k>=length or k<0
beq  $t0,$zero,IndexOutOfBounds #if bad, goto Error

EXAMPLE

ANSWER
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MIPS operands

Name Example Comments

32
registers

$s0–$s7, $t0–$t9, $gp, 
$fp, $zero, $sp, $ra, $at

Fast locations for data. In MIPS, data must be in registers to perform arithmetic. MIPS 
register $zero always equals 0. Register $at is reserved for the assembler to handle 
large constants.

230

memory
words

Memory[0],
Memory[4], . . . ,
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so sequential word 
addresses differ by 4. Memory holds data structures, such as arrays, and spilled registers, 
such as those saved on procedure calls. 

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add  $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands

subtract sub  $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands 

add immediate addi $s1,$s2,100 $s1 = $s2 + 100 + constant 

Data
transfer

load word lw   $s1,100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw   $s1,100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

load half unsigned lhu  $s1,100($s2) $s1 = Memory[$s2 + 100] Halfword memory to register

store half sh  $s1,100($s2) Memory[$s2 + 100] = $s1 Halfword register to memory

load byte unsigned lbu  $s1,100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb   $s1,100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper immediate lui  $s1,100 $s1 = 100 * 216 Loads constant in upper 16 bits

Logical

and and   $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or    $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor   $s1,$s2,$s3 $s1 = ~ ($s2 |$s3) Three reg. operands; bit-by-bit NOR

and immediate andi  $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND with constant

or immediate ori   $s1,$s2,100 $s1 = $s2 | 100 Bit-by-bit OR with constant

shift left logical sll   $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl   $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional
branch

branch on equal beq   $s1,$s2,25 if ($s1 == $s2) go to PC + 4 + 100 Equal test; PC-relative branch

branch on not equal bne   $s1,$s2,25 if ($s1 != $s2) go to PC + 4 + 100 Not equal test; PC-relative 

set on less than slt   $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1; 
else $s1 = 0

Compare less than; 
two’s complement

set less than immediate slti  $s1,$s2,100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare < constant; 
two’s complement

set less than unsigned sltu  $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; unsigned 
numbers

set less than immediate 
unsigned

sltiu $s1,$s2,100 if ($s2 < 100)  $s1 = 1; 
else $s1 = 0

Compare < constant; 
unsigned numbers 

Uncondi-
tional jump

jump j     2500 go to 10000 Jump to target address

jump register jr    $ra go to $ra For switch, procedure return

jump and link jal   2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 3.1 MIPS architecture revealed thus far. Color indicates portions from this section added to the MIPS architecture revealed in
Chapter 2 (Figure 3.26 on page 228). MIPS machine language is listed in the MIPS summary reference card in the front of this book.
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Elaboration: Two’s complement gets its name from the rule that the unsigned sum
of an n-bit number and its negative is 2n; hence, the complement or negation of a two’s
complement number x is 2n – x.

A third alternative representation is called one’s complement. The negative of a
one’s complement is found by inverting each bit, from 0 to 1 and from 1 to 0, which
helps explain its name since the complement of x is 2n – x – 1. It was also an attempt
to be a better solution than sign and magnitude, and several scientific computers did
use the notation. This representation is similar to two’s complement except that it also
has two 0s: 00 . . . 00two is positive 0 and 11 . . . 11two is negative 0. The most nega-
tive number 10 . . . 000two represents –2,147,483,647ten, and so the positives and
negatives are balanced. One’s complement adders did need an extra step to subtract a
number, and hence two’s complement dominates today.

A final notation, which we will look at when we discuss floating point, is to represent
the most negative value by 00 . . . 000two and the most positive value represented by
11. . . 11two, with 0 typically having the value 10 . . . 00two. This is called a biased
notation, since it biases the number such that the number plus the bias has a nonneg-
ative representation. 

Elaboration: For signed decimal numbers we used “–” to represent negative
because there are no limits to the size of a decimal number. Given a fixed word size,
binary and hexadecimal bit strings can encode the sign, and hence we do not normally
use “+” or “–” with binary or hexadecimal notation.

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: The appropriate operand is simply negated
before being added.

3.3 Addition and Subtraction 3.3

Binary Addition and Subtraction

Let’s try adding 6ten to 7ten in binary and then subtracting 6ten from 7ten in
binary.

biased notation A notation 
that represents the most 
negative value by 00 . . . 000two
and the most positive value by 
11 . . . 11two, with 0 typically 
having the value 10 . . . 00two,
thereby biasing the number 
such that the number plus the 
bias has a nonnegative 
representation.

Subtraction: Addition’s 
Tricky Pal

No. 10, Top Ten Courses for 
Athletes at a Football Factory,
David Letterman et al., Book of
Top Ten Lists, 1990

EXAMPLE
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We said earlier that overflow occurs when the result from an operation cannot
be represented with the available hardware, in this case a 32-bit word. When can
overflow occur in addition? When adding operands with different signs, overflow
cannot occur. The reason is the sum must be no larger than one of the operands.
For example, –10 + 4 = –6. Since the operands fit in 32 bits and the sum is no
larger than an operand, the sum must fit in 32 bits as well. Therefore no overflow
can occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but
it’s just the opposite principle: When the signs of the operands are the same, over-
flow cannot occur. To see this, remember that x – y = x + (–y) because we subtract
by negating the second operand and then add. So, when we subtract operands of

00000000000000000000000000000111two = 7ten
+ 00000000000000000000000000000110two = 6ten
= 00000000000000000000000000001101two = 13ten

The 4 bits to the right have all the action; Figure 3.2 shows the sums and car-
ries. The carries are shown in parentheses, with the arrows showing how they
are passed.

 Subtracting 6ten from 7ten can be done directly:

00000000000000000000000000000111two = 7ten
– 00000000000000000000000000000110two = 6ten

= 00000000000000000000000000000001two = 1ten

 or via addition using the two’s complement representation of –6:

00000000000000000000000000000111two = 7ten
+ 11111111111111111111111111111010two = –6ten
= 00000000000000000000000000000001two = 1ten

ANSWER

FIGURE 3.2 Binary addition, showing carries from right to left. The rightmost bit adds 1
to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation
for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1. The
third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bit is 1 + 0
+ 0, yielding a 1 sum and no carry.
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the same sign we end up by adding operands of different signs. From the prior
paragraph, we know that overflow cannot occur in this case either.

Having examined when overflow cannot occur in addition and subtraction, we
still haven’t answered how to detect when it does occur. Overflow occurs when
adding two positive numbers and the sum is negative, or vice versa. Clearly, add-
ing or subtracting two 32-bit numbers can yield a result that needs 33 bits to be
fully expressed. The lack of a 33rd bit means that when overflow occurs the sign
bit is being set with the value of the result instead of the proper sign of the result.
Since we need just one extra bit, only the sign bit can be wrong. This means a
carry out occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a
positive number and get a negative result, or when we subtract a positive number
from a negative number and get a positive result. This means a borrow occurred
from the sign bit. Figure 3.3 shows the combination of operations, operands, and
results that indicate an overflow. 

We have just seen how to detect overflow for two’s complement numbers in a
computer. What about unsigned integers? Unsigned integers are commonly used
for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to ignore overflow in
some cases and to recognize it in others. The MIPS solution is to have two kinds of
arithmetic instructions to recognize the two choices:

■ Add (add), add immediate (addi), and subtract (sub) cause exceptions on
overflow.

■ Add unsigned (addu), add immediate unsigned (addiu), and subtract
unsigned (subu) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate the
unsigned versions of the arithmetic instructions addu, addiu, and subu no mat-
ter what the type of the variables. The MIPS Fortran compilers, however, pick the
appropriate arithmetic instructions, depending on the type of the operands.

Operation Operand A Operand B
Result

indicating overflow

A + B  0  0 < 0

A + B < 0 < 0  0

A – B  0 < 0 < 0

A – B < 0  0  0

FIGURE 3.3 Overflow conditions for addition and subtraction.
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Elaboration: MIPS can trap on overflow, but unlike many other computers there is no
conditional branch to test overflow. A sequence of MIPS instructions can discover over-
flow. For signed addition, the sequence is the following (see the In More Depth segment
on logical instruction in Chapter 2 for the definition of the xor instructions):

addu $t0, $t1, $t2 # $t0 = sum, but don’t trap
xor  $t3, $t1, $t2 # Check if signs differ
slt  $t3, $t3, $zero # $t3 = 1 if signs differ
bne  $t3, $zero, No_overflow # $t1, $t2 signs , 
so no overflow
xor  $t3, $t0, $t1 # signs =; sign of sum match too?
                   # $t3 negative if sum sign different
slt  $t3, $t3, $zero # $t3 = 1 if sum sign different
bne  $t3, $zero, Overflow # All three signs ; go to 
overflow

The computer designer must decide how to handle arithmetic overflows.
Although some languages like C ignore integer overflow, languages like Ada and
Fortran require that the program be notified. The programmer or the program-
ming environment must then decide what to do when overflow occurs. 

MIPS detects overflow with an exception, also called an interrupt on many
computers. An exception or interrupt is essentially an unscheduled procedure call.
The address of the instruction that overflowed is saved in a register, and the com-
puter jumps to a predefined address to invoke the appropriate routine for that
exception. The interrupted address is saved so that in some situations the program
can continue after corrective code is executed. (Section 5.6 covers exceptions in
more detail; Chapters 7 and 8 describe other situations where exceptions and
interrupts occur.)
MIPS includes a register called the exception program counter (EPC) to contain the
address of the instruction that caused the exception. The instruction move from
system control (mfc0) is used to copy EPC into a general-purpose register so that
MIPS software has the option of returning to the offending instruction via a jump
register instruction.

Hardware
Software
Interface
exception Also called inter-
rupt. An unscheduled event that 
disrupts program execution; 
used to detect overflow.

interrupt An exception that 
comes from outside of the pro-
cessor. (Some architectures use 
the term interrupt for all excep-
tions.)
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For unsigned addition ($t0 = $t1 + $t2), the test is

addu $t0, $t1, $t2 # $t0 = sum
nor  $t3, $t1, $zero # $t3 = NOT $t1 
         # (2’s comp – 1: 232 – $t1 – 1)
sltu $t3, $t3, $t2 # (232 – $t1 – 1) < $t2 

#fi 232 – 1 < $t1 + $t2
bne $t3,$zero,Overflow # if(232–1 < $t1 + $t2) go to 
overflow

Summary

The main point of this section is that, independent of the representation, the finite
word size of computers means that arithmetic operations can create results that
are too large to fit in this fixed word size. It’s easy to detect overflow in unsigned
numbers, although these are almost always ignored because programs don’t want
to detect overflow for address arithmetic, the most common use of natural num-
bers. Two’s complement presents a greater challenge, yet some software systems
require detection of overflow, so today all computers have a way to detect it.
Figure 3.4 shows the additions to the MIPS architecture from this section.

Check
Yourself

Some programming languages allow two’s complement integer arithmetic on
variables declared byte and half. What MIPS instructions would be used?

1. Load with lbu, lhu; arithmetic with add, sub, mult, div; then store using
sb, sh.

2. Load with lb, lh; arithmetic with add, sub, mult, div; then store using
sb, sh.

3. Loads with lb, lh; arithmetic with add, sub, mult, div, using and to
mask result to 8 or 16 bits after each operation; then store using sb, sh.

Elaboration: In the preceding text, we said that you copy EPC into a register via
mfc0 and then return to the interrupted code via jump register. This leads to an inter-
esting question: Since you must first transfer EPC to a register to use with jump regis-
ter, how can jump register return to the interrupted code and restore the original values
of all registers? You either restore the old registers first, thereby destroying your return
address from EPC that you placed in a register for use in jump register, or you restore
all registers but the one with the return address so that you can jump—meaning an
exception would result in changing that one register at any time during program execu-
tion! Neither option is satisfactory. 

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve
registers $k0 and $k1 for the operating system; these registers are not restored on
exceptions. Just as the MIPS compilers avoid using register $at so that the assembler



3.3 Addition and Subtraction 175

MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add   $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow detected

subtract sub   $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow detected

add immediate addi  $s1,$s2,100 $s1 = $s2 + 100 + constant; overflow detected

add unsigned addu $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow undetected

subtract unsigned subu $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow undetected

add immediate 
unsigned

addiu $s1,$s2,100 $s1 = $s2 + 100 + constant; overflow undetected

move from 
coprocessor register

mfc0 $s1,$epc $s1 = $epc Used to copy Exception PC plus other 
special registers

Data
transfer

load word lw   $s1,100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw   $s1,100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

load half unsigned lhu   $s1,100($s2) $s1 = Memory[$s2 + 100] Halfword memory to register

store half sh    $s1,100($s2) Memory[$s2 + 100] = $s1 Halfword register to memory

load byte unsigned lbu   $s1,100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb    $s1,100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper immediate lui   $s1,100 $s1 = 100 * 216 Loads constant in upper 16 bits

Logical

and and   $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or    $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor   $s1,$s2,$s3 $s1 = ~ ($s2 |$s3) Three reg. operands; bit-by-bit NOR

and immediate andi  $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND with constant

or immediate ori   $s1,$s2,100 $s1 = $s2 | 100 Bit-by-bit OR with constant

shift left logical sll   $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl   $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Conditional
branch

branch on equal beq   $s1,$s2,25 if ($s1 == $s2) go to 
PC + 4 + 100

Equal test; PC-relative branch

branch on not equal bne   $s1,$s2,25 if ($s1 != $s2) go to 
PC + 4 + 100

Not equal test; PC-relative 

set on less than slt   $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1; 
else $s1 = 0

Compare less than; two’s complement

set less than 
immediate

slti  $s1,$s2,100 if ($s2 < 100) $s1 = 1; 
else $s1 = 0

Compare < constant; two’s 
complement

set less than unsign sltu  $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1; 
else $s1 = 0

Compare less than; unsigned 

set less than 
immediate unsigned

sltiu $s1,$s2,100 if ($s2 < 100) $s1 = 1; 
else $s1 = 0

Compare < constant; unsigned 

Uncondi-
tional jump

jump j     2500 go to 10000 Jump to target address

jump register jr    $ra go to $ra For switch, procedure return

jump and link jal   2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 3.4 MIPS architecture revealed thus far. To save space in the table, it does not include the registers and memory found in Figure
3.1 on page 169. Color indicates the portions revealed since Figure 3.1. MIPS machine language is also on the MIPS reference summary card.
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can use it as a temporary register (see the Hardware Software Interface section on
page 96 in Chapter 2), compilers also abstain from using registers $k0 and $k1 to
make them available for the operating system. Exception routines place the return
address in one of these registers and then use jump register to restore the instruction
address.

Now that we have completed the explanation of addition and subtraction, we are
ready to build the more vexing operation of multiply.

But first let’s review the multiplication of decimal numbers in longhand to
remind ourselves of the steps and the names of the operands. For reasons that will
become clear shortly, we limit this decimal example to using only the digits 0 and
1. Multiplying 1000ten by 1001ten:

Multiplicand     1000ten
Multiplier  x    1001ten

    1000
   0000
  0000
 1000   

Product 1001000ten

The first operand is called the multiplicand and the second the multiplier. The
final result is called the product. As you may recall, the algorithm learned in gram-
mar school is to take the digits of the multiplier one at a time from right to left,
multiplying the multiplicand by the single digit of the multiplier and shifting the
intermediate product one digit to the left of the earlier intermediate products. 

The first observation is that the number of digits in the product is considerably
larger than the number in either the multiplicand or the multiplier. In fact, if we
ignore the sign bits, the length of the multiplication of an n-bit multiplicand and
an m-bit multiplier is a product that is n + m bits long. That is, n + m bits are
required to represent all possible products. Hence, like add, multiply must cope
with overflow because we frequently want a 32-bit product as the result of multi-
plying two 32-bit numbers.

In this example we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple: 

1. Just place a copy of the multiplicand (1  ¥ multiplicand) in the proper place
if the multiplier digit is a 1, or 

2. Place 0 (0  ¥ multiplicand) in the proper place if the digit is 0. 

3.4 Multiplication 3.4

Multiplication is vexation, 
Division is as bad;
The rule of three doth puzzle 
me, 
And practice drives me mad.

Anonymous, Elizabethan 
manuscript, 1570
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Although the decimal example above happened to use only 0 and 1, multiplica-
tion of binary numbers must always use 0 and 1, and thus always offers only these
two choices.

Now that we have reviewed the basics of multiplication, the traditional next
step is to provide the highly optimized multiply hardware. We break with tradi-
tion in the belief that you will gain a better understanding by seeing the evolution
of the multiply hardware and algorithm through multiple generations. For now,
let’s assume that we are multiplying only positive numbers.

Sequential Version of the Multiplication Algorithm 
and Hardware

This design mimics the algorithm we learned in grammar school; the hardware is
shown in Figure 3.5. We have drawn the hardware so that data flows from top to
bottom to more closely resemble the paper-and-pencil method. 

Let’s assume that the multiplier is in the 32-bit Multiplier register and that the
64-bit Product register is initialized to 0. From the paper-and-pencil example
above, it’s clear that we will need to move the multiplicand left one digit each step
as it may be added to the intermediate products. Over 32 steps a 32-bit multipli-
cand would move 32 bits to the left. Hence we need a 64-bit Multiplicand register,
initialized with the 32-bit multiplicand in the right half and 0 in the left half. This
register is then shifted left 1 bit each step to align the multiplicand with the sum
being accumulated in the 64-bit Product register.

FIGURE 3.5 First version of the multiplication hardware. The Multiplicand register, ALU, and
Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. The 32-bit multi-
plicand starts in the right half of the Multiplicand register and is shifted left 1 bit on each step. The multi-
plier is shifted in the opposite direction at each step. The algorithm starts with the product initialized to 0.
Control decides when to shift the Multiplicand and Multiplier registers and when to write new values into
the Product register.

Multiplicand
Shift left

64 bits

64-bit ALU

Product
Write

64 bits

Control test

Multiplier
Shift right

32 bits



178 Chapter 3 Arithmetic for Computers

Figure 3.6 shows the three basic steps needed for each bit. The least significant
bit of the multiplier (Multiplier0) determines whether the multiplicand is added
to the Product register. The left shift in step 2 has the effect of moving the inter-
mediate operands to the left, just as when multiplying by hand. The shift right in
step 3 gives us the next bit of the multiplier to examine in the following iteration.
These three steps are repeated 32 times to obtain the product. If each step took a

FIGURE 3.6 The first multiplication algorithm, using the hardware shown in Figure 3.5. If
the least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step.
Shift the multiplicand left and the multiplier right in the next two steps. These three steps are repeated 32
times.

32nd repetition?

1a.  Add multiplicand to product and

place the result in Product register

Multiplier0 = 01.  Test

Multiplier0

Start

Multiplier0 = 1

2.  Shift the Multiplicand register left 1 bit

3.  Shift the Multiplier register right 1 bit

No:  < 32 repetitions

Yes:  32 repetitions

Done
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clock cycle, this algorithm would require almost 100 clock cycles to multiply two
32-bit numbers. The relative importance of arithmetic operations like multiply
varies with the program, but addition and subtraction may be anywhere from 5 to
100 times more popular than multiply. Accordingly, in many applications, multi-
ply can take multiple clock cycles without significantly affecting performance. Yet
Amdahl’s law (see Chapter 4, page 267) reminds us that even a moderate fre-
quency for a slow operation can limit performance.

This algorithm and hardware are easily refined to take 1 clock cycle per step.
The speedup comes from performing the operations in parallel: the multiplier
and multiplicand are shifted while the multiplicand is added to the product if the
multiplier bit is a one. The hardware just has to ensure that it tests the right bit of
the multiplier and gets the preshifted version of the multiplicand. The hardware is
usually further optimized to halve the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.7 shows the
revised hardware.

Replacing arithmetic by shifts can also occur when multiplying by constants.
Some compilers replace multiplies by short constants with a series of shifts and
adds. Because one bit to the left represents a number twice as large in base 2, shift-
ing the bits left has the same effect as multiplying by a power of 2. As mentioned
in Chapter 2, almost every compiler will perform the strength reduction optimi-
zation of substituting a left shift for a multiply by a power of 2.

Hardware
Software
Interface

FIGURE 3.7 Refined version of the multiplication hardware. Compare with the first version in
Figure 3.5. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Prod-
uct register left at 64 bits. Now the product is shifted right. The separate Multiplier register also disappeared.
The multiplier is placed instead in the right half of the Product register. These changes are highlighted in
color.
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.

Signed Multiplication

So far we have dealt with positive numbers. The easiest way to understand how to
deal with signed numbers is to first convert the multiplier and multiplicand to
positive numbers and then remember the original signs. The algorithms should
then be run for 31 iterations, leaving the signs out of the calculation. As we
learned in grammar school, we need negate the product only if the original signs
disagree.

It turns out that the last algorithm will work for signed numbers provided that
we remember that the numbers we are dealing with have infinite digits, and that
we are only representing them with 32 bits. Hence, the shifting steps would need
to extend the sign of the product for signed numbers. When the algorithm com-
pletes, the lower word would have the 32-bit product.

A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2ten ¥ 3ten, or 0010two ¥ 0011two.

Figure 3.8 shows the value of each register for each of the steps labeled ac-
cording to Figure 3.6, with the final value of 0000 0110two or 6ten. Color is
used to indicate the register values that change on that step, and the bit cir-
cled is the one examined to determine the operation of the next step.

Iteration Step Multiplier Multiplicand Product

0 Initial values 0000 0010 0000 0000

1 1a: 1 fi Prod = Prod + Mcand 0011 0000 0010 0000 0010

2: Shift left Multiplicand 0011 0000 0100 0000 0010

3: Shift right Multiplier 0000 0100 0000 0010

2 1a: 1 fi Prod = Prod + Mcand 0001 0000 0100 0000 0110

2: Shift left Multiplicand 0001 0000 1000 0000 0110

3: Shift right Multiplier 0000 1000 0000 0110

3 1: 0 fi no operation 0000 0000 1000 0000 0110

2: Shift left Multiplicand 0000 0001 0000 0000 0110

3: Shift right Multiplier 0001 0000 0000 0110

4 1: 0 fi no operation 0000 0001 0000 0000 0110

2: Shift left Multiplicand 0000 0010 0000 0000 0110

3: Shift right Multiplier 0010 0000 0000 0110

FIGURE 3.8 Multiply example using algorithm in Figure 3.6. The bit examined to determine
the next step is circled in color.

EXAMPLE

ANSWER

0011

0001

0000

0000

0000



3.4 Multiplication 181

Faster Multiplication

Moore’s Law has provided so much more in resources that hardware designers can
now build a much faster multiplication hardware. Whether the multiplicand is to
be added or not is known at the beginning of the multiplication by looking at each
of the 32 multiplier bits. Faster multiplications are possible by essentially provid-
ing one 32-bit adder for each bit of the multiplier: one input is the multiplicand
ANDed with a multiplier bit and the other is the output of a prior adder. Figure
3.9 shows how they would be connected.

Why is this much hardware faster? The sequential multiplier pays the overhead
of a clock for each bit of the product. This multiplier array of adders does not. A
second reason is this large collection of adders lends itself to many optimizations
to gain further improvements. One example is using carry save adders to add such
a large column of numbers; see Exercises 3.24 and 3.49. A third reason is that it is
easy to pipeline such a design to be able to support many multiplies simulta-
neously (see Chapter 6).

Multiply in MIPS

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product,
called Hi and Lo. To produce a properly signed or unsigned product, MIPS has
two instructions: multiply (mult) and multiply unsigned (multu). To fetch the
integer 32-bit product, the programmer uses move from lo (mflo). The MIPS
assembler generates a pseudoinstruction for multiply that specifies three general-
purpose registers, generating mflo and mfhi instructions to place the product
into registers.

Summary

Multiplication is accomplished by simple shift and add hardware, derived from
the paper-and-pencil method learned in grammar school. Compilers even use
shift instructions for multiplications by powers of two. 

Both MIPS multiply instructions ignore overflow, so it is up to the software to
check to see if the product is too big to fit in 32 bits. There is no overflow if Hi is 0
for multu or the replicated sign of Lo for mult. The instruction move from hi
(mfhi) can be used to transfer Hi to a general-purpose register to test for over-
flow.

Hardware
Software
Interface
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FIGURE 3.9 Fast multiplication hardware. Rather than use a single 32-bit adder 32 times, this
hardware “unrolls the loop” to use 32 adders. Each adder produces a 32-bit sum and a carry out. The least
significant bit is a bit of the product, and the carry out and the upper 31 bits of the sum are passed along to
the next adder.

1 bit

32 bits

Mplier3 • Mcand

1 bit

32 bits

Mplier0 • McandMplier1 • Mcand

32 bits
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1 bit
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The reciprocal operation of multiply is divide, an operation that is even less fre-
quent and even more quirky. It even offers the opportunity to perform a mathe-
matically invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall the
names of the operands and the grammar school division algorithm. For reasons
similar to those in the previous section, we limit the decimal digits to just 0 or 1.
The example is dividing 1,001,010ten by 1000ten:

The two operands (dividend and divisor) and the result (quotient) of divide
are accompanied by a second result called the remainder. Here is another way to
express the relationship between the components:

Dividend = Quotient ¥ Divisor + Remainder

where the remainder is smaller than the divisor. Infrequently, programs use the
divide instruction just to get the remainder, ignoring the quotient.

The basic grammar school division algorithm tries to see how big a number
can be subtracted, creating a digit of the quotient on each attempt. Our carefully
selected decimal example uses only the numbers 0 and 1, so it’s easy to figure out
how many times the divisor goes into the portion of the dividend: it’s either 0
times or 1 time. Binary numbers contain only 0 or 1, so binary division is
restricted to these two choices, thereby simplifying binary division.

Let’s assume that both the dividend and divisor are positive and hence the quo-
tient and the remainder are nonnegative. The division operands and both results
are 32-bit values, and we will ignore the sign for now. 

3.5 Division 3.5

Divide et impera.

Latin for “Divide and rule,” 
ancient political maxim cited 
by Machiavelli, 1532

1001ten Quotient

Divisor 1000ten  1001010ten Dividend

–1000
10
101
1010

–1000
 10ten Remainder

dividend A number being 
divided.

divisor A number that the 
dividend is divided by.

quotient The primary result of 
a division; a number that when 
multiplied by the divisor and 
added to the remainder pro-
duces the dividend.

remainder The secondary 
result of a division; a number 
that when added to the product 
of the quotient and the divisor 
produces the dividend.
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A Division Algorithm and Hardware

Figure 3.10 shows hardware to mimic our grammar school algorithm. We start
with the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to
move the divisor to the right one digit, so we start with the divisor placed in the
left half of the 64-bit Divisor register and shift it right 1 bit each step to align it
with the dividend. The Remainder register is initialized with the dividend.

Figure 3.11 shows three steps of the first division algorithm. Unlike a human,
the computer isn’t smart enough to know in advance whether the divisor is
smaller than the dividend. It must first subtract the divisor in step 1; remember
that this is how we performed the comparison in the set on less than instruction.
If the result is positive, the divisor was smaller or equal to the dividend, so we gen-
erate a 1 in the quotient (step 2a). If the result is negative, the next step is to
restore the original value by adding the divisor back to the remainder and gener-
ate a 0 in the quotient (step 2b). The divisor is shifted right and then we iterate
again. The remainder and quotient will be found in their namesake registers after
the iterations are complete.

FIGURE 3.10 First version of the division hardware. The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the left
half of the Divisor register and is shifted right 1 bit on each iteration. The remainder is initialized with the
dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new value
into the Remainder register.

Divisor
Shift right

64 bits

64-bit ALU

Remainder
Write

64 bits

Control
test

Quotient
Shift left

32 bits
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FIGURE 3.11 A division algorithm, using the hardware in Figure 3.10. If the Remainder is pos-
itive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative Remainder after
step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and adds
the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns the
divisor properly, relative to the dividend for the next iteration. These steps are repeated 33 times.

33rd repetition?

2a.  Shift the Quotient register to the left,

setting the new rightmost bit to 1

Remainder < 0
Test Remainder

Start

Remainder  0

3.  Shift the Divisor register right 1 bit

No:  < 33 repetitions

Yes:  33 repetitions

Done

1.  Subtract the Divisor register from the

Remainder register and place the 

result in the Remainder register

2b.  Restore the original value by adding

the Divisor register to the Remainder

register and place the sum in the

Remainder register. Also shift the

Quotient register to the left, setting the

new least significant bit to 0
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This algorithm and hardware can be refined to be faster and cheaper. The
speedup comes from shifting the operands and quotient at the same time as the
subtract. This refinement halves the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.13 shows the
revised hardware. 

A Divide Algorithm

Using a 4-bit version of the algorithm to save pages, let’s try dividing 7ten by
2ten, or 0000 0111two by 0010two.

Figure 3.12 shows the value of each register for each of the steps, with the
quotient being 3ten and the remainder 1ten. Notice that the test in step 2 of
whether the remainder is positive or negative simply tests whether the sign
bit of the Remainder register is a 0 or 1. The surprising requirement of this
algorithm is that it takes n + 1 steps to get the proper quotient and
remainder.

Iteration Step Quotient Divisor Remainder

0 Initial values 0000 0010 0000 0000 0111

1

1: Rem = Rem – Div 0000 0010 0000

2b: Rem < 0 fi +Div, sll Q, Q0 = 0 0000 0010 0000 0000 0111

3: Shift Div right 0000 0001 0000 0000 0111

2

1: Rem = Rem – Div 0000 0001 0000

2b: Rem < 0 fi +Div, sll Q, Q0 = 0 0000 0001 0000 0000 0111

3: Shift Div right 0000 0000 1000 0000 0111

3

1: Rem = Rem – Div 0000 0000 1000

2b: Rem < 0 fi +Div, sll Q, Q0 = 0 0000 0000 1000 0000 0111

3: Shift Div right 0000 0000 0100 0000 0111

4

1: Rem = Rem – Div 0000 0000 0100

2a: Rem  0 fi sll Q, Q0 = 1 0001 0000 0100 0000 0011

3: Shift Div right 0001 0000 0010 0000 0011

5

1: Rem = Rem – Div 0001 0000 0010

2a: Rem  0 fi sll Q, Q0 = 1 0011 0000 0010 0000 0001

3: Shift Div right 0011 0000 0001 0000 0001

FIGURE 3.12 Division example using the algorithm in Figure 3.11. The bit examined to deter-
mine the next step is circled in color.

EXAMPLE

ANSWER

1110 0111

1111 0111

1111 1111

0000 0011

0000 0001
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Signed Division

So far we have ignored signed numbers in division. The simplest solution is to
remember the signs of the divisor and dividend and then negate the quotient if the
signs disagree.

Elaboration: The one complication of signed division is that we must also set the
sign of the remainder. Remember that the following equation must always hold:

Dividend = Quotient ¥ Divisor + Remainder

To understand how to set the sign of the remainder, let’s look at the example of
dividing all the combinations of ±7ten by ±2ten. The first case is easy:

+7  +2: Quotient = +3, Remainder = +1

Checking the results:

7 = 3 ¥ 2 + (+1) = 6 + 1

If we change the sign of the dividend, the quotient must change as well:

–7  +2: Quotient = –3

Rewriting our basic formula to calculate the remainder:

So,

–7  +2: Quotient = –3, Remainder = –1

Checking the results again:

–7 = –3 ¥ 2 + (–1) = –6 – 1

FIGURE 3.13 An improved version of the division hardware. The Divisor register, ALU, and
Quotient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to
Figure 3.10, the ALU and Divisor registers are halved and the remainder is shifted left. This version also
combines the Quotient register with the right half of the Remainder register.

Divisor

32 bits

32-bit ALU

Remainder
Write

64 bits

Control
test

Shift left
Shift right

Remainder = Dividend Quotient Divisor¥–( ) 7– 3– +2¥( )– 7 6–( )–– 1–= = =
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The reason the answer isn’t a quotient of –4 and a remainder of +1, which would
also fit this formula, is that the absolute value of the quotient would then change
depending on the sign of the dividend and the divisor! Clearly if

–(x y) (–x) y

programming would be an even greater challenge. This anomalous behavior is avoided
by following the rule that the dividend and remainder must have the same signs, no
matter what the signs of the divisor and quotient.

We calculate the other combinations by following the same rule:

+7  –2: Quotient = –3, Remainder = +1
–7  –2: Quotient = +3, Remainder = –1

Thus the correctly signed division algorithm negates the quotient if the signs of the
operands are opposite and makes the sign of the nonzero remainder match the dividend. 

Faster Division

We used 32 adders to speed up multiply, but we cannot do the same trick for
divide. The reason is that we need to know the sign of the difference before we can
perform the next step of the algorithm, whereas with multiply we could calculate
the 32 partial products immediately. 

There are techniques to produce more than one bit of the quotient per bit. The
SRT division technique tries to guess several quotient bits per step, using a table
lookup based on the upper bits of the dividend and remainder. It relies on subse-
quent steps to correct wrong guesses. A typical value today is 4 bits. The key is
guessing the value to subtract. With binary division there is only a single choice.
These algorithms use 6 bits from the remainder and 4 bits from divisor to index a
table that determines the guess for each step. 

The accuracy of this fast method depends on having proper values in the
lookup table. The fallacy on page 222 in Section 3.8 shows what can happen if the
table is incorrect.

Divide in MIPS

You may have already observed that the same sequential hardware can be used for
both multiply and divide in Figures 3.7 and 3.13. The only requirement is a 64-bit
register that can shift left or right and a 32-bit ALU that adds or subtracts. Hence,
MIPS uses the 32-bit Hi and 32-bit Lo registers for both multiply and divide. As
we might expect from the algorithm above, Hi contains the remainder, and Lo
contains the quotient after the divide instruction completes. 

To handle both signed integers and unsigned integers, MIPS has two
instructions: divide (div) and divide unsigned (divu). The MIPS assembler
allows divide instructions to specify three registers, generating the mflo or mfhi
instructions to place the desired result into a general-purpose register.    
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Summary

The common hardware support for multiply and divide allows MIPS to provide a
single pair of 32-bit registers that are used both for multiply and divide. Figure 3.14
summarizes the additions to the MIPS architecture for the last two sections.

Elaboration: An even faster algorithm does not immediately add the divisor back if
the remainder is negative. It simply adds the dividend to the shifted remainder in the
following step since (r + d ) ¥ 2 – d = r ¥ 2 + d ¥ 2 – d = r ¥ 2 + d. This nonrestoring divi-
sion algorithm, which takes 1 clock per step, is explored further in Exercise 3.29; the
algorithm here is called restoring division.

Going beyond signed and unsigned integers, programming languages support
numbers with fractions, which are called reals in mathematics. Here are some
examples of reals:

3.14159265. . .ten (p)

2.71828. . .ten (e)

0.000000001ten or 1.0ten ¥ 10–9 (seconds in a nanosecond)

3,155,760,000ten or 3.15576ten ¥ 109 (seconds in a typical century)

Notice that in the last case, the number didn’t represent a small fraction, but it
was bigger than we could represent with a 32-bit signed integer. The alternative
notation for the last two numbers is called scientific notation, which has a single
digit to the left of the decimal point. A number in scientific notation that has no
leading 0s is called a normalized number, which is the usual way to write it. For
example, 1.0ten ¥ 10–9 is in normalized scientific notation, but 0.1ten ¥ 10–8 and
10.0ten ¥ 10 –10 are not. 

MIPS divide instructions ignore overflow, so software must determine if the quo-
tient is too large. In addition to overflow, division can also result in an improper
calculation: division by 0. Some computers distinguish these two anomalous
events. MIPS software must check the divisor to discover division by 0 as well as
overflow.

Hardware
Software
Interface

3.6 Floating Point 3.6

Speed gets you nowhere if 
you’re headed the wrong 
way.

American proverb

scientific notation A notation 
that renders numbers with a sin-
gle digit to the left of the deci-
mal point.

normalized A number in 
floating-point notation that has 
no leading 0s.
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MIPS assembly language

Category Instruction Example Meaning Comments

Arithmetic

add add     $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow detected

subtract sub     $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow detected

add immediate addi    $s1,$s2,100 $s1 = $s2 + 100 + constant; overflow detected

add unsigned addu    $s1,$s2,$s3 $s1 = $s2 + $s3 Three operands; overflow undetected

subtract unsigned subu    $s1,$s2,$s3 $s1 = $s2 – $s3 Three operands; overflow undetected

add immediate unsigned addiu   $s1,$s2,100 $s1 = $s2 + 100 + constant; overflow undetected

move from coprocessor 
register

mfc0    $s1,$epc $s1 = $epc Copy Exception PC + special regs

multiply mult    $s2,$s3 Hi, Lo = $s2 ¥ $s3 64-bit signed product in Hi, Lo

multiply unsigned multu   $s2,$s3 Hi, Lo = $s2 ¥ $s3 64-bit unsigned product in Hi, Lo

divide div     $s2,$s3 Lo = $s2 / $s3,
Hi = $s2 mod $s3

Lo = quotient, Hi = remainder

divide unsigned divu    $s2,$s3 Lo = $s2 / $s3, 
Hi = $s2 mod $s3

Unsigned quotient and remainder

move from Hi mfhi    $s1 $s1 = Hi Used to get copy of Hi

move from Lo mflo    $s1 $s1 = Lo Used to get copy of Lo

Data
transfer

load word lw   $s1,100($s2) $s1 = Memory[$s2 + 100] Word from memory to register

store word sw   $s1,100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

load half unsigned lhu  $s1,100($s2) $s1 = Memory[$s2 + 100] Halfword memory to register

store half sh   $s1,100($s2) Memory[$s2 + 100] = $s1 Halfword register to memory

load byte unsigned lbu  $s1,100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register

store byte sb   $s1,100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory

load upper immediate lui  $s1,100 $s1 = 100 * 216 Loads constant in upper 16 bits

Logical

and and   $s1,$s2,$s3 $s1 = $s2 & $s3 Three reg. operands; bit-by-bit AND

or or    $s1,$s2,$s3 $s1 = $s2 | $s3 Three reg. operands; bit-by-bit OR

nor nor  $s1,$s2,$s3 $s1 = ~ ($s2 |$s3) Three reg. operands; bit-by-bit NOR

and immediate andi  $s1,$s2,100 $s1 = $s2 & 100 Bit-by-bit AND with constant

or immediate ori   $s1,$s2,100 $s1 = $s2 | 100 Bit-by-bit OR with constant

shift left logical sll   $s1,$s2,10 $s1 = $s2 << 10 Shift left by constant

shift right logical srl   $s1,$s2,10 $s1 = $s2 >> 10 Shift right by constant

Condi-
tional
branch

branch on equal beq     $s1,$s2,25 if ($s1 == $s2) go to 
PC + 4 + 100

Equal test; PC-relative branch

branch on not equal bne     $s1,$s2,25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative 

set on less than slt     $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; 
two’s complement

set less than immediate slti    $s1,$s2,100 if ($s2 < 100) $s1 = 1; 
else $s1=0

Compare < constant; 
two’s complement

set less than unsigned sltu    $s1,$s2,$s3 if ($s2 < $s3) $s1 = 1; 
else $s1=0

Compare less than; natural numbers

set less than immediate 
unsigned

sltiu   $s1,$s2,100 if ($s2 < 100) $s1 = 1; 
else $s1 = 0

Compare < constant; natural numbers

Uncondi-
tional
jump

jump j       2500 go to 10000 Jump to target address

jump register jr      $ra go to $ra For switch, procedure return

jump and link jal     2500 $ra = PC + 4; go to 10000 For procedure call

FIGURE 3.14 MIPS architecture revealed thus far. The memory and registers of the MIPS architecture are not included for space reasons,
but this section added the hi and lo registers to support multiply and divide. Color indicates the portions revealed since Figure 3.4 on page 175. MIPS
machine language is listed in the MIPS summary reference card at the front of this book.
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Just as we can show decimal numbers in scientific notation, we can also show
binary numbers in scientific notation:

1.0two ¥ 2–1

To keep a binary number in normalized form, we need a base that we can increase
or decrease by exactly the number of bits the number must be shifted to have one
nonzero digit to the left of the decimal point. Only a base of 2 fulfills our need.
Since the base is not 10, we also need a new name for decimal point; binary point
will do fine.

Computer arithmetic that supports such numbers is called floating point
because it represents numbers in which the binary point is not fixed, as it is for
integers. The programming language C uses the name float for such numbers. Just
as in scientific notation, numbers are represented as a single nonzero digit to the
left of the binary point. In binary, the form is

1.xxxxxxxxxtwo ¥ 2yyyy

(Although the computer represents the exponent in base 2 as well as the rest of the
number, to simplify the notation we show the exponent in decimal.)

A standard scientific notation for reals in normalized form offers three advan-
tages. It simplifies exchange of data that includes floating-point numbers; it sim-
plifies the floating-point arithmetic algorithms to know that numbers will always
be in this form; and it increases the accuracy of the numbers that can be stored in
a word, since the unnecessary leading 0s are replaced by real digits to the right of
the binary point.

Floating-Point Representation

A designer of a floating-point representation must find a compromise between
the size of the fraction and the size of the exponent because a fixed word size
means you must take a bit from one to add a bit to the other. This trade-off is
between precision and range: Increasing the size of the fraction enhances the pre-
cision of the fraction, while increasing the size of the exponent increases the range
of numbers that can be represented. As our design guideline from Chapter 2
reminds us, good design demands good compromise.

Floating-point numbers are usually a multiple of the size of a word. The repre-
sentation of a MIPS floating-point number is shown below, where s is the sign of
the floating-point number (1 meaning negative), exponent is the value of the 8-bit
exponent field (including the sign of the exponent), and fraction is the 23-bit
number. This representation is called sign and magnitude, since the sign has a sep-
arate bit from the rest of the number.

floating point Computer
arithmetic that represents num-
bers in which the binary point is 
not fixed.

fraction The value, generally 
between 0 and 1, placed in the 
fraction field.

exponent In the numerical 
representation system of float-
ing-point arithmetic, the value 
that is placed in the exponent 
field.
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In general, floating-point numbers are generally of the form

(–1)S ¥ F ¥ 2E

F involves the value in the fraction field and E involves the value in the exponent
field; the exact relationship to these fields will be spelled out soon. (We will shortly
see that MIPS does something slightly more sophisticated.)

These chosen sizes of exponent and fraction give MIPS computer arithmetic an
extraordinary range. Fractions almost as small as 2.0ten ¥ 10–38 and numbers
almost as large as 2.0ten ¥ 1038 can be represented in a computer. Alas, extraordi-
nary differs from infinite, so it is still possible for numbers to be too large. Thus,
overflow interrupts can occur in floating-point arithmetic as well as in integer
arithmetic. Notice that overflow here means that the exponent is too large to be
represented in the exponent field.

Floating point offers a new kind of exceptional event as well. Just as program-
mers will want to know when they have calculated a number that is too large to be
represented, they will want to know if the nonzero fraction they are calculating
has become so small that it cannot be represented; either event could result in a
program giving incorrect answers. To distinguish it from overflow, people call this
event underflow. This situation occurs when the negative exponent is too large to
fit in the exponent field. 

One way to reduce chances of underflow or overflow is to offer another format
that has a larger exponent. In C this number is called double, and operations on
doubles are called double precision floating-point arithmetic; single precision
floating point is the name of the earlier format. 

The representation of a double precision floating-point number takes two
MIPS words, as shown below, where s is still the sign of the number, exponent is
the value of the 11-bit exponent field, and fraction is the 52-bit number in the
fraction. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent fraction

1 bit 8 bits 23 bits

overflow (floating-point) A
situation in which a positive 
exponent becomes too large to 
fit in the exponent field.

underflow (floating-point) A
situation in which a negative 
exponent becomes too large to 
fit in the exponent field.

double precision A floating-
point value represented in two 
32-bit words.

single precision A floating-
point value represented in a 
single 32-bit word.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s exponent fraction

1 bit 11 bits 20 bits

fraction (continued)

32 bits
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MIPS double precision allows numbers almost as small as 2.0ten ¥ 10–308 and
almost as large as 2.0ten ¥ 10308. Although double precision does increase the
exponent range, its primary advantage is its greater precision because of the larger
significand.

These formats go beyond MIPS. They are part of the IEEE 754 floating-point
standard, found in virtually every computer invented since 1980. This standard
has greatly improved both the ease of porting floating-point programs and the
quality of computer arithmetic.

To pack even more bits into the significand, IEEE 754 makes the leading 1 bit of
normalized binary numbers implicit. Hence, the number is actually 24 bits long in
single precision (implied 1 and a 23-bit fraction), and 53 bits long in double preci-
sion (1 + 52). To be precise, we use the term significand to represent the 24- or 53-
bit number that is 1 plus the fraction, and fraction when we mean the 23- or 52-bit
number. Since 0 has no leading 1, it is given the reserved exponent value 0 so that
the hardware won’t attach a leading 1 to it. 

Thus 00 . . . 00two represents 0; the representation of the rest of the numbers
uses the form from before with the hidden 1 added:

where the bits of the fraction represent a number between 0 and 1 and E specifies
the value in the exponent field, to be given in detail shortly. If we number the bits
of the fraction from left to right s1, s2, s3, . . .  , then the value is

Figure 3.15 shows the encodings of IEEE 754 floating-point numbers. Other
features of IEEE 754 are special symbols to represent unusual events. For example,
instead of interrupting on a divide by 0, software can set the result to a bit pattern
representing +• or –•; the largest exponent is reserved for these special symbols.
When the programmer prints the results, the program will print an infinity sym-
bol. (For the mathematically trained, the purpose of infinity is to form topological
closure of the reals.)

IEEE 754 even has a symbol for the result of invalid operations, such as 0/0 or
subtracting infinity from infinity. This symbol is NaN, for Not a Number. The
purpose of NaNs is to allow programmers to postpone some tests and decisions to
a later time in the program when it is convenient. 

The designers of IEEE 754 also wanted a floating-point representation that
could be easily processed by integer comparisons, especially for sorting. This
desire is why the sign is in the most significant bit, allowing a quick test of less
than, greater than, or equal to 0. (It’s a little more complicated than a simple inte-
ger sort, since this notation is essentially sign and magnitude rather than two’s
complement.)

1–( )S 1 Fraction+( ) 2E¥¥

1–( )S 1 s1 2 1–¥( ) s2 2 2–¥( ) s3 2 3–¥( ) s4 2 4–¥( ) . . .+ + + + +( )¥ 2E¥
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Placing the exponent before the significand also simplifies sorting of floating-
point numbers using integer comparison instructions, since numbers with bigger
exponents look larger than numbers with smaller exponents, as long as both
exponents have the same sign. 

Negative exponents pose a challenge to simplified sorting. If we use two’s com-
plement or any other notation in which negative exponents have a 1 in the most
significant bit of the exponent field, a negative exponent will look like a big num-
ber. For example, 1.0two ¥ 2–1 would be represented as

(Remember that the leading 1 is implicit in the significand.) The value 1.0two ¥ 2+1

would look like the smaller binary number

The desirable notation must therefore represent the most negative exponent as
00 . . . 00two and the most positive as 11 . . . 11two. This convention is called biased
notation, with the bias being the number subtracted from the normal, unsigned
representation to determine the real value. 

IEEE 754 uses a bias of 127 for single precision, so –1 is represented by the bit
pattern of the value –1 + 127ten, or 126ten = 0111 1110two, and +1 is represented by
1 + 127, or 128ten = 1000 0000two. Biased exponent means that the value repre-
sented by a floating-point number is really

(–1)S ¥ (1 + Fraction) ¥ 2(Exponent – Bias)

The exponent bias for double precision is 1023.

Single precision Double precision Object represented

Exponent Fraction Exponent Fraction

0 0 0 0 0

0 nonzero 0  nonzero ± denormalized number

1–254 anything 1–2046 anything ± floating-point number

255 0 2047 0 ± infinity

255 nonzero 2047 nonzero NaN (Not a Number)

FIGURE 3.15 IEEE 754 encoding of floating-point numbers. A separate sign bit determines the
sign. Denormalized numbers are described in the elaboration on page 217.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .
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Thus IEEE 754 notation can be processed by integer compares to accelerate
sorting of floating-point numbers. Let’s show the representation.

Floating-Point Representation

Show the IEEE 754 binary representation of the number –0.75ten in single
and double precision.

The number –0.75ten is also

–3/4ten or –3/22
ten

It is also represented by the binary fraction

–11two/22
ten or –0.11two

In scientific notation, the value is 

–0.11two ¥ 20

and in normalized scientific notation, it is

–1.1two ¥ 2–1

The general representation for a single precision number is

(–1)S ¥ (1 + Fraction) ¥ 2(Exponent – 127)

When we subtract the bias 127 from the exponent of –1.1two ¥ 2–1, the result
is

(–1)1 ¥ (1 + .1000 0000 0000 0000 0000 000two) ¥ 2(126 – 127)

The single precision binary representation of –0.75ten is then

EXAMPLE

ANSWER

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 8 bits 23 bits
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Now let’s try going the other direction.

In the next sections we will give the algorithms for floating-point addition and
multiplication. At their core, they use the corresponding integer operations on the
significands, but extra bookkeeping is necessary to handle the exponents and nor-
malize the result. We first give an intuitive derivation of the algorithms in decimal,
and then give a more detailed, binary version in the figures.

The double precision representation is

(–1)1 ¥ (1 + .1000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000two) ¥ 2(1022–1023)

Converting Binary to Decimal Floating Point

What decimal number is represented by this single precision float?

The sign bit is 1, the exponent field contains 129, and the fraction field con-
tains 1 ¥  2–2 = 1/4, or 0.25. Using the basic equation,

(–1)S ¥ (1 + Fraction) ¥ 2(Exponent – Bias) = (–1)1 ¥ (1 + 0.25) ¥ 2(129–127)

= –1 ¥ 1.25 ¥ 22

= –1.25 ¥ 4
= –5.0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 bit 11 bits 20 bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 bits

EXAMPLE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . .

ANSWER
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Elaboration: In an attempt to increase range without removing bits from the signifi-
cand, some computers before the IEEE 754 standard used a base other than 2. For
example, the IBM 360 and 370 mainframe computers use base 16. Since changing the
IBM exponent by one means shifting the significand by 4 bits, “normalized” base 16
numbers can have up to 3 leading bits of 0s! Hence, hexadecimal digits mean that up
to 3 bits must be dropped from the significand, which leads to surprising problems in
the accuracy of floating-point arithmetic, as noted in Section .

Floating-Point Addition

Let’s add numbers in scientific notation by hand to illustrate the problems in
floating-point addition: 9.999ten ¥ 101 + 1.610ten ¥ 10–1. Assume that we can store
only four decimal digits of the significand and two decimal digits of the exponent. 

Step 1. To be able to add these numbers properly, we must align the decimal
point of the number that has the smaller exponent. Hence, we need a form
of the smaller number, 1.610ten ¥ 10–1, that matches the larger exponent.
We obtain this by observing that there are multiple representations of an
unnormalized floating-point number in scientific notation:

1.610ten ¥ 10–1 = 0.1610ten ¥ 100 = 0.01610ten ¥ 101

The number on the right is the version we desire, since its exponent
matches the exponent of the larger number, 9.999ten ¥ 101. Thus the first
step shifts the significand of the smaller number to the right until its cor-
rected exponent matches that of the larger number. But we can represent
only four decimal digits so, after shifting, the number is really:

0.016ten ¥ 101

Step 2. Next comes the addition of the significands:

 9.999ten
+ 0.016ten

10.015ten

The sum is 10.015ten ¥ 101.

Step 3. This sum is not in normalized scientific notation, so we need to adjust it:

10.015ten ¥ 101 = 1.0015ten ¥ 102

Thus, after the addition we may have to shift the sum to put it into nor-
malized form, adjusting the exponent appropriately. This example shows
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shifting to the right, but if one number were positive and the other were
negative, it would be possible for the sum to have many leading 0s, requir-
ing left shifts. Whenever the exponent is increased or decreased, we must
check for overflow or underflow—that is, we must make sure that the ex-
ponent still fits in its field.

Step 4. Since we assumed that the significand can be only four digits long (exclud-
ing the sign), we must round the number. In our grammar school algo-
rithm, the rules truncate the number if the digit to the right of the desired
point is between 0 and 4 and add 1 to the digit if the number to the right
is between 5 and 9. The number

1.0015ten ¥ 102

is rounded to four digits in the significand to 

1.002ten ¥ 102

since the fourth digit to the right of the decimal point was between 5 and
9. Notice that if we have bad luck on rounding, such as adding 1 to a string
of 9s, the sum may no longer be normalized and we would need to per-
form step 3 again.

Figure 3.16 shows the algorithm for binary floating-point addition that follows
this decimal example. Steps 1 and 2 are similar to the example just
discussed: adjust the significand of the number with the smaller exponent and
then add the two significands. Step 3 normalizes the results, forcing a check for
overflow or underflow. The test for overflow and underflow in step 3 depends on
the precision of the operands. Recall that the pattern of all zero bits in the expo-
nent is reserved and used for the floating-point representation of zero. Also, the
pattern of all one bits in the exponent is reserved for indicating values and situa-
tions outside the scope of normal floating-point numbers (see the Elaboration on
page 217). Thus, for single precision, the maximum exponent is 127, and the min-
imum exponent is –126. The limits for double precision are 1023 and –1022.

Decimal Floating-Point Addition

Try adding the numbers 0.5ten and –0.4375ten in binary using the algorithm
in Figure 3.16.EXAMPLE
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Many computers dedicate hardware to run floating-point operations as fast as
possible. Figure 3.17 sketches the basic organization of hardware for floating-point
addition.

Let’s first look at the binary version of the two numbers in normalized scien-
tific notation, assuming that we keep 4 bits of precision:

0.5ten = 1/2ten = 1/21
ten

= 0.1two = 0.1two ¥ 20 = 1.000two ¥ 2–1

–0.4375ten = –7/16ten = –7/24
ten

= –0.0111two = – 0.0111two ¥ 20 = –1.110two ¥ 2–2

Now we follow the algorithm:

Step 1. The significand of the number with the lesser exponent (– 1.11two ¥
2–2) is shifted right until its exponent matches the larger number:

–1.110two ¥ 2–2 = –0.111two ¥ 2–1

Step 2. Add the significands:

1.000two ¥ 2–1 + (–0.111two ¥  2–1) = 0.001two ¥ 2–1

Step 3. Normalize the sum, checking for overflow or underflow:

0.001two ¥ 2–1 = 0.010two ¥ 2–2 = 0.100two ¥ 2–3

= 1.000two ¥ 2–4

Since 127 –4 –126, there is no overflow or underflow. (The biased
exponent would be –4 + 127, or 123, which is between 1 and 254, the
smallest and largest unreserved biased exponents.)

Step 4. Round the sum:

1.000two ¥ 2–4

The sum already fits exactly in 4 bits, so there is no change to the bits
due to rounding. 

This sum is then

 1.000two ¥ 2–4 = 0.0001000two = 0.0001two
= 1/24

ten = 1/16ten = 0.0625ten

This sum is what we would expect from adding 0.5ten to –0.4375ten.

ANSWER
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FIGURE 3.16 Floating-point addition. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.

Still normalized?

4. Round the significand to the appropriate

number of bits

YesOverflow or

underflow?

Start

No

Yes

Done

1.  Compare the exponents of the two numbers.

Shift the smaller number to the right until its

exponent would match the larger exponent

2. Add the significands

3. Normalize the sum, either shifting right and

incrementing the exponent or shifting left

and decrementing the exponent

No Exception
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FIGURE 3.17 Block diagram of an arithmetic unit dedicated to floating-point addition. The steps of Figure 3.16 cor-
respond to each block, from top to bottom. First, the exponent of one operand is subtracted from the other using the small ALU to
determine which is larger and by how much. This difference controls the three multiplexors; from left to right, they select the larger
exponent, the significand of the smaller number, and the significand of the larger number. The smaller significand is shifted right,
and then the significands are added together using the big ALU. The normalization step then shifts the sum left or right and incre-
ments or decrements the exponent. Rounding then creates the final result, which may require normalizing again to produce the final
result.

Compare

exponents
Small ALU

Exponent
difference

Control

ExponentSign Fraction

Big ALU

ExponentSign Fraction

0 1 0 1 0 1

Shift right

0 1 0 1

Increment or
decrement

Shift left or right

Rounding hardware

ExponentSign Fraction

Shift smaller

number right

Add

Normalize

Round



202 Chapter 3 Arithmetic for Computers

Floating-Point Multiplication

Now that we have explained floating-point addition, let’s try floating-point multi-
plication. We start by multiplying decimal numbers in scientific notation by
hand: 1.110ten ¥ 1010 ¥ 9.200ten ¥ 10–5. Assume that we can store only four digits
of the significand and two digits of the exponent.

Step 1. Unlike addition, we calculate the exponent of the product by simply add-
ing the exponents of the operands together:

New exponent = 10 + (–5) = 5

Let’s do this with the biased exponents as well to make sure we obtain the
same result: 10 + 127 = 137, and –5 + 127 = 122, so 

New exponent = 137 + 122 = 259

This result is too large for the 8-bit exponent field, so something is amiss!
The problem is with the bias because we are adding the biases as well as
the exponents:

New exponent = (10 + 127) + (–5 +127) = (5 + 2 ¥ 127) = 259

Accordingly, to get the correct biased sum when we add biased numbers, we
must subtract the bias from the sum:

New exponent = 137 + 122 – 127 = 259 – 127 = 132 = (5 + 127)

and 5 is indeed the exponent we calculated initially.

Step 2. Next comes the multiplication of the significands:
1.110ten

x 9.200ten

0000
0000

2220
9990

10212000ten

There are three digits to the right of the decimal for each operand, so the
decimal point is placed six digits from the right in the product significand:

10.212000ten

Assuming that we can keep only three digits to the right of the decimal
point, the product is 10.212 ¥ 105.
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Step 3. This product is unnormalized, so we need to normalize it:

10.212ten ¥ 105 = 1.0212ten ¥ 106

Thus, after the multiplication, the product can be shifted right one digit to
put it in normalized form, adding 1 to the exponent. At this point, we can
check for overflow and underflow. Underflow may occur if both operands
are small—that is, if both have large negative exponents.

Step 4. We assumed that the significand is only four digits long (excluding the
sign), so we must round the number. The number

1.0212ten ¥ 106

is rounded to four digits in the significand to 

1.021ten ¥ 106

Step 5. The sign of the product depends on the signs of the original operands. If
they are both the same, the sign is positive; otherwise it’s negative. Hence
the product is

+1.021ten ¥ 106

The sign of the sum in the addition algorithm was determined by addition
of the significands, but in multiplication the sign of the product is deter-
mined by the signs of the operands.

Once again, as Figure 3.18 shows, multiplication of binary floating-point num-
bers is quite similar to the steps we have just completed. We start with calculating
the new exponent of the product by adding the biased exponents, being sure to
subtract one bias to get the proper result. Next is multiplication of significands,
followed by an optional normalization step. The size of the exponent is checked
for overflow or underflow, and then the product is rounded. If rounding leads to
further normalization, we once again check for exponent size. Finally, set the sign
bit to 1 if the signs of the operands were different (negative product) or to 0 if they
were the same (positive product).   

Decimal Floating-Point Multiplication

Let’s try multiplying the numbers 0.5ten and –0.4375ten, using the steps in
Figure 3.18. EXAMPLE
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In binary, the task is multiplying 1.000two ¥ 2–1 by – 1.110two ¥ 2–2.

Step 1. Adding the exponents without bias:

–1 + (–2) = –3

or, using the biased representation:

(–1 + 127) + (–2 + 127) – 127 = (–1 – 2)+(127 + 127 – 127) 
= –3 + 127 = 124

Step 2. Multiplying the significands: 
1.000two

x 1.110two

0000
1000

1000
    1000

    1110000two

The product is 1.110000two ¥ 2–3, but we need to keep it to 4 bits, so
it is 1.110two ¥ 2–3.

Step 3. Now we check the product to make sure it is normalized, and then
check the exponent for overflow or underflow. The product is already
normalized and, since 127  –3 –126, there is no overflow or un-
derflow. (Using the biased representation, 254  124 1, so the expo-
nent fits.)

Step 4. Rounding the product makes no change:

 1.110two ¥ 2–3

Step 5. Since the signs of the original operands differ, make the sign of the
product negative. Hence the product is

–1.110two ¥ 2–3

Converting to decimal to check our results:

–1.110two ¥ 2–3 = –0.001110two = –0.00111two
= –7/25

ten = –7/32ten = –0.21875ten

The product of 0.5ten and –0.4375ten is indeed –0.21875ten.

ANSWER
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FIGURE 3.18 Floating-point multiplication. The normal path is to execute steps 3 and 4 once, but if
rounding causes the sum to be unnormalized, we must repeat step 3.
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Start
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Yes

Done
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numbers, subtracting the bias from the sum

to get the new biased exponent

2. Multiply the significands
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it right and incrementing the exponent

No Exception
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Floating-Point Instructions in MIPS

MIPS supports the IEEE 754 single precision and double precision formats with
these instructions:

■ Floating-point addition, single (add.s) and addition, double (add.d)

■ Floating-point subtraction, single (sub.s) and subtraction, double (sub.d)

■ Floating-point multiplication, single (mul.s) and multiplication, double
(mul.d)

■ Floating-point division, single (div.s) and division, double (div.d)

■ Floating-point comparison, single (c.x.s) and comparison, double (c.x.d),
where x may be equal (eq), not equal (neq), less than (lt), less than or equal
(le), greater than (gt), or greater than or equal (ge)

■ Floating-point branch, true (bc1t) and branch, false (bc1f)

Floating-point comparison sets a bit to true or false, depending on the compari-
son condition, and a floating-point branch then decides whether or not to branch,
depending on the condition.

The MIPS designers decided to add separate floating-point registers—called
$f0, $f1, $f2, . . .—used either for single precision or double precision. Hence,
they included separate loads and stores for floating-point registers: lwc1 and
swc1. The base registers for floating-point data transfers remain integer registers.
The MIPS code to load two single precision numbers from memory, add them,
and then store the sum might look like this:

lwc1      $f4,x($sp)  # Load 32-bit F.P. number into F4
lwc1      $f6,y($sp)  # Load 32-bit F.P. number into F6
add.s     $f2,$f4,$f6 # F2 = F4 + F6 single precision
swc1      $f2,z($sp)  # Store 32-bit F.P. number from F2

A double precision register is really an even-odd pair of single precision registers,
using the even register number as its name.

Figure 3.19 summarizes the floating-point portion of the MIPS architecture
revealed in this chapter, with the additions to support floating point shown in
color. Similar to Figure 2.25 on page 103 in Chapter 2, we show the encoding of
these instructions in Figure 3.20.
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MIPS floating-point operands

Name Example Comments

32 floating-
point registers

$f0, $f1, $f2, . . . , $f31 MIPS floating-point registers are used in pairs for double precision numbers.

230 memory words Memory[0], 
Memory[4], . . . ,
Memory[4294967292]

Accessed only by data transfer instructions. MIPS uses byte addresses, so 
sequential word addresses differ by 4. Memory holds data structures, such as 
arrays, and spilled registers, such as those saved on procedure calls. 

MIPS floating-point assembly language

Category Instruction Example Meaning Comments

Arithmetic

FP add single add.s  $f2,$f4,$f6 $f2 = $f4 + $f6 FP add (single precision)

FP subtract single sub.s  $f2,$f4,$f6 $f2 = $f4 – $f6 FP sub (single precision)

FP multiply single mul.s  $f2,$f4,$f6 $f2 = $f4 ¥ $f6 FP multiply (single precision)

FP divide single div.s  $f2,$f4,$f6 $f2 = $f4 / $f6 FP divide (single precision)

FP add double add.d  $f2,$f4,$f6 $f2 = $f4 + $f6 FP add (double precision)

FP subtract double sub.d  $f2,$f4,$f6 $f2 = $f4 – $f6 FP sub (double precision)

FP multiply double mul.d  $f2,$f4,$f6 $f2 = $f4 ¥ $f6 FP multiply (double precision)

FP divide double div.d  $f2,$f4,$f6 $f2 = $f4 / $f6 FP divide (double precision)

Data
transfer

load word copr. 1 lwc1   $f1,100($s2) $f1 = Memory[$s2 + 100] 32-bit data to FP register

store word copr. 1 swc1   $f1,100($s2) Memory[$s2 + 100] = $f1 32-bit data to memory

Condi-
tional
branch

branch on FP true bc1t   25 if (cond == 1) go to PC + 4 + 100 PC-relative branch if FP cond.

branch on FP false bc1f   25 if (cond == 0) go to PC + 4 + 100 PC-relative branch if not cond.

FP compare single 
(eq,ne,lt,le,gt,ge)

c.lt.s $f2,$f4 if ($f2 < $f4)
    cond = 1; else cond = 0

FP compare less than
single precision

FP compare double 
(eq,ne,lt,le,gt,ge)

c.lt.d $f2,$f4 if ($f2 < $f4)
    cond = 1; else cond = 0

FP compare less than
double precision

MIPS floating-point machine language

Name Format Example Comments

add.s R 17 16 6 4 2 0 add.s  $f2,$f4,$f6
sub.s R 17 16 6 4 2 1 sub.s  $f2,$f4,$f6
mul.s R 17 16 6 4 2 2 mul.s  $f2,$f4,$f6
div.s R 17 16 6 4 2 3 div.s  $f2,$f4,$f6
add.d R 17 17 6 4 2 0 add.d  $f2,$f4,$f6
sub.d R 17 17 6 4 2 1 sub.d  $f2,$f4,$f6
mul.d R 17 17 6 4 2 2 mul.d  $f2,$f4,$f6
div.d R 17 17 6 4 2 3 div.d  $f2,$f4,$f6
lwc1 I 49 20 2 100 lwc1   $f2,100($s4)
swc1 I 57 20 2 100 swc1   $f2,100($s4)
bc1t I 17 8 1 25 bc1t   25
bc1f I 17 8 0 25 bc1f   25
c.lt.s R 17 16 4 2 0 60 c.lt.s $f2,$f4
c.lt.d R 17 17 4 2 0 60 c.lt.d $f2,$f4
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions 32 bits

FIGURE 3.19 MIPS floating-point architecture revealed thus far. See Appendix A, Section A.10, on page A-49, for more detail.
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op(31:26):

28–26

31–29

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) Rfmt Bltz/gez j jal beq bne blez bgtz
1(001) addi addiu slti sltiu andi ori xori lui
2(010) TLB FlPt

3(011)

4(100) lb lh lwl lw lbu lhu lwr
5(101) sb sh swl sw swr
6(110) lwc0 lwc1
7(111) swc0 swc1

op(31:26) = 010001 (FlPt), (rt(16:16) = 0 => c = f, rt(16:16) = 1 => c = t), rs(25:21):

23–21

25–24

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(00) mfc1 cfc1 mtc1 ctc1
1(01) bc1.c
2(10) f = single f = double
3(11)

op(31:26) = 010001 (FlPt), (f above: 10000 => f = s, 10001 => f = d), funct(5:0):

2–0

5–3

0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)

0(000) add.f sub.f mul.f div.f abs.f mov.f neg.f
1(001)

2(010)

3(011)

4(100) cvt.s.f cvt.d.f cvt.w.f
5(101)

6(110) c.f.f c.un.f c.eq.f c.ueq.f c.olt.f c.ult.f c.ole.f c.ule.f
7(111) c.sf.f c.ngle.f c.seq.f c.ngl.f c.lt.f c.nge.f c.le.f c.ngt.f

FIGURE 3.20 MIPS floating-point instruction encoding. This notation gives the value of a field by row and by column. For example, in the
top portion of the figure lw is found in row number 4 (100two for bits 31–29 of the instruction) and column number 3 (011two for bits 28–26 of the
instruction), so the corresponding value of the op field (bits 31–26) is 100011two. Underscore means the field is used elsewhere. For example, FlPt in
row 2 and column 1 (op = 010001two) is defined in the bottom part of the figure. Hence sub.f in row 0 and column 1 of the bottom section means
that the funct field (bits 5–0) of the instruction) is 000001two and the op field (bits 31–26) is 010001two. Note that the 5-bit rs field, specified in the
middle portion of the figure, determines whether the operation is single precision (f = s so rs = 10000) or double precision (f = d so rs = 10001). Sim-
ilarly, bit 16 of the instruction determines if the bc1.c instruction tests for true (bit 16 = 1 =>bc1.t) or false (bit 16 = 0 =>bc1.f). Instructions
in color are described in Chapters 2 or 3, with Appendix A covering all instructions.
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One issue that computer designers face in supporting floating-point arithmetic is
whether to use the same registers used by the integer instructions or to add a spe-
cial set for floating point. Because programs normally perform integer operations
and floating-point operations on different data, separating the registers will only
slightly increase the number of instructions needed to execute a program. The
major impact is to create a separate set of data transfer instructions to move data
between floating-point registers and memory. 
The benefits of separate floating-point registers are having twice as many registers
without using up more bits in the instruction format, having twice the register
bandwidth by having separate integer and floating-point register sets, and being
able to customize registers to floating point; for example, some computers convert
all sized operands in registers into a single internal format

Hardware
Software
Interface

Compiling a Floating-Point C Program into MIPS Assembly Code

Let’s convert a temperature in Fahrenheit to Celsius:

float f2c (float fahr)
{

return ((5.0/9.0) * (fahr - 32.0));
}

Assume that the floating-point argument fahr is passed in $f12 and the
result should go in $f0. (Unlike integer registers, floating-point register 0 can
contain a number.) What is the MIPS assembly code?

We assume that the compiler places the three floating-point constants in
memory within easy reach of the global pointer $gp. The first two instruc-
tions load the constants 5.0 and 9.0 into floating-point registers:
f2c:
      lwc1 $f16,const5($gp) # $f16 = 5.0 (5.0 in memory)
      lwc1 $f18,const9($gp) # $f18 = 9.0 (9.0 in memory)

EXAMPLE

ANSWER
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Now let’s perform floating-point operations on matrices, code commonly
found in scientific programs.

They are then divided to get the fraction 5.0/9.0:

      div.s $f16, $f16, $f18 # $f16 = 5.0 / 9.0 

(Many compilers would divide 5.0 by 9.0 at compile time and save the single
constant 5.0/9.0 in memory, thereby avoiding the divide at runtime.) Next we
load the constant 32.0 and then subtract it from fahr ($f12):

      lwc1 $f18, const32($gp) # $f18 = 32.0 
      sub.s $f18, $f12, $f18 # $f18 = fahr – 32.0

Finally, we multiply the two intermediate results, placing the product in $f0
as the return result, and then return:

      mul.s$f0,  $f16, $f18 # $f0 = (5/9)*(fahr – 32.0)
      jr  $ra # return

Compiling Floating-Point C Procedure with Two-Dimensional 
Matrices into MIPS

Most floating-point calculations are performed in double precision. Let’s per-
form matrix multiply of X = X + Y * Z. Let’s assume X, Y, and Z are all square
matrices with 32 elements in each dimension.

void mm (double x[][], double y[][], double z[][])
{

int i, j, k;

for (i = 0; i! = 32; i = i + 1)
for (j = 0; j! = 32; j = j + 1)
for (k = 0; k! = 32; k = k + 1)
  x[i][j] = x[i][j] + y[i][k] * z[k][j];

}

The array starting addresses are parameters, so they are in $a0, $a1, and
$a2. Assume that the integer variables are in $s0, $s1, and $s2, respectively.
What is the MIPS assembly code for the body of the procedure?

EXAMPLE
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Note that x[i][j] is used in the innermost loop above. Since the loop in-
dex is k, the index does not affect x[i][j], so we can avoid loading and
storing x[i][j] each iteration. Instead, the compiler loads x[i][j] into
a register outside the loop, accumulates the sum of the products of y[i][k]
and z[k][j] in that same register, and then stores the sum into x[i][j]
upon termination of the innermost loop.

We keep the code simpler by using the assembly language pseudoinstruc-
tions li (which loads a constant into a register), and l.d and s.d (which the
assembler turns into a pair of data transfer instructions, lwc1 or swc1, to a
pair of floating-point registers). 

The body of the procedure starts with saving the loop termination value of
32 in a temporary register and then initializing the three for loop variables:

mm:...
li $t1, 32  # $t1 = 32 (row size/loop end)
li $s0, 0   # i = 0; initialize 1st for loop

L1: li $s1, 0   # j = 0; restart 2nd for loop
L2: li $s2, 0   # k = 0; restart 3rd for loop

To calculate the address of x[i][j], we need to know how a 32 ¥ 32, two-
dimensional array is stored in memory. As you might expect, its layout is the
same as if there were 32 single-dimension arrays, each with 32 elements. So the
first step is to skip over the i “single-dimensional arrays,” or rows, to get the
one we want. Thus we multiply the index in the first dimension by the size of
the row, 32. Since 32 is a power of 2, we can use a shift instead:

sll  $t2, $s0, 5 # $t2 = i * 25 (size of row of x)

Now we add the second index to select the jth element of the desired row:

addu  $t2, $t2, $s1 # $t2 = i * size(row) + j

To turn this sum into a byte index, we multiply it by the size of a matrix
element in bytes. Since each element is 8 bytes for double precision, we can in-
stead shift left by 3:

sll  $t2, $t2, 3 # $t2 = byte offset of [i][j]

Next we add this sum to the base address of x, giving the address of
x[i][j], and then load the double precision number x[i][j] into $f4:

addu  $t2, $a0, $t2 # $t2 = byte address of x[i][j]
l.d   $f4, 0($t2) # $f4 = 8 bytes of x[i][j]

The following five instructions are virtually identical to the last five: calcu-
late the address and then load the double precision number z[k][j].

ANSWER
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Elaboration: The array layout discussed in the example, called row major order, is
used by C and many other programming languages. Fortran instead uses column major
order, whereby the array is stored column by column.

Only 16 of the 32 MIPS floating-point registers could originally be used for single pre-
cision operations: $f0, $f2, $f4,..., $f30. Double precision is computed using pairs

L3:   sll $t0, $s2, 5 # $t0 = k * 25 (size of row of z)
      addu $t0, $t0, $s1 # $t0 = k * size(row) + j
      sll $t0, $t0, 3 # $t0 = byte offset of [k][j]
      addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]
      l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]

 Similarly, the next five instructions are like the last five: calculate the ad-
dress and then load the double precision number y[i][k].

sll $t2, $s0, 5 # $t0 = i * 25 (size of row of y)
addu $t0, $t0, $s2 # $t0 = i * size(row) + k
sll $t0, $t0, 3 # $t0 = byte offset of [i][k]
addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]
l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]

Now that we have loaded all the data, we are finally ready to do some float-
ing-point operations! We multiply elements of y and z located in registers
$f18 and $f16, and then accumulate the sum in $f4.

mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]
add.d $f4, $f4, $f16 # f4 = x[i][j]+ y[i][k] * z[k][j]

The final block increments the index k and loops back if the index is not
32. If it is 32, and thus the end of the innermost loop, we need to store the sum
accumulated in $f4 into x[i][j].

addiu  $s2, $s2, 1 # $k k + 1
bne    $s2, $t1, L3 # if (k != 32) go to L3
s.d    $f4, 0($t2) # x[i][j] = $f4

 Similarly, these final four instructions increment the index variable of the
middle and outermost loops, looping back if the index is not 32 and exiting if
the index is 32.

addiu  $s1, $s1, 1 # $j = j + 1
bne    $s1, $t1, L2 # if (j != 32) go to L2
addiu  $s0, $s0, 1 # $i = i + 1 
bne    $s0, $t1, L1 # if (i != 32) go to L1
... 
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of these registers. The odd-numbered floating-point registers were used only to load
and store the right half of 64-bit floating-point numbers. MIPS-32 added l.d and s.d to
the instruction set. MIPS-32 also added “paired single” versions of all floating-point
instructions, where a single instruction results in two parallel floating-point operations
on two 32-bit operands inside 64-bit registers. For example, add.ps F0, F2, F4 is equiv-
alent to add.s F0, F2, F4 followed by add.s F1, F3, F5.

Another reason for separate integers and floating-point registers is that microproces-
sors in the 1980s didn’t have enough transistors to put the floating-point unit on the
same chip as the integer unit. Hence the floating-point unit, including the floating-point
registers, were optionally available as a second chip. Such optional accelerator chips
are called coprocessors, and explain the acronym for floating-point loads in MIPS:
lwc1 means load word to coprocessor 1, the floating-point unit. (Coprocessor 0 deals
with virtual memory, described in Chapter 7.) Since the early 1990s, microprocessors
have integrated floating point (and just about everything else) on chip, and hence the
term “coprocessor” joins “accumulator” and “core memory” as quaint terms that date
the speaker.

Elaboration: Although there are many ways to throw hardware at floating-point multi-
ply to make it go fast, floating-point division is considerably more challenging to make
fast and accurate. Slow divides in early computers led to removal of divides from many
algorithms, but parallel computers have inspired rediscovery of divide-intensive algo-
rithms that work better on these computers. Hence, we may need faster divides.

One technique to leverage a fast multiplier is Newton’s iteration, where division is
recast as finding the zero of a function to find the reciprocal 1/x, which is then multi-
plied by the other operand. Iteration techniques cannot be rounded properly without cal-
culating many extra bits. A TI chip solves this problem by calculating an extra-precise
reciprocal.

Elaboration: Java embraces IEEE 754 by name in its definition of Java floating-point
data types and operations. Thus, the code in the first example could have well been
generated for a class method that converted Fahrenheit to Celsius. 

The second example uses multiple dimensional arrays, which are not explicitly sup-
ported in Java. Java allows arrays of arrays, but each array may have its own length,
unlike multiple dimensional arrays in C. Like the examples in Chapter 2, a Java version
of this second example would require a good deal of checking code for array bounds,
including a new length calculation at the end of row. It would also need to check that
the object reference is not null.

Accurate Arithmetic

Unlike integers, which can represent exactly every number between the smallest
and largest number, floating-point numbers are normally approximations for a
number they can’t really represent. The reason is that an infinite variety of real
numbers exists between, say, 0 and 1, but no more than 253 can be represented
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exactly in double precision floating point. The best we can do is get the floating-
point representation close to the actual number. Thus, IEEE 754 offers several
modes of rounding to let the programmer pick the desired approximation.

Rounding sounds simple enough, but to round accurately requires the hard-
ware to include extra bits in the calculation. In the preceding examples, we were
vague on the number of bits that an intermediate representation can occupy, but
clearly if every intermediate result had to be truncated to the exact number of dig-
its, there would be no opportunity to round. IEEE 754, therefore, always keeps 2
extra bits on the right during intermediate additions, called guard and round,
respectively. Let’s do a decimal example to illustrate the value of these extra digits.

Rounding with Guard Digits

Add 2.56ten ¥ 100 to 2.34ten ¥ 102, assuming that we have three significant
decimal digits. Round to the nearest decimal number with three significant
decimal digits, first with guard and round digits, and then without them.

First we must shift the smaller number to the right to align the exponents, so
2.56ten ¥ 100 becomes 0.0256ten ¥ 102. Since we have guard and round digits,
we are able to represent the two least significant digits when we align expo-
nents. The guard digit holds 5 and the round digit holds 6. The sum is

2.3400ten
+ 0.0256ten

2.3656ten

Thus the sum is 2.3656ten ¥ 102. Since we have two digits to round, we want
values 0 to 49 to round down and 51 to 99 to round up, with 50 being the tie-
breaker. Rounding the sum up with three significant digits yields 2.37ten ¥
102.

Doing this without guard and round digits drops two digits from the calcu-
lation. The new sum is then

2.34ten
+ 0.02ten

2.36ten

The answer is 2.36ten ¥ 102, off by 1 in the last digit from the sum above.

guard The first of two extra 
bits kept on the right during 
intermediate calculations of 
floating-point numbers; used to 
improve rounding accuracy.

round Method to make the 
intermediate floating-point 
result fit the floating-point for-
mat; the goal is typically to find 
the nearest number that can be 
represented in the format.

EXAMPLE

ANSWER



3.6 Floating Point 215

Since the worst case for rounding would be when the actual number is halfway
between two floating-point representations, accuracy in floating point is normally
measured in terms of the number of bits in error in the least significant bits of the
significand; the measure is called the number of units in the last place, or ulp. If a
number was off by 2 in the least significant bits, it would be called off by 2 ulps.
Provided there is no overflow, underflow, or invalid operation exceptions, IEEE
754 guarantees that the computer uses the number that is within one-half ulp.

Elaboration: Although the example above really needed just one extra digit, multiply
can need two. A binary product may have one leading 0 bit; hence, the normalizing step
must shift the product 1 bit left. This shifts the guard digit into the least significant bit
of the product, leaving the round bit to help accurately round the product. 

There are four rounding modes: always round up (toward +•), always round down
(toward – •), truncate, and round to nearest even. The final mode determines what to
do if the number is exactly halfway in between. The Internal Revenue Service always
rounds 0.50 dollars up, possibly to the benefit of the IRS. A more equitable way would
be to round up this case half the time and round down the other half. IEEE 754 says
that if the least significant bit retained in a halfway case would be odd, add one; if it’s
even, truncate. This method always creates a 0 in the least significant bit in the tie-
breaking case, giving the rounding mode its name. This mode is the most commonly
used, and the only one that Java supports.

The goal of the extra rounding bits is to allow the computer to get the same results
as if the intermediate results were calculated to infinite precision and then rounded.

To support this goal and rounding to the nearest even, the standard has a third bit
in addition to guard and round; it is set whenever there are nonzero bits to the right of
the round bit. This sticky bit allows the computer to see the difference between
0.50 . . . 00ten and 0.50 . . . 01ten when rounding. 

The sticky bit may be set, for example, during addition, when the smaller number is
shifted to the right. Suppose we added 5.01ten ¥ 10–1 to 2.34ten ¥ 102 in the example
above. Even with guard and round, we would be adding 0.0050 to 2.34, with a sum of
2.3450. The sticky bit would be set since there are nonzero bits to the right. Without
the sticky bit to remember whether any 1s were shifted off, we would assume the num-
ber is equal to 2.345000...00 and round to the nearest even of 2.34. With the sticky
bit to remember that the number is larger than 2.345000...00, we round instead to
2.35.

Summary

The Big Picture below reinforces the stored-program concept from Chapter 2; the
meaning of the information cannot be determined just by looking at the bits, for
the same bits can represent a variety of objects. This section shows that computer
arithmetic is finite and thus can disagree with natural arithmetic. For example, the
IEEE 754 standard floating-point representation

(–1)S ¥ (1 +Fraction) ¥ 2(Exponent – bias)

units in the last place 
(ulp) The number of bits in 
error in the least significant bits 
of the significand between the 
actual number and the number 
that can be prepresented.

sticky bit A bit used in round-
ing in addition to guard and 
round that is set whenever there 
are nonzero bits to the right of 
the round bit.
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is almost always an approximation of the real number. Computer systems must
take care to minimize this gap between computer arithmetic and arithmetic in the
real world, and programmers at times need to be aware of the implications of this
approximation.

C type Java type Data transfers Operations

int int lw, sw, lui addu, addiu, subu, mult, div, 
and, andi, or, ori, nor, slt, slti

unsigned int — lw, sw, lui addu, addiu, subu, multu, divu, 
and, andi, or, ori, nor, sltu, sltiu 

char — lb, sb, lui addu, addiu, subu, multu, divu, 
and, andi, or, ori, nor, sltu, sltiu

— char lh, sh, lui addu, addiu, subu, multu, divu, 
and, andi, or, ori, nor, sltu, sltiu

float float lwc1, swc1 add.s, sub.s, mult.s, div.s, 
c.eq.s, c.lt.s, c.le.s

double double l.d, s.d add.d, sub.d, mult.d, div.d, 
c.eq.d, c.lt.d, c.le.d

Bit patterns have no inherent meaning. They may represent signed inte-
gers, unsigned integers, floating-point numbers, instructions, and so on.
What is represented depends on the instruction that operates on the bits
in the word.

The major difference between computer numbers and numbers in the
real world is that computer numbers have limited size, hence limited preci-
sion; it’s possible to calculate a number too big or too small to be repre-
sented in a word. Programmers must remember these limits and write
programs accordingly.

The BIG
Picture

Hardware
Software
Interface

In the last chapter we presented the storage classes of the programming language
C (see the Hardware Software Interface section on page 142). The table above
shows some of the C and Java data types together with the MIPS data transfer
instructions and instructions that operate on those types that appear in Chapters
2 and 3. Note that Java omits unsigned integers.
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Check
Yourself

Suppose there was a 16-bit IEEE 754 floating-point format with 5 exponent bits.
What would be the likely range of numbers it could represent?

1.         to   , 0

2. ±     to ± , ±0, ±•, NaN

3. ±  to ± , ±0, ±•, NaN

4. ±  to ± , ±0, ±•, NaN

Elaboration: To accommodate comparisons that may include NaNs, the standard
includes ordered and unordered as options for compares. Hence the full MIPS instruc-
tion set has many flavors of compares to support NaNs. (Java does not support unor-
dered compares.)

In an attempt to squeeze every last bit of precision from a floating-point operation,
the standard allows some numbers to be represented in unnormalized form. Rather
than having a gap between 0 and the smallest normalized number, IEEE allows denor-
malized numbers (also known as denorms or subnormals). They have the same expo-
nent as zero but a nonzero significand. They allow a number to degrade in significance
until it becomes 0, called gradual underflow. For example, the smallest positive single
precision normalized number is 

1.0000 0000 0000 0000 0000 000two ¥ 2–126

but the smallest single precision denormalized number is 

0.0000 0000 0000 0000 0000 001two ¥ 2–126, or 1.0two ¥ 2–149

For double precision, the denorm gap goes from 1.0 ¥ 2–1022 to 1.0 ¥ 2–1074.
The possibility of an occasional unnormalized operand has given headaches to floating-

point designers who are trying to build fast floating-point units. Hence, many computers
cause an exception if an operand is denormalized, letting software complete the opera-
tion. Although software implementations are perfectly valid, their lower performance
has lessened the popularity of denorms in portable floating-point software. Also, if pro-
grammers do not expect denorms, their programs may be surprised.

The IA-32 has regular multiply and divide instructions that operate entirely on
registers, unlike the reliance on Hi and Lo in MIPS. (In fact, later versions of the
MIPS instruction set have added similar instructions.) 

The main differences are found in floating-point instructions. The IA-32 float-
ing-point architecture is different from all other computers in the world.
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1.0000 0000 00 2
0¥ 1.1111 1111 11 2

31¥

1.0000 0000 0 2
14–¥ 1.1111 1111 1 2

15¥

1.0000 0000 00 2
14–¥ 1.1111 1111 11 2

15¥

1.0000 0000 00 2
15–¥ 1.1111 1111 11 2

14¥
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The IA-32 Floating-Point Architecture

The Intel 8087 floating-point coprocessor was announced in 1980. This architec-
ture extended the 8086 with about 60 floating-point instructions. 

Intel provided a stack architecture with its floating-point instructions: loads
push numbers onto the stack, operations find operands in the two top elements of
the stacks, and stores can pop elements off the stack. Intel supplemented this stack
architecture with instructions and addressing modes that allow the architecture to
have some of the benefits of a register-memory model. In addition to finding oper-
ands in the top two elements of the stack, one operand can be in memory or in one
of the seven registers on-chip below the top of the stack. Thus, a complete stack
instruction set is supplemented by a limited set of register-memory instructions.

This hybrid is still a restricted register-memory model, however, since loads
always move data to the top of the stack while incrementing the top-of-stack
pointer and stores can only move the top of stack to memory. Intel uses the nota-
tion ST to indicate the top of stack, and ST(i) to represent the ith register below
the top of stack.

Another novel feature of this architecture is that the operands are wider in the
register stack than they are stored in memory, and all operations are performed at
this wide internal precision. Unlike the maximum of 64 bits on MIPS, the IA-32
floating-point operands on the stack are 80 bits wide. Numbers are automatically
converted to the internal 80-bit format on a load and converted back to the appro-
priate size on a store. This double extended precision is not supported by program-
ming languages, although it has been useful to programmers of mathematical
software.

Memory data can be 32-bit (single precision) or 64-bit (double precision)
floating-point numbers. The register-memory version of these instructions will
then convert the memory operand to this Intel 80-bit format before performing
the operation. The data transfer instructions also will automatically convert 16-
and 32-bit integers to floating point, and vice versa, for integer loads and stores.

The IA-32 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store

2. Arithmetic instructions, including add, subtract, multiply, divide, square
root, and absolute value

3. Comparison, including instructions to send the result to the integer proces-
sor so that it can branch

4. Transcendental instructions, including sine, cosine, log, and exponen-
tiation

Figure 3.21 shows some of the 60 floating-point operations. Note that we get even
more combinations when including the operand modes for these operations. Fig-
ure 3.22 shows the many options for floating-point add. 
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The floating-point instructions are encoded using the ESC opcode of the 8086
and the postbyte address specifier (see Figure 2.46 on page 143). The memory
operations reserve 2 bits to decide whether the operand is a 32- or 64-bit floating
point or a 16- or 32-bit integer. Those same 2 bits are used in versions that do not
access memory to decide whether the stack should be popped after the operation
and whether the top of stack or a lower register should get the result.

Data transfer Arithmetic Compare Transcendental

F{I}LD mem/ST(i) F{I}ADD{P} mem/ST(i) F{I}COM{P} FPATAN
F{I}ST{P} 

mem/ST(i)

F{I}SUB{R}{P} mem/ST(i) F{I}UCOM{P}{P} F2XM1

FLDPI F{I}MUL{P} mem/ST(i) FSTSW AX/mem FCOS
FLD1 F{I}DIV{R}{P} mem/ST(i) FPTAN
FLDZ FSQRT FPREM

FABS FSIN
FRNDINT FYL2X

FIGURE 3.21 The floating-point instructions of the IA-32. We use the curly brackets {} to show
optional variations of the basic operations: {I} means there is an integer version of the instruction, {P}
means this variation will pop one operand off the stack after the operation, and {R} means reverse the order
of the operands in this operation. The first column shows the data transfer instructions, which move data to
memory or to one of the registers below the top of the stack. The last three operations in the first column
push constants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations
described above. Note that the last three operate only on the top of stack. The third column is the compare
instructions. Since there are no special floating-point branch instructions, the result of the compare must
be transferred to the integer CPU via the FSTSW instruction, either into the AX register or into memory,
followed by an SAHF instruction to set the condition codes. The floating-point comparison can then be
tested using integer branch instructions. The final column gives the higher-level floating-point operations.
Not all combinations suggested by the notation are provided. Hence, F{I}SUB{R}{P} operations repre-
sents these instructions found in the IA-32: FSUB, FISUB, FSUBR, FISUBR, FSUBP, FSUBRP. For the
integer subtract instructions, there is no pop (FISUBP) or reverse pop (FISUBRP).

Instruction Operands Comment

FADD Both operands in stack; result replaces top of stack.

FADD ST(i) One source operand is ith register below the top of stack; result 
replaces the top of stack.

FADD ST(i), ST One source operand is the top of stack; result replaces ith register 
below the top of stack.

FADD mem32 One source operand is a 32-bit location in memory; result replaces the 
top of stack.

FADD mem64 One source operand is a 64-bit location in memory; result replaces the 
top of stack.

FIGURE 3.22 The variations of operands for floating-point add in the IA-32. 
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Floating-point performance of the IA-32 family has traditionally lagged far
behind other computers. Whether it is simply a lack of attention by Intel engineers
or a flaw with its architecture is hard to know. We can say that many new architec-
tures have been announced since 1980, and none have followed in Intel’s foot-
steps. In addition, Intel created a more traditional floating-point architecture as
part of SSE2.

The Intel Streaming SIMD Extension 2 (SSE2) Floating-
Point Architecture

Chapter 2 notes that in 2001 Intel added 144 instructions to its architecture,
including double precision floating-point registers and operations. It includes
eight registers that can be used for floating-point operands, giving the compiler a
different target for floating-point operations than the unique stack architecture.
Compilers can choose to use the eight SSE2 registers as floating-point registers
like those found in other computers. AMD expanded the number to 16 as part of
AMD64, which Intel relabled EM64T for its use.

In addition to holding a single precision or double precision number in a regis-
ter, Intel allows multiple floating-point operands to be packed into a single 128-
bit SSE2 register: four single precision or two double precision. If the operands
can be arranged in memory as 128-bit aligned data, then 128-bit data transfers
can load and store multiple operands per instruction. This packed floating-point
format is supported by arithmetic operations that can operate simultaneously on
four singles or two doubles. This new architecture can more than double perfor-
mance over the stack architecture.

Arithmetic fallacies and pitfalls generally stem from the difference between the
limited precision of computer arithmetic and the unlimited precision of natural
arithmetic.

Fallacy: Floating-point addition is associative; that is, x + (y + z) = (x + y) + z.

Given the great range of numbers that can be represented in floating point, prob-
lems occur when adding two large numbers of opposite signs plus a small number.

3.8 Fallacies and Pitfalls 3.8

Thus mathematics may be 
defined as the subject in 
which we never know what 
we are talking about, nor 
whether what we are saying 
is true.

Bertrand Russell, Recent
Words on the Principles of 
Mathematics, 1901
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For example, suppose x = – 1.5ten ¥ 1038, y = 1.5ten ¥ 1038, and z = 1.0, and that
these are all single precision numbers. Then

x + (y + z) = –1.5ten ¥ 1038 + (1.5ten ¥ 1038 + 1.0) 
= –1.5ten ¥ 1038 + (1.5ten ¥ 1038) = 0.0

(x + y) + z = (– 1.5ten ¥ 1038 + 1.5ten ¥ 1038) + 1.0 
= (0.0ten) + 1.0 
= 1.0

Therefore, .
Since floating-point numbers have limited precision and result in approxima-

tions of real results, 1.5ten ¥ 1038 is so much larger than 1.0ten that 1.5ten ¥ 1038 +
1.0 is still 1.5ten ¥  1038. That is why the sum of x, y, and z is 0.0 or 1.0, depending
on the order of the floating-point additions, and hence floating-point add is not
associative.

Fallacy: Just as a left shift instruction can replace an integer multiply by a power
of 2, a right shift is the same as an integer division by a power of 2.

Recall that a binary number x, where xi means the ith bit, represents the number

. . .  + (x3 ¥ 23) + (x2 ¥ 22) + (x1 ¥ 21) + (x0 ¥ 20)

Shifting the bits of x right by n bits would seem to be the same as dividing by 2n.
And this is true for unsigned integers. The problem is with signed integers. For
example, suppose we want to divide –5ten by 4ten; the quotient should be –1ten.
The two’s complement representation of –5ten is

 11111111111111111111111111111011two

According to this fallacy, shifting right by two should divide by 4ten (22):

 00111111111111111111111111111110two

With a 0 in the sign bit, this result is clearly wrong. The value created by the shift
right is actually 1,073,741,822ten instead of –1ten.

A solution would be to have an arithmetic right shift (see  In More Depth:
Booth’s Algorithm) that extends the sign bit instead of shifting in 0s. A 2-bit arith-
metic shift right of –5ten produces

11111111111111111111111111111110two

The result is –2ten instead of –1ten; close, but no cigar. 
The PowerPC, however, does have a fast shift instruction (shift right algebraic)

that in conjunction with a special add (add with carry) gives the same answer as
dividing by a power of 2. 

x y z+( )+ x y+( ) z+
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Pitfall: The MIPS instruction add immediate unsigned addiu sign-extends its 16-
bit immediate field.

Despite its name, add immediate unsigned (addiu) is used to add constants to
signed integers when we don’t care about overflow. MIPS has no subtract immedi-
ate instruction and negative numbers need sign extension, so the MIPS architects
decided to sign-extend the immediate field.

Fallacy:  Only theoretical mathematicians care about floating-point accuracy.

Newspaper headlines of November 1994 prove this statement is a fallacy (see Fig-
ure 3.23). The following is the inside story behind the headlines. 

The Pentium uses a standard floating-point divide algorithm that generates
multiple quotient bits per step, using the most significant bits of divisor and divi-
dend to guess the next 2 bits of the quotient. The guess is taken from a lookup
table containing –2, –1, 0, +1, or +2. The guess is multiplied by the divisor and

FIGURE 3.23 A sampling of newspaper and magazine articles from November 1994,
including the New York Times, San Jose Mercury News, San Francisco Chronicle, and
Infoworld. The Pentium floating-point divide bug even made the “Top 10 List” of the David Letterman
Late Show on television. Intel eventually took a $300 million write-off to replace the buggy chips.
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subtracted from the remainder to generate a new remainder. Like nonrestoring
division (see Exercise 3.29), if a previous guess gets too large a remainder, the par-
tial remainder is adjusted in a subsequent pass. 

Evidently there were five elements of the table from the 80486 that Intel
thought could never be accessed, and they optimized the PLA to return 0 instead
of 2 in these situations on the Pentium. Intel was wrong: while the first 11 bits
were always correct, errors would show up occasionally in bits 12 to 52, or the 4th
to 15th decimal digits.

The following is a time line of the Pentium bug morality play:

■ July 1994: Intel discovers the bug in the Pentium. The actual cost to fix the
bug was several hundred thousand dollars. Following normal bug fix proce-
dures, it will take months to make the change, reverify, and put the corrected
chip into production. Intel planned to put good chips into production in
January 1995, estimating that 3 to 5 million Pentiums would be produced
with the bug.

■ September 1994: A math professor at Lynchburg College in Virginia, Thomas
Nicely, discovers the bug. After calling Intel technical support and getting no
official reaction, he posts his discovery on the Internet. It quickly gained a
following, and some pointed out that even small errors become big when
multiplying by big numbers: the fraction of people with a rare disease times
the population of Europe, for example, might lead to the wrong estimate of
the number of sick people.

■ November 7, 1994: Electronic Engineering Times puts the story on its front
page, which is soon picked up by other newspapers.

■ November 22, 1994: Intel issues a press release, calling it a “glitch.” The Pen-
tium “can make errors in the ninth digit. . . . Even most engineers and
financial analysts require accuracy only to the fourth or fifth decimal point.
Spreadsheet and word processor users need not worry. . . . There are maybe
several dozen people that this would affect. So far, we've only heard from
one. . . . [Only] theoretical mathematicians (with Pentium computers pur-
chased before the summer) should be concerned.” What irked many was
that customers were told to describe their application to Intel, and then Intel
would decide whether or not their application merited a new Pentium with-
out the divide bug.

■ December 5, 1994: Intel claims the flaw happens once in 27,000 years for the
typical spreadsheet user. Intel assumes a user does 1000 divides per day and
multiplies the error rate assuming floating-point numbers are random,
which is one in 9 billion, and then gets 9 million days, or 27,000 years.
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Things begin to calm down, despite Intel neglecting to explain why a typical
customer would access floating-point numbers randomly.

■ December 12, 1994: IBM Research Division disputes Intel’s calculation of the
rate of errors (you can access this article by visiting www.mkp.com/books_
catalog/cod/links.htm). IBM claims that common spreadsheet programs,
recalculating for 15 minutes a day, could produce Pentium-related errors as
often as once every 24 days. IBM assumes 5000 divides per second, for 15
minutes, yielding 4.2 million divides per day, and does not assume random
distribution of numbers, instead calculating the chances as one in 100 mil-
lion. As a result, IBM immediately stops shipment of all IBM personal com-
puters based on the Pentium. Things heat up again for Intel.

■ December 21, 1994: Intel releases the following, signed by Intel’s president,
chief executive officer, chief operating officer, and chairman of the board:
“We at Intel wish to sincerely apologize for our handling of the recently pub-
licized Pentium processor flaw. The Intel Inside symbol means that your
computer has a microprocessor second to none in quality and performance.
Thousands of Intel employees work very hard to ensure that this is true. But
no microprocessor is ever perfect. What Intel continues to believe is techni-
cally an extremely minor problem has taken on a life of its own. Although
Intel firmly stands behind the quality of the current version of the Pentium
processor, we recognize that many users have concerns. We want to resolve
these concerns. Intel will exchange the current version of the Pentium pro-
cessor for an updated version, in which this floating-point divide flaw is cor-
rected, for any owner who requests it, free of charge anytime during the life
of their computer.”Analysts estimate that this recall cost Intel $500 million,
and Intel employees did not get a Christmas bonus that year.

This story brings up a few points for everyone to ponder. How much cheaper
would it have been to fix the bug in July 1994? What was the cost to repair the
damage to Intel’s reputation? And what is the corporate responsibility in
disclosing bugs in a product so widely used and relied upon as a microprocessor?

In April 1997 another floating-point bug was revealed in the Pentium Pro and
Pentium II microprocessors. When the floating-point-to-integer store instruc-
tions (fist, fistp) encounter a negative floating-point number that is too large
to fit in a 16- or 32-bit word after being converted to integer, they set the wrong bit
in the FPO status word (precision exception instead of invalid operation excep-
tion). To Intel’s credit, this time they publicly acknowledged the bug and offered a
software patch to get around it—quite a different reaction from what they did in
1994.
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Computer arithmetic is distinguished from paper-and-pencil arithmetic by the
constraints of limited precision. This limit may result in invalid operations
through calculating numbers larger or smaller than the predefined limits. Such
anomalies, called “overflow” or “underflow,” may result in exceptions or inter-
rupts, emergency events similar to unplanned subroutine calls. Chapter 5 dis-
cusses exceptions in more detail. 

Floating-point arithmetic has the added challenge of being an approximation
of real numbers, and care needs to be taken to ensure that the computer number
selected is the representation closest to the actual number. The challenges of
imprecision and limited representation are part of the inspiration for the field of
numerical analysis.

Over the years, computer arithmetic has become largely standardized, greatly
enhancing the portability of programs. Two’s complement binary integer arith-
metic and IEEE 754 binary floating-point arithmetic are found in the vast major-
ity of computers sold today. For example, every desktop computer sold since this
book was first printed follows these conventions.

A side effect of the stored-program computer is that bit patterns have no inher-
ent meaning. The same bit pattern may represent a signed integer, unsigned inte-
ger, floating-point number, instruction, and so on. It is the instruction that
operates on the word that determines its meaning. 

With the explanation of computer arithmetic in this chapter comes a descrip-
tion of much more of the MIPS instruction set. One point of confusion is the
instructions covered in these chapters versus instructions executed by MIPS chips
versus the instructions accepted by MIPS assemblers. The next two figures try to
make this clear. 

Figure 3.24 lists the MIPS instructions covered in this chapter and Chapter 2.
We call the set of instructions on the left-hand side of the figure the MIPS core.
The instructions on the right we call the MIPS arithmetic core. On the left of Fig-
ure 3.25 are the instructions the MIPS processor executes that are not found in
Figure 3.24. We call the full set of hardware instructions MIPS-32. On the right of
Figure 3.25 are the instructions accepted by the assembler that are not part of
MIPS-32. We call this set of instructions Pseudo MIPS.

3.9 Concluding Remarks 3.9
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Instruction subset Integer Fl. pt.

MIPS core 95% 57%

MIPS arithmetic core 0% 41%

Remaining MIPS-32 5% 2%

 MIPS core instructions Name Format MIPS arithmetic core Name Format

add add R multiply mult R

add immediate addi I multiply unsigned multu R

add unsigned addu R divide div R

add immediate unsigned addiu I divide unsigned divu R

subtract sub R move from Hi mfhi R

subtract unsigned subu R move from Lo mflo R

and and R move from system control (EPC) mfc0 R

and immediate andi I floating-point add single add.s R

or or R floating-point add double add.d R

or immediate ori I floating-point subtract single sub.s R

nor nor R floating-point subtract double sub.d R

shift left logical sll R floating-point multiply single mul.s R

shift right logical srl R floating-point multiply double mul.d R

load upper immediate lui I floating-point divide single div.s R

load word lw I floating-point divide double div.d R

store word sw I load word to floating-point single lwc1 I

load halfword unsigned lhu I store word to floating-point single swc1 I

store halfword sh I load word to floating-point double ldc1 I

load byte unsigned lbu I store word to floating-point double sdc1 I

store byte sb I branch on floating-point true bc1t I

branch on equal beq I branch on floating-point false bc1f I

branch on not equal bne I floating-point compare single c.x.s R

jump j J (x = eq, neq, lt, le, gt, ge)

jump and link jal J floating-point compare double c.x.d R

jump register jr R (x = eq, neq, lt, le, gt, ge)

set less than slt R

set less than immediate slti I

set less than unsigned sltu R

set less than immediate unsigned sltiu I

FIGURE 3.24 The MIPS instruction set covered so far. This book concentrates on the instructions in the left column.
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Remaining MIPS-32 Name Format Pseudo MIPS Name Format

exclusive or ( ) xor R move move rd,rs

exclusive or immediate xori I absolute value abs rd,rs

shift right arithmetic sra R not ( ) not rd,rs

shift left logical variable sllv R negate (signed or unsigned) negs rd,rs

shift right logical variable srlv R rotate left rol rd,rs,rt

shift right arithmetic variable srav R rotate right ror rd,rs,rt

move to Hi mthi R multiply and don’t check oflw (signed or uns.) muls rd,rs,rt

move to Lo mtlo R multiply and check oflw (signed or uns.) mulos rd,rs,rt

load halfword lh I divide and check overflow div rd,rs,rt

load byte lb I divide and don’t check overflow divu rd,rs,rt

load word left (unaligned) lwl I remainder (signed or unsigned) rems rd,rs,rt

load word right (unaligned) lwr I load immediate li rd,imm

store word left (unaligned) swl I load address la rd,addr

store word right (unaligned) swr I load double ld rd,addr

load linked (atomic update) ll I store double sd rd,addr

store cond. (atomic update) sc I unaligned load word ulw rd,addr

move if zero movz R

move if not zero movn R unaligned store word usw rd,addr

multiply and add (S or uns.) madds R

multiply and subtract (S or uns.) msubs I unaligned load halfword (signed or uns.) ulhs rd,addr

branch on  zero and link bgezal I unaligned store halfword ush rd,addr

branch on < zero and link bltzal I branch b Label

jump and link register jalr R branch on equal zero beqz rs,L

branch compare to zero bxz I branch on compare (signed or unsigned) bxs rs,rt,L

branch compare to zero likely bxzl I (x = lt, le, gt, ge)

(x = lt, le, gt, ge) set equal seq rd,rs,rt

branch compare reg likely bxl I set not equal sne rd,rs,rt

trap if compare reg tx R set on compare (signed or unsigned) sxs rd,rs,rt

trap if compare immediate txi I (x = lt, le, gt, ge)

(x = eq, neq, lt, le, gt, ge) load to floating point (s or d) l.f rd,addr

return from exception rfe R store from floating point (s or d) s.f rd,addr

system call syscall I

break (cause exception) break I

move from FP to integer mfc1 R

move to FP from integer mtc1 R

FP move (s or d) mov.f R

FP move if zero (s or d) movz.f R

FP move if not zero (s or d) movn.f R

FP square root (s or d) sqrt.f R

FP absolute value (s or d) abs.f R

FP negate (s or d) neg.f R

FP convert (w, s, or d) cvt.f.f R

FP compare un (s or d) c.xn.f R

FIGURE 3.25 Remaining MIPS-32 and “Pseudo MIPS” instruction sets. f means single (s) or double precision (d) floating-point
instructions, and s means signed and unsigned (u) versions. MIPS-32 also has FP instructions for multiply and add/sub (madd.f /msub.f ), ceiling
(ceil.f ), truncate (trunc.f ), round (round.f ), and reciprocal (recip.f ). 

rs rt

rsÿ
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Figure 3.26 gives the popularity of the MIPS instructions for SPEC2000 integer and
floating-point benchmarks. All instructions are listed that were responsible for at least
1% of the instructions executed. The following table summarizes that information. 

Note that although programmers and compiler writers may use MIPS-32 to
have a richer menu of options, MIPS core instructions dominate integer
SPEC2000 execution, and the integer core plus arithmetic core dominate
SPEC2000 floating point.

For the rest of the book, we concentrate on the MIPS core instructions—the
integer instruction set excluding multiply and divide––to make the explanation of
computer design easier. As we can see, the MIPS core includes the most popular
MIPS instructions, and be assured that understanding a computer that runs the
MIPS core will give you sufficient background to understand even more ambi-
tious computers.

Core MIPS Name Integer Fl. pt. Arithmetic core + MIPS-32 Name Integer Fl. pt.

add add 0% 0% FP add double add.d 0% 8%

add immediate addi 0% 0% FP subtract double sub.d 0% 3%

add unsigned addu 7% 21% FP multiply double mul.d 0% 8%

add immediate unsigned addiu 12% 2% FP divide double div.d 0% 0%

subtract unsigned subu 3% 2% load word to FP double l.d 0% 15%

and and 1% 0% store word to FP double s.d 0% 7%

and immediate andi 3% 0% shift right arithmetic sra 1% 0%

or or 7% 2% load half lhu 1% 0%

or immediate ori 2% 0% branch less than zero bltz 1% 0%

nor nor 3% 1% branch greater or equal zero bgez 1% 0%

shift left logical sll 1% 1% branch less or equal zero blez 0% 1%

shift right logical srl 0% 0% multiply mul 0% 1%

load upper immediate lui 2% 5%

load word lw 24% 15%

store word sw 9% 2%

load byte lbu 1% 0%

store byte sb 1% 0%

branch on equal (zero) beq 6% 2%

branch on not equal (zero) bne 5% 1%

jump and link jal 1% 0%

jump register jr 1% 0%

set less than slt 2% 0%

set less than immediate slti 1% 0%

set less than unsigned sltu 1% 0%

set less than imm. uns. sltiu 1% 0%

FIGURE 3.26 The frequency of the MIPS instructions for SPEC2000 integer and floating point. All instructions that accounted for
at least 1% of the instructions are included in the table. Pseudoinstructions are converted into MIPS-32 before execution, and hence do not appear
here. This data is from Chapter 2 of Computer Architecture: A Quantitative Approach, third edition.
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This section surveys the history of the floating point going back to von Neumann,
including the surprisingly controversial IEEE standards effort, plus the rationale
for the 80-bit stack architecture for floating point in the IA-32. See  Section
3.10.

3.1 [3] <§3.2> Convert 4096ten into a 32-bit two’s complement binary number.

3.2 [3] <§3.2> Convert –2047ten into a 32-bit two’s complement binary number.

3.3 [5] <§3.2> Convert –2,000,000ten into a 32-bit two’s complement binary
number.

3.4 [5] <§3.2> What decimal number does this two’s complement binary num-
ber represent: 1111 1111 1111 1111 1111 1111 0000 0110two?

3.5 [5] <§3.2> What decimal number does this two’s complement binary num-
ber represent: 1111 1111 1111 1111 1111 1111 1110 1111two?

3.6 [5] <§3.2> What decimal number does this two’s complement binary num-
ber represent: 0111 1111 1111 1111 1111 1111 1110 1111two?

3.7 [10] <§3.2> Find the shortest sequence of MIPS instructions to determine the
absolute value of a two’s complement integer. Convert this instruction (accepted
by the MIPS assembler):

abs   $t2,$t3

This instruction means that register $t2 has a copy of register $t3 if register $t3
is positive, and the two’s complement of register $t3 if $t3 is negative. (Hint: It
can be done with three instructions.)

3.8 [10] <§3.2>  For More Practice: Number Representations

Historical Perspective and Further 
Reading 3.10

3.11 Exercises 3.11

3.10
Gresham's Law (“Bad 
money drives out Good”) for 
computers would say, “The 
Fast drives out the Slow even 
if the Fast is wrong.”

W. Kahan, 1992

Never give in, never give in, 
never, never, never—in 
nothing, great or small, large 
or petty—never give in.

Winston Churchill, address at 
Harrow School, 1941, Abroad, 
1869



230 Chapter 3 Arithmetic for Computers

3.9 [10] <§3.2> If A is a 32-bit address, typically an instruction sequence such as

lui $t0, A_upper
ori $t0, $t0, A_lower
lw $s0, 0($t0)

can be used to load the word at A into a register (in this case, $s0). Consider the
following alternative, which is more efficient:

lui $t0, A_upper_adjusted
lw $s0, A_lower($t0)

Describe how A_upper is adjusted to allow this simpler code to work. (Hint:
A_upper needs to be adjusted because A_lower will be sign-extended.)

3.10 [10] <§3.3> Find the shortest sequence of MIPS instructions to determine if
there is a carry out from the addition of two registers, say, registers $t3 and $t4.
Place a 0 or 1 in register $t2 if the carry out is 0 or 1, respectively. (Hint: It can be
done in two instructions.)

3.11 [15] <§3.3>  For More Practice: Writing MIPS Code to Perform Arithmetic

3.12 [15] <§3.3> Suppose that all of the conditional branch instructions except
beq and bne were removed from the MIPS instruction set along with slt and all
of its variants (slti, sltu, sltui). Show how to perform 

slt $t0, $s0, $s1

using the modified instruction set in which slt is not available. (Hint: It requires
more than two instructions.)

3.13 [10] <§3.3> Draw the gates for the Sum bit of an adder, given the equation
on  page B-28.

3.14 [5] <§3.4>  For More Practice: Writing MIPS Code to Perform Arithmetic

3.15 [20] <§3.4>  For More Practice: Writing MIPS Code to Perform Arithmetic

3.16 [2 weeks] <§3.4>  For More Practice: Simulating MIPS Machines

3.17 [1 week] <§3.4>  For More Practice: Simulating MIPS Machines

3.18 [5] <§3.4>  For More Practice: Carry Lookahead Adders

3.19 [15] <§3.4>  For More Practice: Carry Lookahead Adders

3.20 [10] <§3.4>  For More Practice: Relative Performance of Adders
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3.21 [15] <§3.4>  For More Practice: Relative Performance of Adders

3.22 [15] <§3.4>  For More Practice: Relative Performance of Adders

3.23 [30] <§3.4>  In More Depth: Booth’s Algorithm

3.24 [15][30] <§3.4>  For More Practice: Special MIPS Registers

3.25 [10] <§§3.5, 3.4>  In More Depth: The Power PC’s Multiply-Add
Instruction

3.26 [20] <§3.5>  In More Depth: The Power PC’s Multiply-Add Instruction

3.27 <§§3.3, 3.4, 3.5> With x = 0000 0000 0000 0000 0000 0000 0101 1011two and
y = 0000 0000 0000 0000 0000 0000 0000 1101two representing two's complement
signed integers, perform, showing all work:

a. x + y

b. x – y

c. x * y

d. x/y

3.28 [20] <§§3.3, 3.4, 3.5> Perform the same operations as Exercise 3.27, but
with x = 1111 1111 1111 1111 1011 0011 0101 0011 and y = 0000 0000 0000 0000
0000 0010 1101 0111two.

3.29 [30] <§3.5> The division algorithm in Figure 3.11 on page 185 is called
restoring division, since each time the result of subtracting the divisor from the div-
idend is negative you must add the divisor back into the dividend to restore the
original value. Recall that shift left is the same as multiplying by 2. Let’s look at the
value of the left half of the Remainder again, starting with step 3b of the divide
algorithm and then going to step 2:

(Remainder + Divisor) ¥ 2 – Divisor

This value is created from restoring the Remainder by adding the Divisor, shifting
the sum left, and then subtracting the Divisor. Simplifying the result we get

Remainder ¥ 2 + Divisor ¥ 2 – Divisor = Remainder ¥ 2 + Divisor

Based on this observation, write a nonrestoring division algorithm using the nota-
tion of Figure 3.11 that does not add the Divisor to the Remainder in step 3b.
Show that your algorithm works by dividing 0000 1011two by 0011two.
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3.30 [15] <§§3.2, 3.6> The Big Picture on page 216 mentions that bits have no
inherent meaning. Given the bit pattern:

101011010001 0000 0000 0000 0000 0010

what does it represent, assuming that it is

a. a two’s complement integer?

b. an unsigned integer?

c. a single precision floating-point number?

d. a MIPS instruction?

You may find Figures 3.20 (page 208) and  A.10.2 (page A-50) useful.

3.31 <§§3.2, 3.6> This exercise is similar to Exercise 3.30, but this time use the bit
pattern

0010 0100 1001 0010 0100 1001 0010 0100

3.32 [10] [10] <§3.6>  For More Practice: Floating Point Number Represen-
tations

3.33 [10] <§3.6>  For More Practice: Floating Point Number Representations

3.34 [10] <§3.6>  For More Practice: Writing MIPS Code to Perform FP
Arithmetic

3.35 [5] <§3.6> Add 2.85ten ¥ 103 to 9.84ten ¥ 104, assuming that you have only
three significant digits, first with guard and round digits and then without them.

3.36 [5] <§3.6> This exercise is similar to Exercise 3.35, but this time use the
numbers 3.63ten ¥ 104 and 6.87ten ¥ 103.

3.37 [5] <§3.6> Show the IEEE 754 binary representation for the floating-point
number 20ten in single and double precision.

3.38 [5] <§3.6> This exercise is similar to Exercise 3.37, but this time replace the
number 20ten with 20.5ten.

3.39 [10] <§3.6> This exercise is similar to Exercise 3.37, but this time replace the
number 20ten with 0.1ten.

3.40 [10] <§3.6> This exercise is similar to Exercise 3.37, but this time replace the
number 20ten with the decimal fraction –5/6.

3.41 [10] <§3.6> Suppose we introduce a new instruction that adds three
floating-point numbers. Assuming we add them together with a triple adder, with
guard, round, and sticky bits, are we guaranteed results within 1 ulp of the results
using two distinct add instructions?
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3.42 [15] <§3.6> With x = 0100 0110 1101 1000 0000 0000 0000 0000two and y =
1011 1110 1110 0000 0000 0000 0000 0000two representing single precision IEEE
754 floating-point numbers, perform, showing all work:

a. x + y

b. x * y

3.43 [15] <§3.6> With x = 0101 1111 1011 1110 0100 0000 0000 0000two,
y = 0011 1111 1111 1000 0000 0000 0000 0000two, and z = 1101 1111 1011 1110
0100 0000 0000 0000two representing single precision IEEE 754 floating-point
numbers, perform, showing all work:

a. x + y

b. (result of a) + z

c. Why is this result counterintuitive?

3.44 [20] <§§3.6, 3.7> The IEEE 754 floating-point standard specifies 64-bit
double precision with a 53-bit significand (including the implied 1) and an 11-bit
exponent. IA-32 offers an extended precision option with a 64-bit significand and
a 16-bit exponent.

a. Assuming extended precision is similar to single and double precision, what
is the bias in the exponent?

b. What is the range of numbers that can be represented by the extended preci-
sion option?

c. How much greater is this accuracy compared to double precision?

3.45 [5] <§§3.6, 3.7> The internal representation of floating point numbers in
IA-32 is 80 bits wide. This contains a 16 bit exponent. However it also advertises a
64 bit significand. How is this possible?

3.46 [10] <§3.7> While the IA-32 allows 80-bit floating-point numbers inter-
nally, only 64-bit floating-point numbers can be loaded or stored. Starting with
only 64-bit numbers, how many operations are required before the full range of the
80-bit exponents are used? Give an example.

3.47 [25] <§3.8>  For More Practice: Floating Point on Algorithms

3.48 [30] <§3.8>  For More Practice: Floating Point Rounding Modes

3.49 [30] <§3.8>  For More Practice: Denormalized Numbers

3.50 [10] <§3.9>  For More Practice: Evaluating Instruction Frequencies

3.51 [10] <§3.9>  For More Practice: Evaluating Instruction Frequencies
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3.52 [10] <§3.9>  For More Practice: Evaluating Instruction Frequencies

3.53 [10] <§3.9>  For More Practice: Evaluating Instruction Frequencies

3.54 [15] <§3.9>  For More Practice: Evaluating Performance

3.55 [15] <§3.9>  For More Practice: Evaluating Performance

Answers To
Check Yourself

§3.2. page 168: 3, since each character in a Java string takes 16 bits plus one word
for length.
§3.3, page 174: 2. 
§3.6, page 217: 3.
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Computers 
in the 

Real World

Reconstructing the 
Ancient World

Problem: Analyzing and understanding

archeological sites is challenging. Can we find

ways to use computers to help researchers to

explore archeological sites and artifacts dis-

covered at those sites?

Solution: Archeology is undergoing a revolu-

tion with the use of digital tools for mapping

out ancient sites, reconstructing damaged arti-

facts, and recreating ancient sites in three

dimensions. Among the important new tech-

niques being used to analyze and recreate sites

are the following:

� The use of geographical information sys-

tems (GIS) to help accurately measure 

sites. GIS uses global positioning systems 

(GPS) to accurately pinpoint locations, 

allowing fast and precise measurements 

of a site. 

� Laser range finding to obtain accurate 

measurements of the two- and three-

dimensional structure of objects. Laser 

range-finding is even being used with 

low-flying aircraft to obtain height 

measurements.

� Digital photography to obtain accurate 

images of sites as well as individual 

objects.

� Virtual reality and three-dimensional vi-

sualization systems can use digital pho-

tographic data and accurate geospatial 

information to create realistic versions of 

archeological sites, allowing archeolo-

A digital photograph taken from a virtual reality 
model of the new temple at Chavín de Huántar.



gists to gain new insights, as well as to 

share their work with other researchers 

and the general public.

These techniques have been used to explore

and create an interactive virtual reality model

of an archeological site called Chavín de

Huántar, which is in the Peruvian highlands.

The image on the top of the previous page is a

digital still photograph taken from the virtual

reality model. Chavín de Huántar was occu-

pied from about 1000 BCE and predates the

classical Incan civilization by more than 1000

years. Highly detailed photos together with

measurements of over 25,000 points allows a

reconstruction of an accurate virtual model.

The image on the top of the previous page is

from the new temple at Chavín, which played

a key role in the establishment of formalized

religious authority in the New World. 

Three-dimensional modeling and recon-

struction have also been used in the reconstruc-

tion of artifacts from fragments. The images on

the left below are fragments of pottery found at

Petra, the famous archeological site in Jordan.

On the right is a computer reconstruction of the

original vessel, highlighting the position of one

of the fragments.

To learn more see these references on 
the  library

� Reconstructing objects from fragments at the SHAPE
Laboratory at Brown University

� The Chavín de Huántar exploration (includes virtual
reality tour of the site)

Images of pottery fragments found at 
Petra, Jordan

A computer reconstruction from the fragments in 
the previous photo
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This chapter discusses how to measure, report, and summarize performance and
describes the major factors that determine the performance of a computer. A pri-
mary reason for examining performance is that hardware performance is often
key to the effectiveness of an entire system of hardware and software. Much of the
material in this chapter, especially this section and the next, will be critical to
understanding the next three chapters. The rest of the chapter provides important
insights and principles that anyone seeking to evaluate the performance of a com-
puter system should know. The material in Sections 4.3–4.5, however, is not nec-
essary for the immediately following chapters and can be returned to later. 

Assessing the performance of such a system can be quite challenging. The scale
and intricacy of modern software systems, together with the wide range of perfor-
mance improvement techniques employed by hardware designers, have made per-
formance assessment much more difficult. It is simply impossible to sit down with
an instruction set manual and a significant software system and determine, simply
by analysis, how fast the software will run on the computer. In fact, for different
types of applications, different performance metrics may be appropriate, and dif-
ferent aspects of a computer system may be the most significant in determining
overall performance.

Of course, in trying to choose among different computers, performance is
almost always an important attribute. Accurately measuring and comparing dif-
ferent computers is critical to purchasers, and therefore to designers. The people
selling computers know this as well. Often, salespeople would like you to see their
computer in the best possible light, whether or not this light accurately reflects the
needs of the purchaser’s application. In some cases, claims are made about com-
puters that don’t provide useful insight for any real applications. Hence, under-
standing how best to measure performance and the limitations of performance
measurements is important in selecting a computer.

Our interest in performance, however, goes beyond issues of assessing
performance only from the outside of a computer. To understand why a piece of
software performs as it does, why one instruction set can be implemented to per-
form better than another, or how some hardware feature affects performance, we
need to understand what determines the performance of a computer. For exam-
ple, to improve the performance of a software system, we may need to understand
what factors in the hardware contribute to the overall system performance and the
relative importance of these factors. These factors may include how well the pro-
gram uses the instructions of the computer, how well the underlying hardware

4.1 Introduction 4.1
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implements the instructions, and how well the memory and I/O systems perform.
Understanding how to determine the performance impact of these factors is cru-
cial to understanding the motivation behind the design of particular aspects of the
computer, as we will see in the chapters that follow.

The rest of this section describes different ways in which performance can be
determined. In Section 4.2, we describe the metrics for measuring performance
from the viewpoint of both a computer user and a designer. We also look at how
these metrics are related and present the classical processor performance equa-
tion, which we will use throughout the text. Sections 4.3 and 4.4 describe how best
to choose benchmarks to evaluate computers and how to accurately summarize
the performance of a group of programs. Section 4.4 also describes one set of
commonly used CPU benchmarks and examines measurements for a variety of
Intel processors using those benchmarks. Finally, in Section 4.5, we’ll examine
some of the many pitfalls that have trapped designers and those who analyze and
report performance.

Defining Performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger air-
planes shows how subtle the question of performance can be. Figure 4.1 shows
some typical passenger airplanes, together with their cruising speed, range, and
capacity. If we wanted to know which of the planes in this table had the best per-
formance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed is the Concorde, the plane with the longest range is the DC-8, and the plane
with the largest capacity is the 747. 

Let’s suppose we define performance in terms of speed. This still leaves two possi-
ble definitions. You could define the fastest plane as the one with the highest cruis-
ing speed, taking a single passenger from one point to another in the least time. If
you were interested in transporting 450 passengers from one point to another, how-

Airplane
Passenger
capacity

Cruising range
(miles)

Cruising speed
(m.p.h.)

Passenger throughput
(passengers x m.p.h.)

Boeing 777 375 4630 0610 228,750

Boeing 747 470 4150 0610 286,700

BAC/Sud Concorde 132 4000 1350 178,200

Douglas DC-8-50 146 8720 0544 79,424

FIGURE 4.1 The capacity, range, and speed for a number of commercial airplanes. The
last column shows the rate at which the airplane transports passengers, which is the capacity times the
cruising speed (ignoring range and takeoff and landing times).
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ever, the 747 would clearly be the fastest, as the last column of the figure shows. Sim-
ilarly, we can define computer performance in several different ways.

If you were running a program on two different desktop computers, you’d say
that the faster one is the desktop computer that gets the job done first. If you were
running a data center that had several servers running jobs submitted by many
users, you’d say that the faster computer was the one that completed the most jobs
during a day. As an individual computer user, you are interested in reducing
response time—the time between the start and completion of a task—also referred
to as execution time. Data center managers are often interested in increasing
throughput—the total amount of work done in a given time. Hence, in most cases,
we will need different performance metrics as well as different sets of applications to
benchmark desktop computers versus servers, and embedded computers require yet
other metrics and applications. We will see examples of this in section 4.4 when we
look at different SPEC benchmarks: one meant to measure CPU performance
(SPEC CPU) and one meant to measure Web server performance (SPECweb99).   

In discussing the performance of computers, we will be primarily concerned
with response time for the first few chapters. (In Chapter 8, on input/output sys-
tems, we will discuss throughput-related measures.) To maximize performance,
we want to minimize response time or execution time for some task. Thus we can
relate performance and execution time for a computer X:

Throughput and Response Time
Do the following changes to a computer system increase throughput, decrease re-
sponse time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the World Wide Web. 

Decreasing response time almost always improves throughput. Hence, in case
1, both response time and throughput are improved. In case 2, no one task
gets work done faster, so only throughput increases. If, however, the demand
for processing in the second case was almost as large as the throughput, the
system might force requests to queue up. In this case, increasing the through-
put could also improve response time, since it would reduce the waiting time
in the queue. Thus, in many real computer systems, changing either execu-
tion time or throughput often affects the other.

response time Also called 
execution time. The total time 
required for the computer to 
complete a task, including disk 
accesses, memory accesses, I/O 
activities, operating system 
overhead, CPU execution time, 
and so on.

EXAMPLE

ANSWER
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This means that for two computers X and Y, if the performance of X is greater
than the performance of Y, we have

That is, the execution time on Y is longer than that on X, if X is faster than Y.
In discussing a computer design, we often want to relate the performance of

two different computers quantitatively. We will use the phrase “X is n times faster
than Y”—or equivalently “X is n times as fast as Y”—to mean

If X is n times faster than Y, then the execution time on Y is n times longer than it is
on X:

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is n times faster than B if

Thus the performance ratio is

and A is therefore 1.5 times faster than B.

PerformanceX
1

Execution timeX
------------------------------------=

PerformanceX PerformanceY>

1
Execution timeX
------------------------------------

1
Execution timeY
------------------------------------>

Execution timeY Execution timeX>

PerformanceX

PerformanceY
------------------------------- n=

PerformanceX

PerformanceY
-------------------------------

Execution timeY

Execution timeX
------------------------------------ n= =

EXAMPLE

ANSWER
PerformanceA

PerformanceB
-----------------------------

Execution timeB

Execution timeA
---------------------------------- n==

15
10
----- 1.5=
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In the above example, we could also say that computer B is 1.5 times slower
than computer A, since

means that

For simplicity, we will normally use the terminology faster than when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say “improve performance” or “improve execution time” when we mean “increase
performance” and “decrease execution time.”

Elaboration: Performance in embedded systems is often characterized by real-time
constraints: that is, certain application-specific events must occur within a limited
amount of time. There are two common types of real-time constraints: hard real time
and soft real time. Hard real time defines a fixed bound on the time to respond to or
process some event. For example, the embedded processor that controls an antilock
brake system must respond within a hard limit from the time it receives a signal that
the wheels are locked. In soft real-time systems, an average response or a response
within a limited time to a large fraction of the events suffices. For example, handling
video frames in a DVD playback system would be an example of a soft real-time con-
straint, since dropping a frame is permissible, if it happens very rarely. In embedded
real-time applications, once the response-time performance constraint is met, design-
ers often optimize throughput or try to reduce cost. 

Measuring Performance

Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. But time can be defined in different ways,
depending on what we count. The most straightforward definition of time is
called wall-clock time, response time, or elapsed time. These terms mean the total
time to complete a task, including disk accesses, memory accesses, input/output
(I/O) activities, operating system overhead—everything. 

Computers are often shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize through-
put rather than attempt to minimize the elapsed time for one program. Hence, we
often want to distinguish between the elapsed time and the time that the proces-
sor is working on our behalf. CPU execution time or simply CPU time, which

PerformanceA

PerformanceB
------------------------------- 1.5=

PerformanceA

1.5
------------------------------- PerformanceB=

CPU execution time Also
called CPU time. The actual 
time the CPU spends comput-
ing for a specific task.
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recognizes this distinction, is the time the CPU spends computing for this task
and does not include time spent waiting for I/O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating system performing tasks on behalf of the program, called
system CPU time. Differentiating between system and user CPU time is difficult
to do accurately because it is often hard to assign responsibility for operating sys-
tem activities to one user program rather than another and because of the func-
tionality differences among operating systems.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system, and use CPU perfor-
mance to refer to user CPU time. We will focus on CPU performance in this chap-
ter, although our discussions of how to summarize performance can be applied to
either elapsed time or to CPU time measurements.

Although as computer users we care about time, when we examine the details
of a computer it’s convenient to think about performance in other metrics. In par-
ticular, computer designers may want to think about a computer by using a mea-
sure that relates to how fast the hardware can perform basic functions. Almost all
computers are constructed using a clock that runs at a constant rate and deter-
mines when events take place in the hardware. These discrete time intervals are
called clock cycles (or ticks, clock ticks, clock periods, clocks, cycles). Designers
refer to the length of a clock period both as the time for a complete clock cycle
(e.g., 0.25 nanoseconds, 0.25 ns, 250 picoseconds, or 250 ps) and as the clock rate
(e.g., 4 gigahertz, or 4 GHz), which is the inverse of the clock period. In the next
section, we will formalize the relationship between the clock cycles of the hard-
ware designer and the seconds of the computer user.

user CPU time The CPU time 
spent in a program itself.

system CPU time The CPU 
time spent in the operating sys-
tem performing tasks on behalf 
of the program.

clock cycle Also called tick, 
clock tick, clock period, clock, 
cycle. The time for one clock 
period, usually of the processor 
clock, which runs at a constant 
rate.

clock period The length of 
each clock cycle.

Different applications are sensitive to different aspects of the performance of a com-
puter system. Many applications, especially those running on servers, depend as
much on I/O performance, which, in turn, relies on both hardware and software,
and total elapsed time measured by a wall clock is the measurement of interest. In
some application environments, the user may care about throughput, response
time, or a complex combination of the two (e.g., maximum throughput with a
worst-case response time). To improve the performance of a program, one must
have a clear definition of what performance metric matters and then proceed to
look for the performance bottlenecks by measuring program execution and looking
for the likely bottlenecks. In the following chapters, we will describe how to search
for bottlenecks and improve performance in various parts of the system.

Understanding
Program
Performance
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Check
Yourself

1. Suppose we know that an application that uses both a desktop client and a
remote server is limited by network performance. For the following
changes state whether only the throughput improves, both response time
and throughput improve, or neither improves.

a. An extra network channel is added between the client and the server,
increasing the total network throughput and reducing the delay to
obtain network access (since there are now two channels).

b. The networking software is improved, thereby reducing the network
communication delay, but not increasing throughput. 

c. More memory is added to the computer.

2. Computer C’s performance is 4 times better than the performance of com-
puter B, which runs a given application in 28 seconds. How long will com-
puter C take to run that application? 

Users and designers often examine performance using different metrics. If we
could relate these different metrics, we could determine the effect of a design
change on the performance as seen by the user. Since we are confining ourselves to
CPU performance at this point, the bottom-line performance measure is CPU
execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

Alternatively, because clock rate and clock cycle time are inverses,

This formula makes it clear that the hardware designer can improve performance
by reducing either the length of the clock cycle or the number of clock cycles
required for a program. As we will see in this chapter and later in Chapters 5, 6,
and 7, the designer often faces a trade-off between the number of clock cycles

4.2 CPU Performance and Its Factors 4.2

CPU execution time
for a program

CPU clock cycles
for a program

Clock cycle time¥=

CPU execution time
for a program

CPU clock cycles for a program
Clock rate

---------------------------------------------------------------------------=
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needed for a program and the length of each cycle. Many techniques that decrease
the number of clock cycles also increase the clock cycle time. 

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 4 GHz
clock. We are trying to help a computer designer build a computer, B, that
will run this program in 6 seconds. The designer has determined that a sub-
stantial increase in the clock rate is possible, but this increase will affect the
rest of the CPU design, causing computer B to require 1.2 times as many
clock cycles as computer A for this program. What clock rate should we tell
the designer to target?

Let’s first find the number of clock cycles required for the program on A:

CPU time for B can be found using this equation:

 

 

 

computer B must therefore have twice the clock rate of A to run the program
in 6 seconds.

EXAMPLE

ANSWER

CPU timeA

CPU clock cyclesA

Clock rateA
-------------------------------------------=

10 seconds
CPU clock cyclesA

4 10
9 cycles
second
---------------¥

-------------------------------------------=

CPU clock cyclesA 10= seconds 4 10
9 cycles
second
---------------¥¥ 40 10

9
cycles¥=

CPU timeB

1.2 CPU clock cycles¥ A

Clock rateB

---------------------------------------------------------=

6 seconds 1.2 40 10
9
cycles¥¥

Clock rateB

-----------------------------------------------=

Clock rateB
1.2 40 10

9
cycles¥¥

6 seconds
-----------------------------------------------= 8 10

9
cycles¥

second
------------------------------- 8 GHz==
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Hardware
Software
Interface

The equations in our previous examples do not include any reference to the number
of instructions needed for the program. However, since the compiler clearly gener-
ated instructions to execute, and the computer had to execute the instructions to
run the program, the execution time must depend on the number of instructions in
a program. One way to think about execution time is that it equals the number of
instructions executed multiplied by the average time per instruction. Therefore, the
number of clock cycles required for a program can be written as

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as CPI. Since different
instructions may take different amounts of time depending on what they do, CPI
is an average of all the instructions executed in the program. CPI provides one
way of comparing two different implementations of the same instruction set
architecture, since the instruction count required for a program will, of course, be
the same. 

clock cycles per instruction 
(CPI) Average number of clock 
cycles per instruction for a pro-
gram or program fragment.

CPU clock cycles Instructions for a program Average clock cycles
per instruction¥=

Using the Performance Equation

Suppose we have two implementations of the same instruction set architec-
ture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some
program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2
for the same program. Which computer is faster for this program, and by
how much?

We know that each computer executes the same number of instructions for
the program; let’s call this number I. First, find the number of processor clock
cycles for each computer:

EXAMPLE

ANSWER

CPU clock cyclesA I 2.0¥=

CPU clock cyclesB I 1.2¥=
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We can now write this basic performance equation in terms of instruction count
(the number of instructions executed by the program), CPI, and clock cycle time:

or

These formulas are particularly useful because they separate the three key factors
that affect performance. We can use these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters   

How can we determine the value of these factors in the performance equation?
We can measure the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI can be more difficult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the instruction count
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the
execution or by using a simulator of the architecture. Alternatively, we can use
hardware counters, which are included on many processors, to record a variety of
measurements, including the number of instructions executed, the average CPI,
and often, the sources of performance loss. Since the instruction count depends

Now we can compute the CPU time for each computer:

 

 

Likewise, for B:

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

We can conclude that computer A is 1.2 times as fast as computer B for this
program.

CPU timeA CPU clock cyclesA Clock cycle timeA¥=

I 2.0 250 ps¥¥ 500 I ps¥==

CPU timeB I 1.2¥ 500 ps¥ 600 I ps¥==

CPU performanceA

CPU performanceB

----------------------------------------------
Execution timeB

Execution timeA

----------------------------------------- 600 I ps¥
500 I ps¥
----------------------- 1.2= = =

CPU time Instruction count CPI¥ Clock cycle time¥=

CPU time Instruction count CPI¥
Clock rate

----------------------------------------------------------=
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on the architecture, but not on the exact implementation, we can measure the
instruction count without knowing all the details of the implementation. The
CPI, however, depends on a wide variety of design details in the computer, includ-
ing both the memory system and the processor structure (as we will see in Chap-
ters 5, 6, and 7), as well as on the mix of instruction types executed in an
application. Thus, CPI varies by application, as well as among implementations
with the same instruction set. 

Designers often obtain CPI by a detailed simulation of an implementation or by
using hardware counters, when a CPU is operational. Sometimes it is possible to com-
pute the CPU clock cycles by looking at the different types of instructions and using
their individual clock cycle counts. In such cases, the following formula is useful:   

Figure 4.2 shows the basic measurements at different levels in the computer
and what is being measured in each case. We can see how these factors are
combined to yield execution time measured in seconds per program:

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time that offsets the improvement in instruction count. Simi-
larly, because CPI depends on type of instructions executed, the code that
executes the fewest number of instructions may not be the fastest.

Components of performance Units of measure

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction

Clock cycle time Seconds per clock cycle

FIGURE 4.2 The basic components of performance and how each is measured. 
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where Ci is the count of the number of instructions of class i executed, CPIi is the
average number of cycles per instruction for that instruction class, and n is the
number of instruction classes. Remember that overall CPI for a program will
depend on both the number of cycles for each instruction type and the frequency
of each instruction type in the program execution. 

As we described in Chapter 1, the performance of a program depends on the algo-
rithm, the language, the compiler, the architecture, and the actual hardware. The
following table summarizes how these components affect the factors in the CPU
performance equation.

Understanding
Program
Performance

Hardware or 
software 
component Affects what? How?

Algorithm Instruction count, 
possibly CPI

The algorithm determines the number of source program 
instructions executed and hence the number of processor 
instructions executed. The algorithm may also affect the CPI, by 
favoring slower or faster instructions. For example, if the 
algorithm uses more floating-point operations, it will tend to 
have a higher CPI. 

Programming
language

Instruction count, 
CPI

The programming language certainly affects the instruction 
count, since statements in the language are translated to 
processor instructions, which determine instruction count. The 
language may also affect the CPI because of its features; for 
example, a language with heavy support for data abstraction 
(e.g., Java) will require indirect calls, which will use higher-CPI 
instructions. 

Compiler Instruction count, 
CPI

The efficiency of the compiler affects both the instruction count 
and average cycles per instruction, since the compiler 
determines the translation of the source language instructions 
into computer instructions. The compiler’s role can be very 
complex and affect the CPI in complex ways.

Instruction set 
architecture

Instruction count, 
clock rate,
CPI

The instruction set architecture affects all three aspects of CPU 
performance, since it affects the instructions needed for a 
function, the cost in cycles of each instruction, and the overall 
clock rate of the processor.
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Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a par-
ticular computer. The hardware designers have supplied the following facts:

For a particular high-level-language statement, the compiler writer is consid-
ering two code sequences that require the following instruction counts:

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

Sequence 1 executes 2 + 1 + 2 = 5 instructions. Sequence 2 executes
4 + 1 + 1 = 6 instructions. So sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count and CPI
to find the total number of clock cycles for each sequence:

This yields

EXAMPLE

CPI for this instruction class

A B C

CPI 1 2 3

Instruction counts for instruction class

Code sequence A B C

1 2 1 2

2 4 1 1

ANSWER

CPU clock cycles CPIi Ci¥( )
i 1=

n

Â=

CPU clock cycles1 2 1¥( )= 1 2¥( ) 2 3¥( )+ + 2 2 6+ + 10 cycles= =

CPU clock cycles2 4 1¥( )= 1 2¥( ) 1 3¥( )+ + 4 2 3+ + 9 cycles= =
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The above example shows the danger of using only one factor (instruction
count) to assess performance. When comparing two computers, you must look at
all three components, which combine to form execution time. If some of the fac-
tors are identical, like the clock rate in the above example, performance can be
determined by comparing all the nonidentical factors. Since CPI varies by
instruction mix, both instruction count and CPI must be compared, even if clock
rates are identical. Several of the exercises ask you to evaluate a series of computer
and compiler enhancements that affect clock rate, CPI, and instruction count. In
the next section, we’ll examine a common performance measurement that does
not incorporate all the terms and can thus be misleading.

Two of the major factors that affect CPI are the performance of the pipeline,
which is the technique used by all modern processors to execute instructions, and
the performance of the memory system. In Chapter 6, we will see how pipeline per-
formance adds to the CPI through stalls, and in Chapter 7 we will see how the per-
formance of the caches can increase the CPI due to stalls in the memory system. 

Check
Yourself

A given application written in Java runs 15 seconds on a desktop processor. A new
Java compiler is released that requires only 0.6 as many instructions as the old
compiler. Unfortunately it increases the CPI by 1.1. How fast can we expect the
application to run using this new compiler?

a.

b.

c.

So code sequence 2 is faster, even though it actually executes one extra
instruction. Since code sequence 2 takes fewer overall clock cycles but has
more instructions, it must have a lower CPI. The CPI values can be computed
by

CPI CPU clock cycles
Instruction count
--------------------------------------------=

CPI1

CPU clock cycles1

Instruction count1

--------------------------------------------= 10
5
----- 2= =

CPI2

CPU clock cycles2

Instruction count2

--------------------------------------------= 9
6
-- 1.5= =

instruction mix A measure of 
the dynamic frequency of 
instructions across one or many 
programs.

15 0.6¥
1.1

----------------------- 8.2 2sec=

15 0.6 1.1¥¥ 9.9 2sec=

15 1.1¥
0.6

----------------------- 27.5 2sec=
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A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. The set of programs run would
form a workload. To evaluate two computer systems, a user would simply com-
pare the execution time of the workload on the two computers. Most users, how-
ever, are not in this situation. Instead, they must rely on other methods that
measure the performance of a candidate computer, hoping that the methods will
reflect how well the computer will perform with the user’s workload. This alterna-
tive is usually followed by evaluating the computer using a set of benchmarks—
programs specifically chosen to measure performance. The benchmarks form a
workload that the user hopes will predict the performance of the actual workload. 

Today, it is widely understood that the best type of programs to use for bench-
marks are real applications. These may be applications that the user employs regu-
larly or simply applications that are typical. For example, in an environment
where the users are primarily engineers, you might use a set of benchmarks con-
taining several typical engineering or scientific applications. If the user commu-
nity were primarily software development engineers, the best benchmarks would
probably include such applications as a compiler or document processing system.
Using real applications as benchmarks makes it much more difficult to find trivial
ways to speed up the execution of the benchmark. Furthermore, when techniques
are found to improve performance, such techniques are much more likely to help
other programs in addition to the benchmark. 

The use of benchmarks whose performance depends on very small code seg-
ments encourages optimizations in either the architecture or compiler that target
these segments. The compiler optimizations might recognize special code frag-
ments and generate an instruction sequence that is particularly efficient for this
code fragment. Likewise, a designer might try to make some sequence of instruc-
tions run especially fast because the sequence occurs in a benchmark. In fact, sev-
eral companies have introduced compilers with special-purpose optimizations
targeted at specific benchmarks. Often these optimizations must be explicitly
enabled with a specific compiler option, which would not be used when compil-
ing other programs. Whether the compiler would produce good code, or even cor-
rect code, if a real application program used these switches, is unclear. 

Sometimes in the quest to produce highly optimized code for benchmarks,
engineers introduce erroneous optimizations. For example, in late 1995, Intel
published a new performance rating for the integer SPEC benchmarks running on
a Pentium processor and using an internal compiler, not used outside of Intel.

4.3 Evaluating Performance 4.3

workload A set of programs 
run on a computer that is either 
the actual collection of applica-
tions run by a user or is con-
structed from real programs to 
approximate such a mix. A typi-
cal workload specifies both the 
programs as well as the relative 
frequencies.
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Unfortunately, the code produced for one of the benchmarks was wrong, a fact
that was discovered when a competitor read through the binary to understand
how Intel had sped up one of the programs in the benchmark suite so dramati-
cally. In January 1996, Intel admitted the error and restated the performance.
Small programs or programs that spend almost all their execution time in a very
small code fragment are especially vulnerable to such efforts. 

So why doesn’t everyone run real programs to measure performance? One rea-
son is that small benchmarks are attractive when beginning a design, since they
are small enough to compile and simulate easily, sometimes by hand. They are
especially tempting when designers are working on a novel computer because
compilers may not be available until much later in the design. Although the use of
such small benchmarks early in the design process may be justified, there is no
valid rationale for using them to evaluate working computer systems. 

As mentioned earlier, different classes and applications of computers will require
different types of benchmarks. For desktop computers, the most common bench-
marks are either measures of CPU performance or benchmarks focusing on a spe-
cific task, such as DVD playback or graphics performance for games. In Section 4.4,
we will examine the SPEC CPU benchmarks, which focus on CPU performance and
measure response time to complete a benchmark. For servers, the decision of which
benchmark to use depends heavily on the nature of the intended application. For
scientific servers, CPU-oriented benchmarks with scientific applications are typi-
cally used, and response time to complete a benchmark is the metric. For other
server environments, benchmarks of Web serving, file serving, and databases are
commonly used. These server benchmarks usually emphasize throughput, albeit
with possible requirements on response time to individual events, such as a database
query or Web page request. Section 4.4 examines the SPECweb99 benchmark
designed to test Web server performance. In embedded computing, good bench-
marks are much more rare. Often customers use their specific embedded applica-
tion or a segment of it for benchmarking purposes. The one major benchmark suite
developed for embedded computers is EEMBC, and we discuss those benchmarks
in the In More Depth section on the CD.

Once we have selected a set of suitable benchmarks and obtained performance
measurements, we can write a performance report. The guiding principle in
reporting performance measurements should be reproducibility—we should list
everything another experimenter would need to duplicate the results. This list
must include the version of the operating system, compilers, and the input, as well
as the computer configuration. As an example, the system description section of a
SPEC CPU2000 benchmark report is in Figure 4.3.

One important element of reproducibility is the choice of input. Different
inputs can generate quite different behavior. For example, an input can trigger
certain execution paths that may be typical, or it may exercise rarely used, and
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hence less important, parts of an application. Some of the most important effects
from the input set are in the memory system. Larger input sets tend to stress the
memory system to a greater extent, and the use of realistically sized workloads in
servers both for commercial and scientific applications is critical if a benchmark is
intended to predict what real applications may see. 

Comparing and Summarizing Performance

Once we have selected programs to use as benchmarks and agreed on whether we
are measuring response time or throughput, you might think that performance
comparison would be straightforward. However, we must still decide how to sum-
marize the performance of a group of benchmarks. Although summarizing a set of

Hardware

Hardware vendor Dell

Model number Precision WorkStation 360 (3.2 GHz Pentium 4 Extreme Edition)

CPU Intel Pentium 4 (800 MHz system bus)

CPU MHz 3200

FPU Integrated

CPU(s) enabled 1

CPU(s) orderable 1

Parallel No

Primary cache 12K(I) micro-ops + 8KB(D) on chip

Secondary cache 512KB(I+D) on chip

L3 cache 2048KB(I+D) on chip

Other cache N/A

Memory 4 x 512MB ECC DDR400 SDRAM CL3

Disk subsystem  1x 80GB ATA/100 7200 RPM

Other hardware

Software

Operating system Windows XP Professional SP1

Compiler Intel C++ Compiler 7.1 (20030402Z)

Microsoft Visual Studio.NET (7.0.9466)

MicroQuill SmartHeap Library 6.01

File system type NTFS

System state Default

FIGURE 4.3 System description of a desktop system using the fastest Pentium 4 avail-
able in 2003. In addition to this formatted mandatory description, there are 23 lines of notes describing
special flag settings used for portability (4), optimization (2), tuning (12), base timing (2), a special library
(2), and BIOS setting (1). 
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measurements results in less information, marketers and even users often prefer to
have a single number to compare performance. The key question is, How should a
summary be computed? Figure 4.4, which is abstracted from an article about sum-
marizing performance, illustrates some of the difficulties facing such efforts.

Using our definition of faster, the following statements hold for the program
measurements in Figure 4.4:

 

■ A is 10 times faster than B for program 1.

 

■ B is 10 times faster than A for program 2.

Taken individually, each of these statements is true. Collectively, however, they
present a confusing picture—the relative performance of computers A and B is unclear.

Total Execution Time: A Consistent Summary Measure 

The simplest approach to summarizing relative performance is to use total execu-
tion time of the two programs. Thus

That is, B is 9.1 times as fast as A for programs 1 and 2 together.
This summary is directly proportional to execution time, our final measure of

performance. If the workload consists of running programs 1 and 2 an equal
number of times, this statement would predict the relative execution times for the
workload on each computer.

The average of the execution times that is directly proportional to total execu-
tion time is the arithmetic mean (AM):

Computer A Computer B

Program 1 (seconds) 0001 010

Program 2 (seconds) 1000 100

Total time (seconds) 1001 110

FIGURE 4.4 Execution times of two programs on two different 
computers. Taken from Figure 1 of Smith [1988].
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where Timei is the execution time for the ith program of a total of n in the work-
load. Since it is the mean of execution times, a smaller mean indicates a smaller
average execution time and thus improved performance.

The arithmetic mean is proportional to execution time, assuming that the pro-
grams in the workload are each run an equal number of times. Is that the right
workload? If not, we can assign a weighting factor wi to each program to indicate
the frequency of the program in that workload. If, for example, 20% of the tasks in
the workload were program 1 and 80% of the tasks in the workload were program
2, then the weighting factors would be 0.2 and 0.8. By summing the products of
weighting factors and execution times, we can obtain a clear picture of the perfor-
mance of the workload. This sum is called the weighted arithmetic mean. One
method of weighting programs is to choose weights so that the execution time of
each benchmark is equal on the computer used as the base. The standard arith-
metic mean is a special case of the weighted arithmetic mean where all weights are
equal. We explore the weighted mean in more detail in Exercises 4.15 and 4.16. 

Check
Yourself

1. Suppose you are choosing between four different desktop computers: one is
an Apple MacIntosh and the other three are PC-compatible computers that
use a Pentium 4, an AMD processor (using the same compiler as the Pen-
tium 4), and a Pentium 5 (which does not yet exist in 2004 but has the same
architecture as the Pentium 4 and uses the same compiler). Which of the
following statements are true?

a. The fastest computer will be the one with the highest clock rate.

b. Since all PCs use the same Intel-compatible instruction set and execute
the same number of instructions for a program, the fastest PC will be
the one with the highest clock rate.

c. Since AMD uses different techniques than Intel to execute instructions,
they may have different CPIs. But, you can still tell which of the two
Pentium-based PCs is fastest by looking at the clock rate.

d. Only by looking at the results of benchmarks for tasks similar to your
workload can you get an accurate picture of likely performance.

2. Assume the following measurements of execution time were taken:

weighted arithmetic mean
An  average of  the execution 
time of a workload with weight-
ing factors designed to reflect 
the presence of the programs in 
a workload; computed as the 
sum of the products of weight-
ing factors and execution times.

Program Computer A Computer B

1 2 sec 4 sec

2 5 sec 2 sec
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Which of the following statements is true?

a. A is faster than B for program 1.

b. A is faster than B for program 2.

c. A is faster than B for a workload with equal numbers of executions of pro-
gram 1 and 2.

d. A is faster than B for a workload with twice as many executions of program
1 as of program 2.

SPEC (System Performance Evaluation Corporation) is an effort funded and
supported by a number of computer vendors to create standard sets of bench-
marks for modern computer systems. It began in 1989 focusing on benchmark-
ing workstations and servers using CPU-intensive benchmarks. (A more
detailed history is contained in Section 4.7.) Today, SPEC offers a dozen differ-
ent benchmark sets designed to test a wide variety of computing environments
using real applications and strictly specified execution rules and reporting
requirements. The SPEC benchmark sets include benchmarks for CPU perfor-
mance, graphics, high-performance computing, object-oriented computing,
Java applications, client-server models, mail systems, file systems, and Web serv-
ers. In this section, we examine the performance of a variety of Dell computer
systems that use Pentium III and Pentium 4 processors using a CPU perfor-
mance benchmark and a Web-oriented system benchmark.

Performance with SPEC CPU Benchmarks

The latest release of the SPEC CPU benchmarks is the SPEC CPU2000 suite,
which consists of 12 integer and 14 floating-point programs, as shown in Figure
4.5. The SPEC CPU benchmarks are intended to measure CPU performance,
although wall clock time is the reported measurement. Separate summaries are
reported for the integer and floating-point benchmark sets. The execution time
measurements are first normalized by dividing the execution time on a Sun Ultra
5_10 with a 300 MHz processor by the execution time on the measured computer;
this normalization yields a measure, called the SPEC ratio, which has the advan-
tage that bigger numeric results indicate faster performance (i.e., SPEC ratio is the
inverse of execution time). A CINT2000 or CFP2000 summary measurement is
obtained by taking the geometric mean of the SPEC ratios. (See the In More
Depth section on the CD for a discussion of trade-offs in using geometric mean.) 

4.4
Real Stuff: Two SPEC Benchmarks 
and the Performance of Recent 
Intel Processors 4.4

system performance evalua-
tion cooperative (SPEC) 
benchmark A set of standard 
CPU-intensive, integer and 
floating point benchmarks 
based on real programs.
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For a given instruction set architecture, increases in CPU performance can
come from three sources: 

1. Increases in clock rate

2. Improvements in processor organization that lower the CPI

3. Compiler enhancements that lower the instruction count or generate
instructions with a lower average CPI (e.g., by using simpler instructions)

To illustrate such performance improvements, Figure 4.6 shows the SPEC
CINT2000 and CFP2000 measurements for a series of Intel Pentium III and Pen-
tium 4 processors measured using the Dell Precision desktop computers. Since
SPEC requires that the benchmarks be run on real hardware and the memory sys-
tem has a significant effect on performance, other systems with these processors
may produce different performance levels. In addition to the clock rate differ-
ences, the Pentium III and Pentium 4 use different pipeline structures, which we
describe in more detail in Chapter 6. 

There are several important observations from these two performance graphs.
First, observe that the performance of each of these processors scales almost lin-
early with clock rate increases. Often this is not the case, since losses in the mem-

Integer benchmarks FP benchmarks

Name Description Name Type

gzip Compression wupwise Quantum chromodynamics 

vpr FPGA circuit placement and routing swim Shallow water model 

gcc The Gnu C compiler mgrid Multigrid solver in 3-D potential field

mcf Combinatorial optimization applu Parabolic/elliptic partial differential equation 

crafty Chess program mesa Three-dimensional graphics library

parser Word processing program galgel Computational fluid dynamics

eon Computer visualization art Image recognition using neural networks

perlbmk perl application equake Seismic wave propagation simulation

gap Group theory, interpreter facerec Image recognition of faces

vortex Object-oriented database ammp Computational chemistry

bzip2 Compression lucas Primality testing

twolf Place and rote simulator fma3d Crash simulation using finite-element method

sixtrack High-energy nuclear physics accelerator design 

apsi Meteorology: pollutant distribution

FIGURE 4.5 The SPEC CPU2000 benchmarks. The 12 integer benchmarks in the left half of the
table are written in C and C++, while the floating-point benchmarks in the right half are written in Fortran
(77 or 90) and C. For more information on SPEC and on the SPEC benchmarks, see www.spec.org. The
SPEC CPU benchmarks use wall clock time as the metric, but because there is little I/O, they measure CPU
performance.
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ory system, which we discuss in Chapter 7, often worsen with higher clock rates.
The strong performance of these processors is due both to the aggressive cache
systems used in these processors, and the inability of many of the SPEC bench-
marks to stress such a memory system. 

Comparing the Pentium III and Pentium 4 performances yields even more
interesting insights. In particular, note the relative positions of the CINT2000 and
CFP2000 curves for the Pentium III versus the Pentium 4. One can quickly draw
the inference that the Pentium 4 is either relatively better than the Pentium III on
floating-point benchmarks or relatively worse on integer benchmarks. But, which
is the case? 

The Pentium 4 uses a more advanced integrated circuit technology as well as a
more aggressive pipeline structure, both of which allow for a significant clock rate

FIGURE 4.6 The SPEC CINT2000 and CFP2000 ratings for the Intel Pentium III and Pen-
tium 4 processors at different clock speeds. SPEC requires two sets of measurements: one that
allows aggressive optimization with benchmark-specific switches, and one that allows only the standard
optimization switches (called the “base” measurements). This chart contains base measurements; for the
integer benchmarks the differences are small. For more details on SPEC, see www.spec.org. The Pentium 4
Extreme (a version of the Pentium 4 introduced in late 2003) is not included in these results, since it uses a
different cache architecture than the rest of the Pentium 4 processors. 
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increase. One comparison that is particularly interesting is the SPEC CINT2000
and CFP2000 measurement divided by the clock rate in MHz. The following
tables summarizes the average value of this ratio across different clock rates for
each processor:

Metrics such as benchmark performance divided by clock rate are sometimes
thought of as measurements of implementation efficiency, although, as we have
seen, one cannot separate the interaction of clock rate and other improvements.

These measurements are particularly interesting because of the differences between
the integer and floating-point benchmarks. The CINT2000 performance ratios are
typical: when a faster version of a processor is introduced it may sacrifice one aspect of
a design (such as CPI) to enhance another (such as clock rate). Assuming one com-
piler for both processors, and hence identical code, the CINT2000 ratios tell us that
the CPI of the Pentium 4 is 1.3 (0.47/0.36) times that of the Pentium 3. 

How then can these numbers be reversed for the floating-point benchmarks?
The answer is that the Pentium 4 provides a set of new instructions (called the
Streaming SIMD Extensions 2; see Chapter 3) that provide a significant boost for
floating point. Thus, both the instruction count and the CPI for the Pentium 4
will differ from that of the Pentium 3, producing improved performance. 

SPECweb99: A Throughput Benchmark for Web Servers

In 1996, SPEC introduced its first benchmark designed to measure Web server
performance; the benchmark was superseded by a new version in 1999.
SPECweb99 differs from SPEC CPU in a number of ways: 

■ SPECweb99 focuses on throughput, measuring the maximum number of
connections that a system running as a Web server can support. The system
must provide response to a client request within a bounded time and with a
bounded number of errors.

■ Because SPECweb99 measures throughput, multiprocessors (systems with
more than one CPU) are often used in benchmarks.

■ SPECweb99 provides only a program to generate Web server requests; the
Web server software becomes part of the system being measured.

■ SPECweb99 performance depends on a wide measure of system characteris-
tics, including the disk system and the network.

Ratio Pentium III Pentium 4

CINT2000 / Clock rate in MHz 0.47 0.36

CFP2000 / Clock rate in MHz 0.34 0.39
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To show how these characteristics produce a remarkably varied picture of Web
server performance, we selected the SPECweb99  results for a series of Dell Power-
Edge servers that use the Xeon versions of the Pentium III and Pentium 4 proces-
sors. The Xeon processors are built using the basic structure of the Pentium III or
Pentium 4, but support multiprocessing. In addition the Xeon MP supports a third
level of off-chip cache and can support more than two processors. The results for a
variety of these Dell systems are shown in Figure 4.7.  

Looking at the data in Figure 4.7, we can see that clock rate of the processors is
clearly not the most important factor in determining Web server performance. In
fact, the 8400 has twice as many slow processors as the 6600 and yet offers better
performance. We expect these systems to be configured to achieve the best perfor-
mance. That is, for a given set of CPUs, disks and additional networks are added
until the processor becomes the bottleneck. 

Performance, Power, and Energy Efficiency

As mentioned in Chapter 1, power is increasingly becoming the key limitation
in processor performance. In the embedded market, where many processors
go into environments that rely solely on passive cooling or on battery power,
power consumption is often a constraint that is as important as performance
and cost. 

No doubt, many readers will have encountered power limitations when using
their laptops. Indeed, between the challenges of removing excess heat and the lim-
itations of battery life, power consumption has become a critical factor in the

System Processor

Number
of  disk 
drives

Number
of CPUs

Number
of

networks

Clock
rate

(GHz) Result

1550/1000 Pentium III 2 2 2 1 2765

1650 Pentium III 3 2 1 1.4 1810

2500 Pentium III 8 2 4 1.13 3435

2550 Pentium III 1 2 1 1.26 1454

2650 Pentium 4 Xeon 5 2 4 3.06 5698

4600 Pentium 4 Xeon 10 2 4 2.2 4615

6400/700 Pentium III Xeon 5 4 4 0.7 4200

6600 Pentium 4 Xeon MP 8 4 8 2 6700

8450/700 Pentium III Xeon 7 8 8 0.7 8001

FIGURE 4.7 SPECweb9999 performance for a variety of Dell PowerEdge systems using
the Xeon versions of the Pentium III and Pentium 4 microprocessors. 
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design of processors for laptops. Battery capacity has improved only slightly over
time, with the major improvements coming from new materials. Hence, the abil-
ity of the processor to operate efficiently and conserve power is crucial. To save
power, techniques ranging from putting parts of the computer to sleep, to reduc-
ing clock rate and voltage, have all been used. In fact, power consumption is so
important that Intel has designed a line of processors, the Pentium M series, spe-
cifically for mobile, battery-powered applications. 

As we discussed in Chapter 1, for CMOS technology, we can reduce power by
reducing frequency. Hence, recent processors intended for laptop use all have the
ability to adapt frequency to reduce power consumption, simultaneously, of
course, reducing performance. Thus, adequately evaluating the energy efficiency
of a processor requires examining its performance at maximum power, at an
intermediate level that conserves battery life, and at a level that maximizes battery
life. In the Intel Mobile Pentium and Pentium M lines, there are two available
clock rates: maximum and a reduced clock rate. The best performance is obtained
by running at maximum speed, the best battery life by running always at the
reduced rate, and the intermediate, performance-power optimized level by
switching dynamically between these two clock rates. 

Figure 4.8 shows the performance of three Intel Pentium processors designed
for use in mobile applications running SPEC CINT2000 and SPEC CFP2000 as
benchmarks. As we can see, the newest processor, the Pentium M, has the best
performance when run a full clock speed, as well as with the adaptive clock rate
mode. The Pentium M’s 600 MHz clock makes it slower when run in minimum
power mode than the Pentium 4-M, but still faster than the older Pentium III-M
design. 

For power-limited applications, the most important metric is probably
energy efficiency, which is computed by taking performance and dividing by
average power consumption when running the benchmark. Figure 4.9 shows the
relative energy efficiency for these processors running the SPEC2000 bench-
marks.This data clearly shows the energy efficiency advantage of the newer Pen-
tium M design. In all three modes, it has a significant advantage in energy
efficiency over the mobile versions of the Pentium III and Pentium 4. Notice
that the Pentium 4-M has only a slight efficiency advantage over the Pentium
III-M. This data clearly shows the advantage of a processor like the Pentium M,
which is designed for reduced power usage from the start, as opposed to a
design like the Pentium III-M or Pentium 4-M, which are modified versions of
the standard processors. Of course, adequately measuring energy efficiency also
requires the use of additional benchmarks designed to reflect how users employ
battery-powered computers. Both PC review magazines and Intel’s technical
journal regularly undertake such studies. 
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Check
Yourself

Which of the following one-processor Pentium III configurations is likely to pro-
duce the best performance on SPECweb99 based on the data in Figure 4.7?

a. 1.26 GHz processor, 1 disk, 1 network connections

b. 1 GHz processor, 6 disks, 3 network connections

c. 1.1 GHz processor, 2 disks, 2 network connections 

FIGURE 4.8 Relative performance of three Intel processors on SPECINT2000 and
SPECFP2000 in three different modes. Each processor operates at two different clock rates, listed in
the legend. 
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Cost/performance fallacies and pitfalls have ensnared many a computer architect,
including us. Accordingly, this section suffers no shortage of relevant examples.
We start with a pitfall that has trapped many designers and reveals an important
relationship in computer design. 

Pitfall: Expecting the improvement of one aspect of a computer to increase perfor-
mance by an amount proportional to the size of the improvement.

This pitfall has visited designers of both hardware and software. A simple design prob-
lem illustrates it well. Suppose a program runs in 100 seconds on a computer, with
multiply operations responsible for 80 seconds of this time. How much do I have to
improve the speed of multiplication if I want my program to run five times faster?

FIGURE 4.9 The relative energy efficiency of three mobile Pentium processors running
SPEC2000 in three modes. Energy efficiency is measured as the inverse of joules consumed per benchmark,
which is computed by dividing the inverse of the execution time for a benchmark by the watts dissipated.

4.5 Fallacies and Pitfalls 4.5

R
el

at
iv

e 
ef

fic
ie

nc
y

0

1

2

3

4

5

6

SPECINT2000 SPECFP2000 SPECINT2000 SPECFP2000 SPECINT2000 SPECFP2000

Always on/maximum clock Laptop mode/adaptive
clock

Minimum power/minimum
clock

Benchmark and power mode

Pentium M @ 1.6/0.6 GHz

Pentium 4-M @ 2.4 GHz

Pentium III-M @ 1.2 GHz



4.5 Fallacies and Pitfalls 267

The execution time of the program after I make the improvement is given by
the following simple equation known as Amdahl’s law:

For this problem:

Since we want the performance to be five times faster, the new execution time
should be 20 seconds, giving

That is, there is no amount by which we can enhance multiply to achieve a fivefold
increase in performance, if multiply accounts for only 80% of the workload. The
performance enhancement possible with a given improvement is limited by the
amount that the improved feature is used. 

This concept also yields what we call the law of diminishing returns in everyday
life. We can use Amdahl’s law to estimate performance improvements when we
know the time consumed for some function and its potential speed up. Amdahl’s
law, together with the CPU performance equation, are handy tools for evaluating
potential enhancements. Amdahl’s law is explored in more detail in the exercises
and in the  In More Depth: Amdal’s Law on the CD. 

A common theme in hardware design is a corollary of Amdahl’s law: Make the
common case fast. This simple guideline reminds us that in many cases the fre-
quency with which one event occurs may be much higher than another. Amdahl’s
law reminds us that the opportunity for improvement is affected by how much
time the event consumes. Thus, making the common case fast will tend to
enhance performance better than optimizing the rare case. Ironically, the com-
mon case is often simpler than the rare case and hence is often easier to enhance. 

Pitfall: Using a subset of the performance equation as a performance metric. 

We have already shown the fallacy of predicting performance based on simply one
of clock rate, instruction count, or CPI. Another common mistake is to use two of
the three factors to compare performance. Although using two of the three factors
may be valid in a limited context, it is also easily misused. Indeed, nearly all pro-
posed alternatives to the use of time as the performance metric have led eventually
to misleading claims, distorted results, or incorrect interpretations.

Amdahl’s law A rule stating 
that the performance 
enhancement possible with a 
given improvement is limited by 
the amount that the improved 
feature is used.

Execution time after improvement

Execution time affected by improvement
Amount of improvement

----------------------------------------------------------------------------------------- Execution time unaffected+Ë ¯
Ê ˆ=

Execution time after improvement 80 seconds
n

-------------------------- 100 80 seconds–( )+=

20 seconds 80 seconds
n

--------------------------- 20 seconds+=

0 80 seconds
n

--------------------------=
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One alternative to time as the metric is MIPS (million instructions per second).
For a given program, MIPS is simply

This MIPS measurement is also called native MIPS to distinguish it from some
alternative definitions of MIPS that we discuss in   in Section 4.8 on the CD.

Since MIPS is an instruction execution rate, MIPS specifies performance
inversely to execution time; faster computers have a higher MIPS rating. The good
news about MIPS is that it is easy to understand, and faster computers mean big-
ger MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing com-
puters. First, MIPS specifies the instruction execution rate but does not take into
account the capabilities of the instructions. We cannot compare computers with
different instruction sets using MIPS, since the instruction counts will certainly
differ. In our earlier example examining the SPEC CFP2000 performance, using
MIPS to compare the performance of the Pentium III and Pentium 4 would yield
misleading results. Second, MIPS varies between programs on the same com-
puter; thus a computer cannot have a single MIPS rating for all programs. Finally
and most importantly, MIPS can vary inversely with performance! There are
many examples of this anomalous behavior; one is given below.

MIPS as a Performance Measure

Consider the computer with three instruction classes and CPI measurements
from the last example on page 252. Now suppose we measure the code for the
same program from two different compilers and obtain the following data:

Assume that the computer’s clock rate is 4 GHz. Which code sequence will
execute faster according to MIPS? According to execution time?

million instructions per sec-
ond (MIPS) A measurement of
program execution speed based 
on the number of millions of 
instructions. MIPS is computed 
as the instruction count divided 
by the product of the execution 
time and 106.

MIPS Instruction count
Execution time 106¥
------------------------------------------------------=

EXAMPLE

Instruction counts (in billions)
for each instruction class

Code from A B C

Compiler 1 5 1 1

Compiler 2 10 1 1
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First we find the execution time for the two different compilers using the fol-
lowing equation:

We can use an earlier formula for CPU clock cycles:

Now, we find the execution time for the two compilers:

So, we conclude that compiler 1 generates the faster program, according to
execution time. Now, let’s compute the MIPS rate for each version of the pro-
gram, using

So, the code from compiler 2 has a higher MIPS rating, but the code from
compiler 1 runs faster!

ANSWER

Execution time CPU clock cycles
Clock rate

----------------------------------------=

CPU clock cycles CPIi Ci¥( )
i 1=

n

Â=

CPU clock cycles1 5 1 1 2 1 3¥+¥+¥( ) 109¥ 10 109¥==

CPU clock cycles2 10 1 1 2 1 3¥+¥+¥( ) 109¥ 15 109¥==

Execution time1
10 109¥
4 10

9¥
-------------------- 2.5 seconds= =

Execution time2
15 109¥
4 10

9¥
-------------------- 3.75 seconds= =

MIPS Instruction count
Execution time 106¥
--------------------------------------------------=

MIPS1
5 1 1+ +( ) 109¥

2.5 10
6¥

---------------------------------------- 2800==

MIPS2
10 1 1+ +( ) 109¥
3.75 30( ) 10

6¥
------------------------------------------- 3200= =
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As examples such as this show, MIPS can fail to give a true picture of
performance—even when comparing two versions of the same program on the
same computer. In Section 2.7, we discuss other uses of the term MIPS, and how
such usages can also be misleading.

Check
Yourself

Consider the following performance measurements for a program:

a. Which computer has the higher MIPS rating?
b. Which computer is faster?

Although we have focused on performance and how to evaluate it in this chapter,
designing only for performance without considering cost, functionality, and other
requirements is unrealistic. All computer designers must balance performance
and cost. Of course, there exists a domain of high-performance design, in which
performance is the primary goal and cost is secondary. Much of the supercom-
puter and high-end server industry designs in this fashion. At the other extreme is
low-cost design, typified by the embedded market, where cost and power take pre-
cedence over performance. In the middle are most desktop designs, as well as low-
end servers; these computers require cost/performance design, in which the
designer balances cost against performance. Examples from the desktop computer
industry typify the kinds of trade-offs that designers in this region must live with.

We have seen in this chapter that there is a reliable method of determining and
reporting performance, using the execution time of real programs as the metric.
This execution time is related to other important measurements we can make by
the following equation:

Measurement Computer A Computer B

Instruction count 10 billion 8 billion

Clock rate 4 GHz 4 GHz

CPI 1.0 1.1

4.6 Concluding Remarks 4.6

Seconds
Program
--------------------- Instructions

Program
----------------------------- Clock cycles

Instruction
----------------------------- Seconds

Clock cycle
---------------------------¥¥=
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We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine performance: Only the
product, which equals execution time, is a reliable measure of performance.  

Of course, simply knowing this equation is not enough to guide the design or
evaluation of a computer. We must understand how the different aspects of a
design affect each of these key parameters. This insight involves a wide variety of
issues, from the effectiveness of the compiler, to the effects of instruction set
design on instruction count, to the impact of pipelining and memory systems on
CPI, to the interaction between the technology and organization that determine
the clock rate. The art of computer design and evaluation lies not in plugging
numbers into a performance equation, but in accurately determining how alter-
natives will affect performance and cost.

Most computer users care about both cost and performance. While under-
standing the relationship among aspects of a design and its performance is chal-
lenging, determining the cost of various design features is often a more difficult
problem. The cost of a computer is affected not only by the cost of the compo-
nents, but by the costs of labor to assemble the computer, of research and develop-
ment overhead, of sales and marketing, and of the profit margin. Finally, because
of the rapid change in implementation technologies, the most cost-effective
choice today is often suboptimal in six months or a year.

Computer designs will always be measured by cost and performance, as well as
other important factors such as power, reliability, cost of ownership, and scalabil-
ity. Although this chapter has focused on performance, the best designs will strike
the appropriate balance for a given market among all these factors. 

Execution time is the only valid and unimpeachable measure of perfor-
mance. Many other metrics have been proposed and found wanting.
Sometimes these metrics are flawed from the start by not reflecting exe-
cution time; other times a metric valid in a limited context is extended
and used beyond that context or without the additional clarification
needed to make it valid.

Similarly, any measure that summarizes performance should reflect
execution time. Weighted arithmetic means summarize performance
while tracking execution time. Through the use of weights, a weighted
arithmetic mean can adjust for different running times, balancing the
contribution of each benchmark to the summary. 

The BIG
Picture
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This section, which reviews the history of performance measurement and bench-
marking, appears as Section 4.7on the  CD.

4.1 [5] <§4.1> We wish to compare the performance of two different
computers: M1 and M2. The following measurements have been made on these
computers:

Which computer is faster for each program, and how many times as fast is it?

4.2 [5] <§4.1> Consider the two computers and programs in Exercise 4.1. The
following additional measurements were made:

Find the instruction execution rate (instructions per second) for each computer
when running program 1.

4.3 [5] <§4.1> Suppose that M1 in Exercise 4.1 costs $500 and M2 costs $800. If
you needed to run program 1 a large number of times, which computer would you
buy in large quantities? Why?

4.4 [10] <§4.1>  For More Practice: Cost-Effective Computing

4.5 [5] <§4.1>  For More Practice: Cost-Effective Computing

4.6 [5] <§4.1> Another user has the following requirements for the computers
discussed in Exercise 4.1: P1 must be executed 1600 times each hour. Any remain-
ing time is used to run P2. If the computer has enough performance to execute
program 1 the required number of times per hour, then performance is measured

Historical Perspective and Further 
Reading 4.7

4.8 Exercises 4.8

Program Time on M1 Time on M2

1 2.0 seconds 1.5 seconds

2 05.0 seconds 10.0 seconds

Program Instructions executed on M1 Instructions executed on M2

1 5 ¥ 109 6 ¥ 109

4.7
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by the throughput for program 2. Which computer is faster for this workload?
Which computer is more cost-effective?

4.7 [10] <§4.2> Suppose you wish to run a program P with 7.5 ¥ 109 instructions
on a 5 GHz machine with a CPI of 0.8. 

a. What is the expected CPU time? 

b. When you run P, it takes 3 seconds of wall clock time to complete. What is
the percentage of the CPU time P received?

4.8 [10] <§4.2> Consider two different implementations, P1 and P2, of the same
instruction set. There are five classes of instructions (A, B, C, D, and E) in the in-
struction set. 

P1 has a clock rate of 4 GHz. P2 has a clock rate of 6 GHz. The average number of
cycles for each instruction class for P1 and P2 is as follows:

Assume that peak performance is defined as the fastest rate that a computer can
execute any instruction sequence. What are the peak performances of P1 and P2
expressed in instructions per second?

4.9 [5] <§§4.1–4.2> If the number of instructions executed in a certain program
is divided equally among the classes of instructions in Exercise 4.8 except for class
A, which occurs twice as often as each of the others, how much faster is P2 than P1?

4.10 [12] <§4.2> Consider two different implementations, I1 and I2, of the same
instruction set. There are three classes of instructions (A, B, and C) in the instruction
set. I1 has a clock rate of 6 GHz, and I2 has a clock rate of 3 GHz. The average number
of cycles for each instruction class on I1 and I2 is given in the following table:

The table also contains a summary of average proportion of instruction classes gen-
erated by three different compilers. C1 is a compiler produced by the makers of I1,

Class CPI on P1 CPI on P2

A 1 2

B 2 2

C 3 2

D 4 4

E 3 4

Class CPI on M1 CPI on M2 C1 Usage C2 Usage C3 Usage

A 2 1 40% 40% 50%

B 3 2 40% 20% 25%

C 5 2 20% 40% 25%
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C2 is produced by the makers of I2, and the other compiler is a third-party product.
Assume that each compiler uses the same number of instructions for a given pro-
gram but that the instruction mix is as described in the table. Using C1 on both I1
and I2, how much faster can the makers of I1 claim I1 is compared to I2? Using C2,
how much faster can the makers of I2 claim that I2 is compared to I1? If you pur-
chase I1, which compiler would you use? If you purchased I2, which compiler would
you use? Which computer and compiler would you purchase if all other criteria are
identical, including cost?

4.11 [5] <§4.2> Consider program P, which runs on a 1 GHz machine M in 10
seconds. An optimization is made to P, replacing  all instances of  multiplying a val-
ue by 4 (mult X, X,4) with two instructions that set x to x + x twice (add X,X; add
X,X). Call this new optimized program P¢. The CPI of a multiply instruction is 4,
and the CPI of an add is 1. After recompiling, the program now runs in 9 seconds
on machine M.  How many multiplies were replaced by the new compiler? 

4.12 [5] <§4.2> Your company could speed up a Java program on their new com-
puter by adding hardware support for garbage collection. Garbage collection cur-
rently comprises 20% of the cycles of the program. You have two possible changes
to the machine. The first one would be to automatically handle garbage collection
in hardware. This causes an increase in cycle time by a factor of 1.2. The second
would be to provide for new hardware instructions to be added to the ISA that
could be used during garbage collection. This would halve the number of instruc-
tion needed for garbage collections but increase the cycle time by 1.1. Which of
these two options, if either, should you choose?

4.13 [5] <§4.2> For the following set of variables, identify all of the subsets that
can be used to calculate execution time. Each subset should be minimal; that is, it
should not contain any variable that is not needed.

{CPI, clock rate, cycle time, MIPS, number of instructions in program, number of
cycles in program}

4.14 [5] <§4.2> The table below shows the number of floating-point operations
executed in three different programs and the runtime for those programs on three
different computers:

Which computer is fastest according to total execution time? How many times as
fast is it compared to the other two computers?

Program
Floating-point

operations

Execution time in seconds

Computer A Computer B Computer C 

Program 1 5x109 2 5 10

Program 2 20x109 20 20 20

Program 3 40x109 200 50 15
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4.15 [15] <§§4.2, 4.3> One user has told you that the three programs in Exercise
4.14 constitute the bulk of his workload, but he does not run them equally. The
user wants to determine how the three computers compare when the workload
consists of different mixes of these three programs. (You know you can use the
arithmetic mean to find the relative performance.)

Suppose the total number of floating-point operations (FLOPs) executed in the
workload is equally divided among the three programs. That is, program 1 runs 8
times for every time program 3 runs, and program 2 runs twice for every time
program 3 runs. Find which computer is fastest for this workload and by what fac-
tor. How does this compare with the total execution time with equal numbers of
program executions?

4.16 [15] <§§4.2, 4.3> An alternative weighting to that of Exercise 4.15 is to assume
that equal amounts of time will be spent running each program on one of the com-
puters. Which computer is fastest using the data given  for Exercise 4.14 and assum-
ing a weighting that generates equal execution time for each of the benchmark
programs on computer A? Which computer is fastest if we assume a weighting that
generates equal execution time on computer B? Computer C? Explain the results.

4.17 [5] <§§4.2–4.3> If the clock rates of computers M1 and M2 in Exercise 4.1
are 4 GHz and 6 GHz, respectively, find the clock cycles per instruction (CPI) for
program 1 on both computers using the data in Exercises 4.1 and 4.2.

4.18 [5] <§§4.2–4.3> Assuming the CPI for program 2 on each computer in
Exercise 4.1 is the same as the CPI for program 1 found in Exercise  4.17, find the
instruction count for program 2 running on each computer using the execution
times from Exercise 4.1.

4.19 [5] <§4.3>  In More Depth: Amdahl’s Law

4.20 [10] <§4.3>  In More Depth: Amdahl’s Law

4.21 [10] <§4.3>  In More Depth: Amdahl’s Law

4.22 [5] <§4.3>  In More Depth: Amdahl’s Law

4.23 [5] <§4.3>  In More Depth: Amdahl’s Law

4.24 [20] <§4.3>  In More Depth: Amdahl’s Law

4.25 [5] <§4.3>  In More Depth: Choosing the Right Mean

4.26 [15] <§4.3>  In More Depth: Choosing the Right Mean

4.27 [3 hours] <§4.3>  In More Depth: Synthetic Benchmarks: Attempts to
Replicate “Typical” Behavior

4.28 [3 hours] <§4.3>  In More Depth: Synthetic Benchmarks: Attempts to
Replicate “Typical” Behavior
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4.29 [4 hours] <§4.3>  In More Depth: MIPS, MOPS, and Other FLOPS

4.30 [5] <§4.3>  In More Depth: MFLOPS as a Performance Metric

4.31 [15] <§4.3>  In More Depth: MFLOPS as a Performance metric

4.32 [4 hours] <§4.3>  In More Depth: MFLOPS as a Performance Metric

4.33 [5] <§4.3>  In More Depth: Embedded Benchmarks

4.34 [20] <§§4.2, 4.3>  In More Depth: Using Hardware-Independent Metrics
to Try to Predict Performance

4.35 [10] <§§4.2, 4.3>  For More Practice: Analyzing a Processor with Float-
ing-Point Implemented in Hardware or Software

4.36 [10] <§§4.2, 4.3>  For More Practice: Analyzing a Processor with Float-
ing point implemented in Hardware or Software

4.37 [5] <§§4.2, 4.3>  For More Practice: Analyzing a Processor with Floating
Point Implemented in Hardware or Software

4.38 [10] <§§4.2, 4.3>  For More Practice: Analyzing Enhancements to a
Processor

4.39 [5] <§§4.2, 4.3>  For More Practice: Analyzing Enhancements to a
Processor

4.40 [10] <§§4.2, 4.3>  For More Practice: Analyzing Enhancements to a
Processor

4.41 [5] <§§4.2, 4.3>  For More Practice: Analyzing Enhancements to a
Processor

4.42 [5] <§§4.2, 4.3>  For More Practice: Analyzing Enhancements to a
Processor

4.43 [10] <§§4.2, 4.3>  For More Practice: Analyzing Enhancements to a
Processor

4.44 [10] <§§4.2, 4.3>  For More Practice: Analyzing Enhancements to a
Processor

4.45 [5] <§4.3> Assume that multiply instructions take 12 cycles and account for
15% of the instructions in a typical program, and the other 85% of the instructions
require an average of 4 cycles for each instruction. What percentage of time does
the CPU spend doing multiplication?

4.46 [5] <§4.3> Your hardware engineering team has indicated that it would be
possible to reduce the number of cycles required for multiplication to  8 in Exercise
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4.45, but this will require a 20% increase in the cycle time. Nothing else will be af-
fected by the change. Should they proceed with the modification?

4.47 [10] <§4.4> Look at the current list of SPEC programs in Figure 4.5 on page
260. Does it include applications that match the ways you typically use your com-
puter? What classes of programs are irrelevant or missing? Why do you think they
were or were not included in SPEC? What would have to be done to include/ex-
clude such programs in the next SPEC release?

4.48 [5] <§4.4> If benchmark suites are designed to provide a real-world metric
for a specific computing task, explain why benchmarks suites need to be updated. 

4.49 [5] <§§4.2, 4.3, 4.4> In More Depth: The Difficulty with Kernel Benchmarks

4.50 [15] <§§4.2, 4.3, 4.4>  In More Depth: The Difficulty with Kernel
Benchmarks

4.51 [10] <§§4.1–4.5> Consider the following hypothetical news release: 

“The company will unveil the industry’s first 5 GHz version of the chip, which 
offers a 25% performance boost over the company’s former speed champ, which 
runs at 4 GHz. The new chip can be plugged into system boards for the older 
original chip (which ran at 1 GHz) to provide a 70% performance boost.”

Comment on the definition (or definitions) of performance that you believe the
company used. Do you think the news release is misleading?

4.52 [indefinite] <§§4.1–4.5> Collect a set of articles that you believe contain in-
correct analyses of performance or use misleading performance metrics to try to
persuade readers. For example, an article in the New York Times (April 20, 1994, p.
D1) described a video game player “that will surpass the computing power of even
the most powerful personal computers” and presented the following chart to sup-
port the argument that “video game computers may be the supercomputers of to-
morrow”:

Computer
Approximate number of 
instructions per second Price

1975 IBM mainframe 10,000,000  $10,000,000

1976 Cray-1  160,000,000 $20,000,000

1979 Digital VAX 1,000,000 $200,000

1981 IBM PC 250,000  $3,000

1984 Sun 2  1,000,000 $10,000

1994 Pentium-chip PC 66,000,000 $3,000

1995 Sony PCX video game  500,000,000 $500

1995 Microunity set-top  1,000,000,000 $500
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The article never discussed how the nature of the instructions should impact the
definition of “powerful.” For each article you collect, describe why you think it is
misleading or incorrect. Good places to look for material include the business or
technology sections of newspapers, magazines (both articles and ads), and the
Internet (newsgroups and the Web).

Answers to
Check Yourself

§4.1, page 246: 1. a: both, b: latency, c: neither. 2. 7 sec.
§4.2, page 253: 6.
§4.3, page 258: 1. F, F, F, T. 2. T, F, F, T
§4.4, page 265: b.
§4.5, page 270: a. Computer A. b. Computer B.
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Computers 
in the 

Real World

Moving People Faster 
and More Safely

Problem: Find ways to help transport people

quickly while maintaining safety, comfort, and

efficiency. 

Solution: For more than 20 years, computers

have played an increasingly important role in the

control of transportation systems including

planes, trains, automobiles, and even ships. Essen-

tially all modern transportation systems rely on

computers to enhance their safety, comfort, and

efficiency. Computers also play a critical role in

improving fuel consumption and reducing air

pollution. In these two pages, we examine some of

the uses of computers in trains and automobiles.

In designing pipelines we must prevent hazards, at

all costs, and we try to avoid pipeline delays. Com-

puter-controlled trains try to do the same: hazards

are life-threatening and can never be permitted,

and delays are to be avoided!

The French TGV (Train à Grande Vitesse) is

one of the  fastest train systems in the world,

with a typical top speed of 300 km/hour. Tra-

ditionally, trains were controlled by an engi-

neer, using a set of track-side lights and signals

that tell the engineer to proceed, slow down,

or stop. At 300 km/hour, it is difficult to read

such signals, and easy to miss one completely,

leading to a possible disaster. In addition,

some tracks, such as those containing tight

curves, can be unsafe at the higher speeds;

since the TGV was designed to run on existing

track, finding a fail-safe method to communi-

cate track conditions was critical. 

The TGV designers solved this problem by a

clever signaling system, called TVM (Transmis-

sion Voie-Machine), that runs through the rails

and is picked up by antennas in the locomotive.

The track is divided into blocks, which are typi-

cally about 1.5 km in length. Shorter blocks are

used when track conditions change quickly or

where a higher degree of safety is critical, such

as in the Chunnel, where the block length is

about one-tenth as long. Transmitters at the

beginning of each block are used to communi-

cate instructions to the cab, where they are car-

ried out by an engineer; a computer also

watches the communications, and implements

the commands if the engineer fails to.

The Eurostar TGV train in Nice, France.



One challenge is that the stopping distance

for the TGV is nominally four blocks (some-

what shorter in an absolute emergency). The

time to travel four blocks is 1.2 minutes, and

the newest signaling system trains are run at a

3 minute headway, even in fog! So the system

must monitor the presence of all trains and

ensure the most important property: only one

train ever occupies a block of track at the same

time! The system constantly communicates

the maximum safe speed for the current block,

improving performance and safety.

The TVM system has been built with extensive

attention to safety, which means heavy use of

redundancy to ensure the operation of the system

in the face of failure of a component. The failure

rate of TVM has been estimated at less than 1 fail-

ure in a million years. This attention to safety has

paid off: in over two decades of service, there have

been no fatal accidents caused by a TVM failure 

The images on the previous page and below

show the Eurostar TGV and the cab and oper-

ator’s seat.

Computers have also played a key role in mak-

ing cars safer, more efficient, and less polluting.

The modern automobile has dozens of micro-

processors controlling everything from braking,

to ignition, to air bag deployment. 

In the area of safety, airbags and antilock brakes

have been two of the most important innovations

since the seat belt. Antilock brakes preserve the

ability to steer during the severe braking that

might occur in emergency conditions. By detect-

ing wheel lockup and alternately applying and

releasing the brakes under computer control, an

antilock brake system can avoid wheel lockup. 

Airbags use a force sensor to detect severe

deacceleration, which occurs during a collision.

The airbags are deployed by a computer that

reads the sensor. The new generation of airbags

uses a two-stage deployment: when the deaccel-

eration indicates a collision of moderate severity,

the airbag inflates more slowly, reducing the pos-

sibility of passenger injury from rapid deploy-

ment in a moderate collision. Reliability of these

safety systems has been enhanced by a com-

puter-controlled test that is run every time the

vehicle is started.

Modern ignition systems in automobiles aim to

enhance mileage while reducing pollution. Hap-

pily these two goals are doubly congruent:

enhancing mileage reduces pollution through the

use of less fuel, and mileage is enhanced by more

effective combustion, which also reduces the

emission of partially combusted fuel. Computers

control the injection of fuel, the amount of air

injected, and the spark timing, which must

change as the engine runs faster. Careful control of

these elements over the full operating range from

1000 to 6000 RPM and different temperature con-

ditions has helped improve mileage and reduce

pollution. 

To learn more see these references on 
the  library

“An investigation of the Therac-25 accidents,” Nancy G.
Leveson and Clark S. Turner. IEEE Computer, 26(7): 18–
41, July 1993.

The interior of a Eurostar TGV cab.
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In Chapter 4, we saw that the performance of a machine was determined by three
key factors: instruction count, clock cycle time, and clock cycles per instruction
(CPI). The compiler and the instruction set architecture, which we examined in
Chapters 2 and 3, determine the instruction count required for a given program.
However, both the clock cycle time and the number of clock cycles per instruction
are determined by the implementation of the processor. In this chapter, we con-
struct the datapath and control unit for two different implementations of the
MIPS instruction set. 

This chapter contains an explanation of the principles and techniques used in
implementing a processor, starting with a highly abstract and simplified overview
in this section, followed by sections that build up a datapath and construct a sim-
ple version of a processor sufficient to implement instructions sets like MIPS, and
finally, developing the concepts necessary to implement more complex instruc-
tions sets, like the IA-32.

For the reader interested in understanding the high-level interpretation of
instructions and its impact on program performance, this initial section provides
enough background to understand these concepts as well as the basic concepts of
pipelining, which are explained in Section 6.1 of the next chapter.

For those readers desiring an understanding of how hardware implements
instructions, Sections 5.3 and 5.4 are all the additional material that is needed.
Furthermore, these two sections are sufficient to understand all the material in
Chapter 6 on pipelining. Only those readers with an interest in hardware design
should go further.

The remaining sections of this chapter cover how modern hardware—includ-
ing more complex processors such as the Intel Pentium series—is usually imple-
mented. The basic principles of finite state control are explained, and different
methods of implementation, including microprogramming, are examined. For
the reader interested in understanding the processor and its performance in more
depth, Sections 5.4 and 5.5 will be useful. For readers with an interest in modern
hardware design,  Section 5.7 covers microprogramming, a technique used to
implement more complex control such as that present in IA-32 processors, and

Section 5.8 describes how hardware design languages and CAD tools are used
to implement hardware.

5.1 Introduction 5.1
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A Basic MIPS Implementation

We will be examining an implementation that includes a subset of the core MIPS
instruction set:

■ The memory-reference instructions load word (lw) and store word (sw)

■ The arithmetic-logical instructions add, sub, and, or, and slt

■ The instructions branch equal (beq) and jump (j), which we add last 

This subset does not include all the integer instructions (for example, shift, multi-
ply, and divide are missing), nor does it include any floating-point instructions.
However, the key principles used in creating a datapath and designing the control
will be illustrated. The implementation of the remaining instructions is similar. 

In examining the implementation, we will have the opportunity to see how the
instruction set architecture determines many aspects of the implementation, and
how the choice of various implementation strategies affects the clock rate and CPI
for the machine. Many of the key design principles introduced in Chapter 4 can be
illustrated by looking at the implementation, such as the guidelines Make the com-
mon case fast and Simplicity favors regularity. In addition, most concepts used to
implement the MIPS subset in this chapter and the next are the same basic ideas
that are used to construct a broad spectrum of computers, from high-perfor-
mance servers to general-purpose microprocessors to embedded processors,
which are used increasingly in products ranging from VCRs to automobiles. 

An Overview of the Implementation
In Chapters 2 and 3, we looked at the core MIPS instructions, including the inte-
ger arithmetic-logical instructions, the memory-reference instructions, and the
branch instructions. Much of what needs to be done to implement these instruc-
tions is the same, independent of the exact class of instruction. For every instruc-
tion, the first two steps are identical:

1. Send the program counter (PC) to the memory that contains the code and
fetch the instruction from that memory.

2. Read one or two registers, using fields of the instruction to select the regis-
ters to read. For the load word instruction, we need to read only one regis-
ter, but most other instructions require that we read two registers.

After these two steps, the actions required to complete the instruction depend on
the instruction class. Fortunately, for each of the three instruction classes (mem-
ory-reference, arithmetic-logical, and branches), the actions are largely the same,
independent of the exact opcode. 
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Even across different instruction classes there are some similarities. For exam-
ple, all instruction classes, except jump, use the arithmetic-logical unit (ALU)
after reading the registers. The memory-reference instructions use the ALU for an
address calculation, the arithmetic-logical instructions for the operation execu-
tion, and branches for comparison. As we can see, the simplicity and regularity of
the instruction set simplifies the implementation by making the execution of
many of the instruction classes similar. 

After using the ALU, the actions required to complete various instruction
classes differ. A memory-reference instruction will need to access the memory
either to write data for a store or read data for a load. An arithmetic-logical
instruction must write the data from the ALU back into a register. Lastly, for a
branch instruction, we may need to change the next instruction address based on
the comparison; otherwise the PC should be incremented by 4 to get the address
of the next instruction. 

Figure 5.1 shows the high-level view of a MIPS implementation, focusing on
the various functional units and their interconnection. Although this figure shows
most of the flow of data through the processor, it omits two important aspects of
instruction execution. 

First, in several places, Figure 5.1 shows data going to a particular unit as
coming from two different sources. For example, the value written into the PC
can come from one of two adders, and the data written into the register file can
come from either the ALU or the data memory. In practice, these data lines can-
not simply be wired together; we must add an element that chooses from among
the multiple sources and steers one of those sources to its destination. This selec-
tion is commonly done with a device called a multiplexor, although this device
might better be called a data selector. The multiplexor, which is described in
detail in  Appendix B, selects from among several inputs based on the setting
of its control lines. The control lines are set based primarily on information
taken from the instruction being executed. 

Second, several of the units must be controlled depending on the type of
insrtruction. For example, the data memory must read on a load and write on a
store. The register file must be written on a load and an arithmetic-logical instruc-
tion. And, of course, the ALU must perform one of several operations, as we saw
in Chapter 3. (  Appendix B describes the detailed logic design of the ALU.) Like
the muxes, these operations are directed by control lines that are set on the basis
of various fields in the instruction. 

Figure 5.2 shows the datapath of Figure 5.1 with the three required multiplex-
ors added, as well as control lines for the major functional units. A control unit
that has the instruction as an input is used to determine how to set the control
lines for the functional units and two of the multiplexors. The third multiplexor,
which determines whether PC + 4 or the branch destination address is written
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into the PC, is set based on the zero output of the ALU, which is used to perform
the comparison of a beq instruction. The regularity and simplicity of the MIPS
instruction set means that a simple decoding process can be used to determine
how to set the control lines. 

In the remainder of the chapter, we refine this view to fill in the details, which
requires that we add further functional units, increase the number of connections
between units, and, of course, add a control unit to control what actions are taken
for different instruction classes. Sections 5.3 and 5.4 describe a simple implemen-
tation that uses a single long clock cycle for every instruction and follows the gen-
eral form of Figures 5.1 and 5.2. In this first design, every instruction begins
execution on one clock edge and completes execution on the next clock edge. 

FIGURE 5.1 An abstract view of the implementation of the MIPS subset showing the major
functional units and the major connections between them. All instructions start by using the pro-
gram counter to supply the instruction address to the instruction memory. After the instruction is fetched, the
register operands used by an instruction are specified by fields of that instruction. Once the register operands
have been fetched, they can be operated on to compute a memory address (for a load or store), to compute an
arithmetic result (for an integer arithmetic-logical instruction), or a compare (for a branch). If the instruction
is an arithmetic-logical instruction, the result from the ALU must be written to a register. If the operation is a
load or store, the ALU result is used as an address to either store a value from the registers or load a value from
memory into the registers. The result from the ALU or memory is written back into the register file. Branches
require the use of the ALU output to determine the next instruction address, which comes from either the ALU
(where the PC and branch offset are summed) or from an adder that increments the current PC by 4. The thick
lines interconnecting the functional units represent buses, which consist of multiple signals. The arrows are
used to guide the reader in knowing how information flows. Since signal lines may cross, we explicitly show
when crossing lines are connected by the presence of a dot where the lines cross. 
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While easier to understand, this approach is not practical, since it would be
slower than an implementation that allows different instruction classes to take dif-
ferent numbers of clock cycles, each of which could be much shorter. After design-
ing the control for this simple machine, we will look at an implementation that
uses multiple clock cycles for each instruction. This multicycle design is used

FIGURE 5.2 The basic implementation of the MIPS subset including the necessary multiplexors and control
lines. The top multiplexor controls what value replaces the PC (PC + 4 or the branch destination address); the multiplexor is con-
trolled by the gate that “ands” together the Zero output of the ALU and a control signal that indicates that the instruction is a
branch. The multiplexor whose output returns to the register file is used to steer the output of the ALU (in the case of an arithmetic-
logical instruction) or the output of the data memory (in the case of a load) for writing into the register file. Finally, the bottommost
multiplexor is used to determine whether the second ALU input is from the registers (for a nonimmediate arithmetic-logical
instruction) or from the offset field of the instruction (for an immediate operation, a load or store, or a branch). The added control
lines are straightforward and determine the operation performed at the ALU, whether the data memory should read or write, and
whether the registers should perform a write operation. The control lines are shown in color to make them easier to see.
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when we discuss more advanced control concepts, handling exceptions, and the
use of hardware design languages in Sections 5.5 through 5.8. 

Check
Yourself

The single-cycle datapath conceptually described in this section must have sepa-
rate instruction and data memories because

1. the format of data and instructions is different in MIPS and hence different
memories are needed

2. having separate memories is less expensive

3. the processor operates in one cycle and cannot use a single-ported memory
for two different accesses within that cycle

To discuss the design of a machine, we must decide how the logic implementing
the machine will operate and how the machine is clocked. This section reviews a
few key ideas in digital logic that we will use extensively in this chapter. If you have
little or no background in digital logic, you will find it helpful to read through
Appendix B before continuing. 

The functional units in the MIPS implementation consist of two different types
of logic elements: elements that operate on data values and elements that contain
state. The elements that operate on data values are all combinational, which means
that their outputs depend only on the current inputs. Given the same input, a
combinational element always produces the same output. The ALU shown in
Figure 5.1 and discussed in Chapter 3 and  Appendix B is a combinational ele-
ment. Given a set of inputs, it always produces the same output because it has no
internal storage. 

Other elements in the design are not combinational, but instead contain state.
An element contains state if it has some internal storage. We call these elements
state elements because, if we pulled the plug on the machine, we could restart it
by loading the state elements with the values they contained before we pulled the
plug. Furthermore, if we saved and restored the state elements, it would be as if
the machine had never lost power. Thus, these state elements completely charac-
terize the machine. In Figure 5.1, the instruction and data memories as well as the
registers are all examples of state elements. 

A state element has at least two inputs and one output. The required inputs are
the data value to be written into the element and the clock, which determines

5.2 Logic Design Conventions 5.2

state element A memory 
element.
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when the data value is written. The output from a state element provides the value
that was written in an earlier clock cycle. For example, one of the logically sim-
plest state elements is a D-type flip-flop (see Appendix B), which has exactly these
two inputs (a value and a clock) and one output. In addition to flip-flops, our
MIPS implementation also uses two other types of state elements: memories and
registers, both of which appear in Figure 5.1. The clock is used to determine when
the state element should be written; a state element can be read at any time. 

Logic components that contain state are also called sequential because their
outputs depend on both their inputs and the contents of the internal state. For
example, the output from the functional unit representing the registers depends
both on the register numbers supplied and on what was written into the registers
previously. The operation of both the combinational and sequential elements and
their construction are discussed in more detail in  Appendix B.

We will use the word asserted to indicate a signal that is logically high and assert
to specify that a signal should be driven logically high, and deassert or deasserted
to represent logical low. 

Clocking Methodology
A clocking methodology defines when signals can be read and when they can be
written. It is important to specify the timing of reads and writes because, if a sig-
nal is written at the same time it is read, the value of the read could correspond to
the old value, the newly written value, or even some mix of the two! Needless to
say, computer designs cannot tolerate such unpredictability. A clocking methodol-
ogy is designed to prevent this circumstance.

For simplicity, we will assume an edge-triggered clocking methodology. An
edge-triggered clocking methodology means that any values stored in a sequential
logic element are updated only on a clock edge. Because only state elements can
store a data value, any collection of combinational logic must have its inputs com-
ing from a set of state elements and its outputs written into a set of state elements.
The inputs are values that were written in a previous clock cycle, while the outputs
are values that can be used in a following clock cycle.   

Figure 5.3 shows the two state elements surrounding a block of combinational
logic, which operates in a single clock cycle: All signals must propagate from state
element 1, through the combinational logic, and to state element 2 in the time of
one clock cycle. The time necessary for the signals to reach state element 2 defines
the length of the clock cycle. 

For simplicity, we do not show a write control signal when a state element is
written on every active clock edge. In contrast, if a state element is not updated on
every clock, then an explicit write control signal is required. Both the clock signal
and the write control signal are inputs, and the state element is changed only
when the write control signal is asserted and a clock edge occurs. 

clocking methodology The
approach used to determine 
when data is valid and stable rel-
ative to the clock.

edge-triggered clocking A
clocking scheme in which all 
state changes occur on a clock 
edge.

control signal A signal used 
for multiplexor selection or for 
directing the operation of a 
functional unit; contrasts with a 
data signal, which contains 
information that is operated on 
by a functional unit.
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An edge-triggered methodology allows us to read the contents of a register,
send the value through some combinational logic, and write that register in the
same clock cycle, as shown in Figure 5.4. It doesn’t matter whether we assume that
all writes take place on the rising clock edge or on the falling clock edge, since the
inputs to the combinational logic block cannot change except on the chosen clock
edge. With an edge-triggered timing methodology, there is no feedback within a
single clock cycle, and the logic in Figure  5.4 works correctly. In  Appendix B we
briefly discuss additional timing constraints (such as setup and hold times) as well
as other timing methodologies.

Nearly all of these state and logic elements will have inputs and outputs that are
32 bits wide, since that is the width of most of the data handled by the processor.
We will make it clear whenever a unit has an input or output that is other than 32
bits in width. The figures will indicate buses, which are signals wider than 1 bit,
with thicker lines. At times we will want to combine several buses to form a wider
bus; for example, we may want to obtain a 32-bit bus by combining two 16-bit

FIGURE 5.3 Combinational logic, state elements, and the clock are closely related. In a
synchronous digital system, the clock determines when elements with state will write values into internal
storage. Any inputs to a state element must reach a stable value (that is, have reached a value from which
they will not change until after the clock edge) before the active clock edge causes the state to be updated.
All state elements, including memory, are assumed to be edge-triggered. 

FIGURE 5.4 An edge-triggered methodology allows a state element to be read and writ-
ten in the same clock cycle without creating a race that could lead to indeterminate data
values. Of course, the clock cycle still must be long enough so that the input values are stable when the
active clock edge occurs. Feedback cannot occur within 1 clock cycle because of the edge-triggered update
of the state element. If feedback were possible, this design could not work properly. Our designs in this
chapter and the next rely on the edge-triggered timing methodology and structures like the one shown in
this figure. 
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buses. In such cases, labels on the bus lines will make it clear that we are concate-
nating buses to form a wider bus. Arrows are also added to help clarify the direc-
tion of the flow of data between elements. Finally, color indicates a control signal
as opposed to a signal that carries data; this distinction will become clearer as we
proceed through this chapter.

Check
Yourself

True or false: Because the register file is both read and written on the same
clock cycle, any MIPS datapath using edge-triggered writes must have more
than one copy of the register file. 

A reasonable way to start a datapath design is to examine the major components
required to execute each class of MIPS instruction. Let’s start by looking at which
datapath elements each instruction needs. When we show the datapath elements,
we will also show their control signals. 

Figure 5.5 shows the first element we need: a memory unit to store the
instructions of a program and supply instructions given an address. Figure 5.5
also shows a register, which we call the program counter (PC), that is used to
hold the address of the current instruction. Lastly, we will need an adder to
increment the PC to the address of the next instruction. This adder, which is
combinational, can be built from the ALU we described in Chapter 3 and
designed in detail in Appendix B, simply by wiring the control lines so that the
control always specifies an add operation. We will draw such an ALU with the
label Add, as in Figure 5.5, to indicate that it has been permanently made an
adder and cannot perform the other ALU functions.  

To execute any instruction, we must start by fetching the instruction from
memory. To prepare for executing the next instruction, we must also increment
the program counter so that it points at the next instruction, 4 bytes later.
Figure 5.6 shows how the three elements from Figure 5.5 are combined to form a
datapath that fetches instructions and increments the PC to obtain the address of
the next sequential instruction.  

Now let’s consider the R-format instructions (see Figure 2.7 on page 67). They
all read two registers, perform an ALU operation on the contents of the registers,
and write the result. We call these instructions either R-type instructions or arith-
metic-logical instructions (since they perform arithmetic or logical operations).
This instruction class includes add, sub, and, or, and slt, which were intro-

5.3 Building a Datapath 5.3

datapath element A func-
tional unit used to operate on or 
hold data within a processor. In 
the MIPS implementation the 
datapath elements include the 
instruction and data memories, 
the register file, the arithmetic 
logic unit (ALU), and adders.

program counter (PC) The
register containing the address 
of the instruction in the pro-
gram being executed
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duced in Chapter 2. Recall that a typical instance of such an instruction is add
$t1,$t2,$t3 , which reads $t2  and $t3  and writes $t1 .

The processor’s 32 general-purpose registers are stored in a structure called a
register file. A register file is a collection of registers in which any register can be

FIGURE 5.5 Two state elements are needed to store and access instructions, and an
adder is needed to compute the next instruction address. The state elements are the instruction
memory and the program counter. The instruction memory need only provide read access because the
datapath does not write instructions. Since the instruction memory  only reads, we treat it as combinational
logic: the output at any time reflects the contents of the location specified by the address input, and no read
control signal is needed. (We will need to write the instruction memory when we load the program; this is
not hard to add, and we ignore it for simplicity.) The program counter is a 32-bit register that will be writ-
ten at the end of every clock cycle and thus does not need a write control signal. The adder is an ALU wired
to always perform an add of its two 32-bit inputs and place the result on its output. 

FIGURE 5.6 A portion of the datapath used for fetching instructions and incrementing
the program counter. The fetched instruction is used by other parts of the datapath.
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register file A state element 
that consists of a set of registers 
that can be read and written by 
supplying a register number to 
be accessed. 
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read or written by specifying the number of the register in the file. The register file
contains the register state of the machine. In addition, we will need an ALU to
operate on the values read from the registers. 

Because the R-format instructions have three register operands, we will need to
read two data words from the register file and write one data word into the register
file for each instruction. For each data word to be read from the registers, we need
an input to the register file that specifies the register number to be read and an
output from the register file that will carry the value that has been read from the
registers. To write a data word, we will need two inputs: one to specify the register
number to be written and one to supply the data to be written into the register.
The register file always outputs the contents of whatever register numbers are on
the Read register inputs. Writes, however, are controlled by the write control sig-
nal, which must be asserted for a write to occur at the clock edge. Thus, we need a
total of four inputs (three for register numbers and one for data) and two outputs
(both for data), as shown in Figure 5.7. The register number inputs are 5 bits wide
to specify one of 32 registers (32 = 25), whereas the data input and two data out-
put buses are each 32 bits wide. 

Figure 5.7 shows the ALU, which takes two 32-bit inputs and produces a 32-bit
result, as well as a 1-bit signal if the result is 0. The four-bit control signal of the
ALU is described in detail in  Appendix B; we will review the ALU control
shortly when we need to know how to set it.

Next, consider the MIPS load word and store word instructions, which have
the general form lw $t1,offset_value($t2) or sw $t1,offset_value
($t2). These instructions compute a memory address by adding the base regis-
ter, which is $t2, to the 16-bit signed offset field contained in the instruction. If
the instruction is a store, the value to be stored must also be read from the register
file where it resides in $t1. If the instruction is a load, the value read from mem-
ory must be written into the register file in the specified register, which is $t1.
Thus, we will need both the register file and the ALU from Figure 5.7. 

In addition, we will need a unit to sign-extend the 16-bit offset field in the
instruction to a 32-bit signed value, and a data memory unit to read from or write
to. The data memory must be written on store instructions; hence, it has both
read and write control signals, an address input, as well as an input for the data to
be written into memory. Figure 5.8 shows these two elements. 

The beq instruction has three operands, two registers that are compared for
equality, and a 16-bit offset used to compute the branch target address relative to
the branch instruction address. Its form is beq $t1,$t2,offset. To imple-
ment this instruction, we must compute the branch target address by adding the
sign-extended offset field of the instruction to the PC. There are two details in the
definition of branch instructions (see Chapter 2) to which we must pay attention: 

sign-extend To increase the 
size of a data item by replicating 
the high-order sign bit of the 
original data item in the high-
order bits of the larger, destina-
tion data item.

branch target address The
address specified in a branch, 
which becomes the new program 
counter (PC) if the branch is 
taken. In the MIPS architecture 
the branch target is given by the 
sum of the offset field of the 
instruction and the address of the 
instruction following the branch.
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■ The instruction set architecture specifies that the base for the branch address cal-
culation is the address of the instruction following the branch. Since we compute
PC + 4 (the address of the next instruction) in the instruction fetch datapath, it is
easy to use this value as the base for computing the branch target address. 

■ The architecture also states that the offset field is shifted left 2 bits so that it
is a word offset; this shift increases the effective range of the offset field by a
factor of four. 

To deal with the latter complication, we will need to shift the offset field by two. 
In addition to computing the branch target address, we must also determine

whether the next instruction is the instruction that follows sequentially or the
instruction at the branch target address. When the condition is true (i.e., the
operands are equal), the branch target address becomes the new PC, and we say
that the branch is taken. If the operands are not equal, the incremented PC
should replace the current PC (just as for any other normal instruction); in this
case, we say that the branch is not taken.

FIGURE 5.7 The two elements needed to implement R-format ALU operations are the reg-
ister file and the ALU. The register file contains all the registers and has two read ports and one write port.
The design of multiported register files is discussed in Section B.8 of Appendix B. The register file always out-
puts the contents of the registers corresponding to the Read register inputs on the outputs; no other control
inputs are needed. In contrast, a register write must be explicitly indicated by asserting the write control signal.
Remember that writes are edge-triggered, so that all the write inputs (i.e., the value to be written, the register
number, and the write control signal) must be valid at the clock edge. Since writes to the register file are edge-
triggered, our design can legally read and write the same register within a clock cycle: the read will get the value
written in an earlier clock cycle, while the value written will be available to a read in a subsequent clock cycle.
The inputs carrying the register number to the register file are all 5 bits wide, whereas the lines carrying data
values are 32 bits wide. The operation to be performed by the ALU is controlled with the ALU operation signal,
which will be 4 bits wide, using the ALU designed in Appendix B. We will use the Zero detection output of
the ALU shortly to implement branches. The overflow output will not be needed until Section 5.6, when we
discuss exceptions; we omit it until then.
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branch taken A branch where 
the branch condition is satisfied 
and the program counter (PC) 
becomes the branch target. All 
unconditional branches are 
taken branches.

branch not taken A branch 
where the branch condition is 
false and the program counter 
(PC) becomes the address of the 
instruction that sequentially fol-
lows the branch.
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Thus, the branch datapath must do two operations: compute the branch target
address and compare the register contents. (Branches also affect the instruction
fetch portion of the datapath, as we will deal with shortly.) Because of the complex-
ity of handling branches, we show the structure of the datapath segment that han-
dles branches in Figure 5.9. To compute the branch target address, the branch
datapath includes a sign extension unit, just like that in Figure 5.8, and an adder. To
perform the compare, we need to use the register file shown in Figure 5.7 to supply
the two register operands (although we will not need to write into the register file).
In addition, the comparison can be done using the ALU we designed in Appendix B.
Since that ALU provides an output signal that indicates whether the result was 0, we
can send the two register operands to the ALU with the control set to do a subtract.
If the Zero signal out of the ALU unit is asserted, we know that the two values are
equal. Although the Zero output always signals if the result is 0, we will be using it
only to implement the equal test of branches. Later, we will show exactly how to
connect the control signals of the ALU for use in the datapath. 

The jump instruction operates by replacing the lower 28 bits of the PC with the
lower 26 bits of the instruction shifted left by 2 bits. This shift is accomplished
simply by concatenating 00 to the jump offset, as described in Chapter 2.

FIGURE 5.8 The two units needed to implement loads and stores, in addition to the reg-
ister file and ALU of Figure 5.7, are the data memory unit and the sign extension unit. The
memory unit is a state element with inputs for the address and the write data, and a single output for the
read result. There are separate read and write controls, although only one of these may be asserted on any
given clock. The memory unit needs a read signal, since, unlike the register file, reading the value of an
invalid address can cause problems, as we will see in Chapter 7. The sign extension unit has a 16-bit input
that is sign-extended into a 32-bit result appearing on the output (see Chapter 3). We assume the data
memory is edge-triggered for writes. Standard memory chips actually have a write enable signal that is used
for writes. Although the write enable is not edge-triggered, our edge-triggered design could easily be
adapted to work with real memory chips. See Section B.8 of Appendix B for a further discussion of how
real memory chips work. 
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Elaboration: In the MIPS instruction set, branches are delayed, meaning that the
instruction immediately following the branch is always executed, independent of
whether the branch condition is true or false. When the condition is false, the execu-
tion looks like a normal branch. When the condition is true, a delayed branch first exe-
cutes the instruction immediately following the branch in sequential instruction order
before jumping to the specified branch target address. The motivation for delayed
branches arises from how pipelining affects branches (see Section 6.6). For simplic-
ity, we ignore delayed branches in this chapter and implement a nondelayed beq
instruction.

FIGURE 5.9 The datapath for a branch uses the ALU to evaluate the branch condition and a
separate adder to compute the branch target as the sum of the incremented PC and the
sign-extended, lower 16 bits of the instruction (the branch displacement), shifted left 2
bits. The unit labeled Shift left 2 is simply a routing of the signals between input and output that adds 00two to
the low-order end of the sign-extended offset field; no actual shift hardware is needed, since the amount of the
“shift” is constant. Since we know that the offset was sign-extended from 16 bits, the shift will throw away only
“sign bits.” Control logic is used to decide whether the incremented PC or branch target should replace the PC,
based on the Zero output of the ALU.
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Creating a Single Datapath

Now that we have examined the datapath components needed for the individual
instruction classes, we can combine them into a single datapath and add the con-
trol to complete the implementation. The simplest datapath might attempt to exe-
cute all instructions in one clock cycle. This means that no datapath resource can
be used more than once per instruction, so any element needed more than once
must be duplicated. We therefore need a memory for instructions separate from
one for data. Although some of the functional units will need to be duplicated,
many of the elements can be shared by different instruction flows. 

To share a datapath element between two different instruction classes, we may
need to allow multiple connections to the input of an element, using a multi-
plexor and control signal to select among the multiple inputs.  

Now we can combine all the pieces to make a simple datapath for the MIPS
architecture by adding the datapath for instruction fetch (Figure 5.6 on page 293),

Building a Datapath

The operations of arithmetic-logical (or R-type) instructions and the memory
instructions datapath are quite similar. The key differences are the following:

■ The arithmetic-logical instructions use the ALU with the inputs coming
from the two registers. The memory instructions can also use the ALU
to do the address calculation, although the second input is the sign-ex-
tended 16-bit offset field from the instruction.

■ The value stored into a destination register comes from the ALU (for an
R-type instruction) or the memory (for a load).

Show how to build a datapath for the operational portion of the memory ref-
erence and arithmetic-logical instructions that uses a single register file and a
single ALU to handle both types of instructions, adding any necessary multi-
plexors. 

To create a datapath with only a single register file and a single ALU, we must
support two different sources for the second ALU input, as well as two differ-
ent sources for the data stored into the register file. Thus, one multiplexor is
placed at the ALU input and another at the data input to the register file.
Figure 5.10 shows the operational portion of the combined datapath.

EXAMPLE

ANSWER
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the datapath from R-type and memory instructions (Figure 5.10 on page 299),
and the datapath for branches (Figure 5.9 on page 297). Figure 5.11 shows the
datapath we obtain by composing the separate pieces. The branch instruction uses
the main ALU for comparison of the register operands, so we must keep the
adder in Figure 5.9 for computing the branch target address. An additional mul-
tiplexor is required to select either the sequentially following instruction address
(PC + 4) or the branch target address to be written into the PC.

Now that we have completed this simple datapath, we can add the control unit.
The control unit must be able to take inputs and generate a write signal for each
state element, the selector control for each multiplexor, and the ALU control. The
ALU control is different in a number of ways, and it will be useful to design it first
before we design the rest of the control unit. 

Check
Yourself

Which of the following is correct for a load instruction?

a. MemtoReg should be set to cause the data from memory to be sent to the
register file.

b. MemtoReg should be set to cause the correct register destination to be sent
to the register file. 

c. We do not care about the setting of MemtoReg.

FIGURE 5.10 The datapath for the memory instructions and the R-type instructions. This example shows how
a single datapath can be assembled from the pieces in Figures 5.7 and 5.8 by adding multiplexors. Two multiplexors are needed,
as described as in the example. 
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In this section, we look at what might be thought of as the simplest possible
implementation of our MIPS subset. We build this simple implementation using
the datapath of the last section and adding a simple control function. This simple
implementation covers load word (lw), store word (sw), branch equal (beq), and
the arithmetic-logical instructions add, sub, and, or, and set on less than.
We will later enhance the design to include a jump instruction (j). 

FIGURE 5.11 The simple datapath for the MIPS architecture combines the elements required by different instruction
classes. This datapath can execute the basic instructions (load/store word, ALU operations, and branches) in a single clock cycle. An additional mul-
tiplexor is needed to integrate branches. The support for jumps will be added later. 
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The ALU Control

As can be seen in Appendix B, the ALU has four control inputs. These bits were not
encoded; hence, only 6 of the possible 16 possible input combinations are used in
this subset. The MIPS ALU in  Appendix B shows the 6 following combinations: 

Depending on the instruction class, the ALU will need to perform one of these first
five functions. (NOR is needed for other parts of the MIPS instruction set.) For load
word and store word instructions, we use the ALU to compute the memory address
by addition. For the R-type instructions, the ALU needs to perform one of the five
actions (AND, OR, subtract, add, or set on less than), depending on the value of the
6-bit funct (or function) field in the low-order bits of the instruction (see Chapter
2). For branch equal, the ALU must perform a subtraction.

We can generate the 4-bit ALU control input using a small control unit that has
as inputs the function field of the instruction and a 2-bit control field, which we
call ALUOp. ALUOp indicates whether the operation to be performed should be
add (00) for loads and stores, subtract (01) for beq, or determined by the opera-
tion encoded in the funct field (10). The output of the ALU control unit is a 4-bit
signal that directly controls the ALU by generating one of the 4-bit combinations
shown previously. 

In Figure 5.12, we show how to set the ALU control inputs based on the 2-bit
ALUOp control and the 6-bit function code. For completeness, the relationship
between the ALUOp bits and the instruction opcode is also shown. Later in this
chapter we will see how the ALUOp bits are generated from the main control unit. 

This style of using multiple levels of decoding—that is, the main control unit
generates the ALUOp bits, which then are used as input to the ALU control that
generates the actual signals to control the ALU unit—is a common implementa-
tion technique. Using multiple levels of control can reduce the size of the main
control unit. Using several smaller control units may also potentially increase the
speed of the control unit. Such optimizations are important, since the control unit
is often performance-critical. 

There are several different ways to implement the mapping from the 2-bit
ALUOp field and the 6-bit funct field to the three ALU operation control bits.

ALU control lines Function

0000 AND

0001 OR

0010 add

0110 subtract

0111 set on less than

1100 NOR
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Because only a small number of the 64 possible values of the function field are of
interest and the function field is used only when the ALUOp bits equal 10, we can
use a small piece of logic that recognizes the subset of possible values and causes
the correct setting of the ALU control bits. 

As a step in designing this logic, it is useful to create a truth table for the inter-
esting combinations of the function code field and the ALUOp bits, as we’ve done
in Figure  5.13; this truth table shows how the 3-bit ALU control is set depending

Instruction
opcode ALUOp

Instruction
operation Funct field

Desired
ALU action

ALU control
input

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 and 0000

R-type 10 OR 100101 or 0001

R-type 10 set on less than 101010 set on less than 0111

FIGURE 5.12 How the ALU control bits are set depends on the ALUOp control bits and
the different function codes for the R-type instruction. The opcode, listed in the first column,
determines the setting of the ALUOp bits. All the encodings are shown in binary. Notice that when the
ALUOp code is 00 or 01, the desired ALU action does not depend on the function code field; in this case, we
say that we “don’t care” about the value of the function code, and the funct field is shown as XXXXXX.
When the ALUOp value is 10, then the function code is used to set the ALU control input.

ALUOp Funct field

OperationALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 0010

X 1 X X X X X X 0110

1 X X X 0 0 0 0 0010

1 X X X 0 0 1 0 0110

1 X X X 0 1 0 0 0000

1 X X X 0 1 0 1 0001

1 X X X 1 0 1 0 0111

FIGURE 5.13 The truth table for the three ALU control bits (called Operation). The inputs
are the ALUOp and function code field. Only the entries for which the ALU control is asserted are shown.
Some don’t-care entries have been added. For example, the ALUOp does not use the encoding 11, so the
truth table can contain entries 1X and X1, rather than 10 and 01. Also, when the function field is used, the
first two bits (F5 and F4) of these instructions are always 10, so they are don’t-care terms and are replaced
with XX in the truth table.
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on these two input fields. Since the full truth table is very large (28 = 256 entries)
and we don’t care about the value of the ALU control for many of these input
combinations, we show only the truth table entries for which the ALU control
must have a specific value. Throughout this chapter, we will use this practice of
showing only the truth table entries that must be asserted and not showing those
that are all zero or don’t care. (This practice has a disadvantage, which we discuss
in Section C.2 of Appendix C.) 

Because in many instances we do not care about the values of some of the
inputs and to keep the tables compact, we also include don’t-care terms. A don’t-
care term in this truth table (represented by an X in an input column) indicates
that the output does not depend on the value of the input corresponding to that
column. For example, when the ALUOp bits are 00, as in the first line of the table
in Figure 5.13, we always set the ALU control to 010, independent of the function
code. In this case, then, the function code inputs will be don’t cares in this line of
the truth table. Later, we will see examples of another type of don’t-care term. If
you are unfamiliar with the concept of don’t-care terms, see Appendix B for more
information. 

Once the truth table has been constructed, it can be optimized and then turned
into gates. This process is completely mechanical. Thus, rather than show the final
steps here, we describe the process and the result in Section C.2 of Appendix C.

Designing the Main Control Unit

Now that we have described how to design an ALU that uses the function code
and a 2-bit signal as its control inputs, we can return to looking at the rest of the
control. To start this process, let’s identify the fields of an instruction and the con-
trol lines that are needed for the datapath we constructed in Figure 5.11 on page
300. To understand how to connect the fields of an instruction to the datapath, it
is useful to review the formats of the three instruction classes: the R-type, branch,
and load/store instructions. Figure 5.14 shows these formats.

There are several major observations about this instruction format that we will
rely on:

■ The op field, also called the opcode, is always contained in bits 31:26. We
will refer to this field as Op[5:0].

■ The two registers to be read are always specified by the rs and rt fields, at
positions 25:21 and 20:16. This is true for the R-type instructions, branch
equal, and for store.

■ The base register for load and store instructions is always in bit positions
25:21 (rs).

don’t-care term An element of
a logical function in which the 
output does not depend on the 
values of all the inputs. Don’t-
care terms may be specified in 
different ways.

opcode The field that denotes 
the operation and format of an 
instruction.
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■ The 16-bit offset for branch equal, load, and store is always in positions
15:0.

■ The destination register is in one of two places. For a load it is in bit
positions 20:16 (rt), while for an R-type instruction it is in bit positions
15:11 (rd). Thus we will need to add a multiplexor to select which field of
the instruction is used to indicate the register number to be written. 

Using this information, we can add the instruction labels and extra multiplexor
(for the Write register number input of the register file) to the simple datapath.
Figure 5.15 shows these additions plus the ALU control block, the write signals for
state elements, the read signal for the data memory, and the control signals for the
multiplexors. Since all the multiplexors have two inputs, they each require a single
control line. 

Figure 5.15 shows seven single-bit control lines plus the 2-bit ALUOp control
signal. We have already defined how the ALUOp control signal works, and it is
useful to define what the seven other control signals do informally before we
determine how to set these control signals during instruction execution.
Figure 5.16 describes the function of these seven control lines. 

Field 0 rs rt rd shamt funct

Bit positions 31:26 25:21 20:16 15:11 10:6 5:0

a. R-type instruction

Field 35 or 43 rs rt address

Bit positions 31:26 25:21 20:16 15:0

b. Load or store instruction

Field 4 rs rt address

Bit positions 31:26 25:21 20:16 15:0

c. Branch instruction

FIGURE 5.14 The three instruction classes (R-type, load and store, and branch) use two
different instruction formats. The jump instructions use another format, which we will discuss
shortly. (a) Instruction format for R-format instructions, which all have an opcode of 0. These instructions
have three register operands: rs, rt, and rd. Fields rs and rt are sources, and rd is the destination. The ALU
function is in the funct field and is decoded by the ALU control design in the previous section. The R-type
instructions that we implement are add, sub, and, or, and slt. The shamt field is used only for shifts; we
will ignore it in this chapter. (b) Instruction format for load (opcode = 35ten) and store (opcode = 43ten)
instructions. The register rs is the base register that is added to the 16-bit address field to form the memory
address. For loads, rt is the destination register for the loaded value. For stores, rt is the source register
whose value should be stored into memory. (c) Instruction format for branch equal (opcode = 4). The reg-
isters rs and rt are the source registers that are compared for equality. The 16-bit address field is sign-
extended, shifted, and added to the PC to compute the branch target address.
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Now that we have looked at the function of each of the control signals, we can
look at how to set them. The control unit can set all but one of the control signals
based solely on the opcode field of the instruction. The PCSrc control line is the
exception. That control line should be set if the instruction is branch on equal (a
decision that the control unit can make) and the Zero output of the ALU, which is
used for equality comparison, is true. To generate the PCSrc signal, we will need
to AND together a signal from the control unit, which we call Branch, with the
Zero signal out of the ALU. 

These nine control signals (seven from Figure 5.16 and two for ALUOp) can now
be set on the basis of six input signals to the control unit, which are the opcode bits.
Figure 5.17 shows the datapath with the control unit and the control signals.  

FIGURE 5.15 The datapath of Figure 5.12 with all necessary multiplexors and all control lines identified. The control lines are
shown in color. The ALU control block has also been added. The PC does not require a write control, since it is written once at the end of every clock
cycle; the branch control logic determines whether it is written with the incremented PC or the branch target address. 
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Before we try to write a set of equations or a truth table for the control unit, it
will be useful to try to define the control function informally. Because the setting
of the control lines depends only on the opcode, we define whether each control
signal should be 0, 1, or don’t care (X), for each of the opcode values. Figure 5.18
defines how the control signals should be set for each opcode; this information
follows directly from Figures 5.12, 5.16, and 5.17. 

Operation of the Datapath
With the information contained in Figures 5.16 and 5.18, we can design the con-
trol unit logic, but before we do that, let’s look at how each instruction uses the
datapath. In the next few figures, we show the flow of three different instruction
classes through the datapath. The asserted control signals and active datapath ele-
ments are highlighted in each of these. Note that a multiplexor whose control is 0
has a definite action, even if its control line is not highlighted. Multiple-bit control
signals are highlighted if any constituent signal is asserted. 

Figure 5.19 shows the operation of the datapath for an R-type instruction, such as
add $t1,$t2,$t3. Although everything occurs in 1 clock cycle, we can think of four
steps to execute the instruction; these steps are ordered by the flow of information: 

Signal
name Effect when deasserted Effect when asserted

RegDst The register destination number for the 
Write register comes from the rt field (bits 
20:16).

The register destination number for the Write 
register comes from the rd field (bits 15:11).

RegWrite None. The register on the Write register input is 
written with the value on the Write data input. 

ALUSrc The second ALU operand comes from the 
second register file output (Read data 2).

The second ALU operand is the sign-extended, 
lower 16 bits of the instruction.

PCSrc The PC is replaced by the output of the 
adder that computes the value of PC + 4.

The PC is replaced by the output of the adder 
that computes the branch target.

MemRead None. Data memory contents designated by the 
address input are put on the Read data output. 

MemWrite None. Data memory contents designated by the 
address input are replaced by the value on the 
Write data input.

MemtoReg The value fed to the register Write data 
input comes from the ALU.

The value fed to the register Write data input 
comes from the data memory.

FIGURE 5.16 The effect of each of the seven control signals. When the 1-bit control to a two-
way multiplexor is asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is
deasserted, the multiplexor selects the 0 input. Remember that the state elements all have the clock as an
implicit input and that the clock is used in controlling writes. The clock is never gated externally to a state
element, since this can create timing problems. (See Appendix B for further discussion of this problem.)
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FIGURE 5.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field from the instruction. The
outputs of the control unit consist of three 1-bit signals that are used to control multiplexors (RegDst, ALUSrc, and MemtoReg), three signals for con-
trolling reads and writes in the register file and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to
possibly branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch control signal and the Zero
output from the ALU; the AND gate output controls the selection of the next PC. Notice that PCSrc is now a derived signal, rather than one coming
directly from the control unit. Thus we drop the signal name in subsequent figures.
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1. The instruction is fetched, and the PC is incremented. 

2. Two registers, $t2 and $t3, are read from the register file, and the main
control unit computes the setting of the control lines during this step also. 

3. The ALU operates on the data read from the register file, using the function
code (bits 5:0, which is the funct field, of the instruction) to generate the
ALU function. 

4. The result from the ALU is written into the register file using bits 15:11 of
the instruction to select the destination register ($t1). 

Similarly, we can illustrate the execution of a load word, such as 

lw $t1, offset($t2)

in a style similar to Figure 5.19. Figure 5.20 on page 310 shows the active func-
tional units and asserted control lines for a load. We can think of a load instruc-
tion as operating in five steps (similar to the R-type executed in four):

1. An instruction is fetched from the instruction memory, and the PC is incre-
mented.

2. A register ($t2) value is read from the register file.

3. The ALU computes the sum of the value read from the register file and the
sign-extended, lower 16 bits of the instruction (offset).

4. The sum from the ALU is used as the address for the data memory.

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUOp0

R-format 1 0 0 1 0 0 0 1 0

lw 0 1 1 1 1 0 0 0 0

sw X 1 X 0 0 1 0 0 0

beq X 0 X 0 0 0 1 0 1

FIGURE 5.18 The setting of the control lines is completely determined by the opcode fields of the instruction. The first row of
the table corresponds to the R-format instructions (add, sub, and, or, and slt). For all these instructions, the source register fields are rs and rt,
and the destination register field is rd; this defines how the signals ALUSrc and RegDst are set. Furthermore, an R-type instruction writes a register
(RegWrite = 1), but neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced with PC + 4; oth-
erwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The ALUOp field for R-type instructions is set to 10 to indi-
cate that the ALU control should be generated from the funct field. The second and third rows of this table give the control signal settings for lw and
sw. These ALUSrc and ALUOp fields are set to perform the address calculation. The MemRead and MemWrite are set to perform the memory access.
Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt register. The branch instruction is similar to an R-format
operation, since it sends the rs and rt registers to the ALU. The ALUOp field for branch is set for a subtract (ALU control = 01), which is used to test for
equality. Notice that the MemtoReg field is irrelevant when the RegWrite signal is 0: since the register is not being written, the value of the data on the
register data write port is not used. Thus, the entry MemtoReg in the last two rows of the table is replaced with X for don’t care. Don’t cares can also be
added to RegDst when RegWrite is 0. This type of don’t care must be added by the designer, since it depends on knowledge of how the datapath works.
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5. The data from the memory unit is written into the register file; the register
destination is given by bits 20:16 of the instruction ($t1) . 

Finally, we can show the operation of the branch-on-equal instruction, such as
beq $t1,$t2,offset, in the same fashion. It operates much like an R-format

FIGURE 5.19 The datapath in operation for an R-type instruction such as add $t1,$t2,$t3. The control lines, datapath units, and
connections that are active are highlighted. 
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instruction, but the ALU output is used to determine whether the PC is written with
PC + 4 or the branch target address. Figure 5.21 shows the four steps in execution:

1. An instruction is fetched from the instruction memory, and the PC is incre-
mented.

2. Two registers, $t1 and $t2, are read from the register file.

FIGURE 5.20 The datapath in operation for a load instruction. The control lines, datapath units, and connections that are active are high-
lighted. A store instruction would operate very similarly. The main difference would be that the memory control would indicate a write rather than a read,
the second register value read would be used for the data to store, and the operation of writing the data memory value to the register file would not occur.
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3. The ALU performs a subtract on the data values read from the register file.
The value of PC + 4 is added to the sign-extended, lower 16 bits of the
instruction (offset) shifted left by two; the result is the branch target
address.

4. The Zero result from the ALU is used to decide which adder result to store
into the PC.

FIGURE 5.21 The datapath in operation for a branch equal instruction. The control lines, datapath units, and connections that are
active are highlighted. After using the register file and ALU to perform the compare, the Zero output is used to select the next program counter from
between the two candidates.
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In the next section, we will examine machines that are truly sequential, namely,
those in which each of these steps is a distinct clock cycle. 

Finalizing the Control
Now that we have seen how the instructions operate in steps, let’s continue with
the control implementation. The control function can be precisely defined using
the contents of Figure 5.18 on page 308. The outputs are the control lines, and the
input is the 6-bit opcode field, Op [5:0]. Thus, we can create a truth table for each
of the outputs based on the binary encoding of the opcodes.

Figure 5.22 shows the logic in the control unit as one large truth table that
combines all the outputs and that uses the opcode bits as inputs. It completely
specifies the control function, and we can implement it directly in gates in an
automated fashion. We show this final step in Section C.2 in  Appendix C.

Input or output Signal name R-format lw sw beq

Inputs Op5 0 1 1 0
Op4 0 0 0 0
Op3 0 0 1 0
Op2 0 0 0 1
Op1 0 1 1 0
Op0 0 1 1 0

Outputs RegDst 1 0 X X
ALUSrc 0 1 1 0
MemtoReg 0 1 X X
RegWrite 1 1 0 0
MemRead 0 1 0 0
MemWrite 0 0 1 0
Branch 0 0 0 1
ALUOp1 1 0 0 0
ALUOp0 0 0 0 1

FIGURE 5.22 The control function for the simple single-cycle implementation is com-
pletely specified by this truth table. The top half of the table gives the combinations of input signals
that correspond to the four opcodes that determine the control output settings. (Remember that Op [5:0]
corresponds to bits 31:26 of the instruction, which is the op field.) The bottom portion of the table gives the
outputs. Thus, the output RegWrite is asserted for two different combinations of the inputs. If we consider
only the four opcodes shown in this table, then we can simplify the truth table by using don’t cares in the
input portion. For example, we can detect an R-format instruction with the expression Op5 • Op2, since
this is sufficient to distinguish the R-format instructions from lw, sw, and beq. We do not take advantage
of this simplification, since the rest of the MIPS opcodes are used in a full implementation. 

single-cycle 
implementation Also called 
single clock cycle implementa-
tion. An implementation in 
which an instruction is executed 
in one clock cycle. 
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Now, let’s add the jump instruction to show how the basic datapath and con-
trol can be extended to handle other instructions in the instruction set.   

Implementing Jumps

Figure 5.17 on page 307 shows the implementation of many of the instruc-
tions we looked at in Chapter 2. One class of instructions missing is that of
the jump instruction. Extend the datapath and control of Figure 5.17 to in-
clude the jump instruction. Describe how to set any new control lines.

The jump instruction looks somewhat like a branch instruction but com-
putes the target PC differently and is not conditional. Like a branch, the low-
order 2 bits of a jump address are always 00two. The next lower 26 bits of this
32-bit address come from the 26-bit immediate field in the instruction, as
shown in Figure 5.23. The upper 4 bits of the address that should replace the
PC come from the PC of the jump instruction plus 4. Thus, we can imple-
ment a jump by storing into the PC the concatenation of

■ the upper 4 bits of the current PC + 4 (these are bits 31:28 of the se-
quentially following instruction address)

■ the 26-bit immediate field of the jump instruction

■ the bits 00two

Figure 5.24 shows the addition of the control for jump added to Figure 5.17.
An additional multiplexor is used to select the source for the new PC value,
which is either the incremented PC (PC + 4), the branch target PC, or the
jump target PC. One additional control signal is needed for the additional
multiplexor. This control signal, called Jump, is asserted only when the in-
struction is a jump—that is, when the opcode is 2.

Field 000010 address
Bit positions 31:26 25:0

FIGURE 5.23 Instruction format for the jump instruction (opcode = 2). The destination
address for a jump instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the
26-bit address field in the jump instruction and adding 00 as the 2 low-order bits.

EXAMPLE

ANSWER
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Why a Single-Cycle Implementation Is Not Used Today

Although the single-cycle design will work correctly, it would not be used in modern
designs because it is inefficient. To see why this is so, notice that the clock cycle must
have the same length for every instruction in this single-cycle design, and the CPI

FIGURE 5.24 The simple control and datapath are extended to handle the jump instruction. An additional multiplexor (at the
upper right) is used to choose between the jump target and either the branch target or the sequential instruction following this one. This multiplexor
is controlled by the jump control signal. The jump target address is obtained by shifting the lower 26 bits of the jump instruction left 2 bits, effectively
adding 00 as the low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 32-bit address. 
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(see Chapter 4) will therefore be 1. Of course, the clock cycle is determined by the
longest possible path in the machine. This path is almost certainly a load instruc-
tion, which uses five functional units in series: the instruction memory, the register
file, the ALU, the data memory, and the register file. Although the CPI is 1, the over-
all performance of a single-cycle implementation is not likely to be very good, since
several of the instruction classes could fit in a shorter clock cycle. 

Performance of Single-Cycle Machines

Assume that the operation times for the major functional units in this imple-
mentation are the following:

■ Memory units: 200 picoseconds (ps)

■ ALU and adders: 100 ps

■ Register file (read or write): 50 ps

Assuming that the multiplexors, control unit, PC accesses, sign extension
unit, and wires have no delay, which of the following implementations would
be faster and by how much?

1. An implementation in which every instruction operates in 1 clock cycle
of a fixed length.

2. An implementation where every instruction executes in 1 clock cycle
using a variable-length clock, which for each instruction is only as long
as it needs to be. (Such an approach is not terribly practical, but it will
allow us to see what is being sacrificed when all the instructions must
execute in a single clock of the same length.)

To compare the performance, assume the following instruction mix: 25%
loads, 10% stores, 45% ALU instructions, 15% branches, and 5% jumps.

Let’s start by comparing the CPU execution times. Recall from Chapter 4 that

Since CPI must be 1, we can simplify this to

EXAMPLE

ANSWER
CPU execution time Instruction count CPI Clock cycle time ××=

CPU execution time Instruction count Clock cycle time ×=
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We need only find the clock cycle time for the two implementations, since the
instruction count and CPI are the same for both implementations. The criti-
cal path for the different instruction classes is as follows:

Using these critical paths, we can compute the required length for each instruc-
tion class:

The clock cycle for a machine with a single clock for all instructions will be
determined by the longest instruction, which is 600 ps. (This timing is ap-
proximate, since our timing model is quite simplistic. In reality, the timing of
modern digital systems is complex.)

A machine with a variable clock will have a clock cycle that varies between
200 ps and 600 ps. We can find the average clock cycle length for a machine
with a variable-length clock using the information above and the instruction
frequency distribution.

Thus, the average time per instruction with a variable clock is

Since the variable clock implementation has a shorter average clock cycle, it is
clearly faster. Let’s find the performance ratio:

Instruction 
class Functional units used by the instruction class

R-type Instruction fetch Register access ALU Register access

Load word Instruction fetch Register access ALU Memory access Register access

Store word Instruction fetch Register access ALU Memory access

Branch Instruction fetch Register access ALU

Jump Instruction fetch

Instruction
class

Instruction
memory

Register
read

ALU
operation

Data
memory

Register
write Total

R-type 200 50 100 00 50 400 ps

Load word 200 50 100 200 50 600 ps

Store word 200 50 100 200 550 ps

Branch 200 50 100 0 350 ps

Jump 200 200 ps

CPU clock cycle 600= 25% 550 10% 400 45% 350 15% 200 5% ×+ ×+ ×+ ×+ ×

447.5 ps=
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The penalty for using the single-cycle design with a fixed clock cycle is signifi-
cant, but might be considered acceptable for this small instruction set. Histori-
cally, early machines with very simple instruction sets did use this
implementation technique. However, if we tried to implement the floating-point
unit or an instruction set with more complex instructions, this single-cycle design
wouldn’t work well at all. An example of this is shown in the For More Practice
Exercise 5.4. 

Because we must assume that the clock cycle is equal to the worst-case delay for
all instructions, we can’t use implementation techniques that reduce the delay of
the common case but do not improve the worst-case cycle time. A single-cycle
implementation thus violates our key design principle of making the common
case fast. In addition, in this single-cycle implementation, each functional unit
can be used only once per clock; therefore, some functional units must be dupli-
cated, raising the cost of the implementation. A single-cycle design is inefficient
both in its performance and in its hardware cost!

We can avoid these difficulties by using implementation techniques that have a
shorter clock cycle—derived from the basic functional unit delays—and that
require multiple clock cycles for each instruction. The next section explores this
alternative implementation scheme. In Chapter 6, we’ll look at another imple-
mentation technique, called pipelining, that uses a datapath very similar to the
single-cycle datapath, but is much more efficient. Pipelining gains efficiency by
overlapping the execution of multiple instructions, increasing hardware utiliza-
tion and improving performance. For those readers interested primarily in the
high-level concepts used in processors, the material of this section is sufficient to
read the introductory sections of Chapter 6 and understand the basic functional-

The variable clock implementation would be 1.34 times faster. Unfortunately,
implementing a variable-speed clock for each instruction class is extremely
difficult, and the overhead for such an approach could be larger than any ad-
vantage gained. As we will see in the next section, an alternative is to use a
shorter clock cycle that does less work and then vary the number of clock cy-
cles for the different instruction classes.

CPU performancevariable clock

CPU performancesingle clock

-----------------------------------------------------------------
CPU execution timesingle clock

CPU execution timevariable clock

----------------------------------------------------------------------=

IC CPU clock cycle × single clock

IC CPU clock cycle × variable clock

------------------------------------------------------------------------
CPU clock cyclesingle clock

CPU clock cyclevariable clock

------------------------------------------------------------=
 ⎝ ⎠

⎛ ⎞=

600
447.5
------------= 1.34=
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ity of a pipelined processor. For those, who want to understand how the hardware
really implements the control, forge ahead!

Check
Yourself

Look at the control signal in Figure 5.22 on page 312. Can any control signal in
the figure be replaced by the inverse of another? (Hint: Take into account the don’t
cares.) If so, can you use one signal for the other without adding an inverter?

In an earlier example, we broke each instruction into a series of steps corresponding
to the functional unit operations that were needed. We can use these steps to create a
multicycle implementation. In a multicycle implementation, each step in the exe-
cution will take 1 clock cycle. The multicycle implementation allows a functional
unit to be used more than once per instruction, as long as it is used on different
clock cycles. This sharing can help reduce the amount of hardware required. The
ability to allow instructions to take different numbers of clock cycles and the ability
to share functional units within the execution of a single instruction are the major
advantages of a multicycle design. Figure 5.25 shows the abstract version of the mul-

5.5 A Multicycle Implementation 5.5

multicycle 
implementation Also called 
multiple clock cycle implemen-
tation. An implementation in 
which an instruction is executed 
in multiple clock cycles.

FIGURE 5.25 The high-level view of the multicycle datapath. This picture shows the key elements of the
datapath: a shared memory unit, a single ALU shared among instructions, and the connections among these shared units. The
use of shared functional units requires the addition or widening of multiplexors as well as new temporary registers that hold
data between clock cycles of the same instruction. The additional registers are the Instruction register (IR), the Memory data
register (MDR), A, B, and ALUOut.
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ticycle datapath. If we compare Figure 5.25 to the datapath for the single-cycle ver-
sion in Figure 5.11 on page 300, we can see the following differences:

 

■ A single memory unit is used for both instructions and data.

 

■ There is a single ALU, rather than an ALU and two adders.
 

■ One or more registers are added after every major functional unit to hold
the output of that unit until the value is used in a subsequent clock cycle. 

At the end of a clock cycle, all data that is used in subsequent clock cycles must
be stored in a state element. Data used by subsequent instructions in a later clock
cycle is stored into one of the programmer-visible state elements: the register file,
the PC, or the memory. In contrast, data used by the same instruction in a later
cycle must be stored into one of these additional registers. 

Thus, the position of the additional registers is determined by the two factors:
what combinational units will fit in one clock cycle and what data are needed in
later cycles implementing the instruction. In this multicycle design, we assume
that the clock cycle can accommodate at most one of the following operations: a
memory access, a register file access (two reads or one write), or an ALU opera-
tion. Hence, any data produced by one of these three functional units (the mem-
ory, the register file, or the ALU) must be saved, into a temporary register for use
on a later cycle. If it were not saved then the possibility of a timing race could
occur, leading to the use of an incorrect value. 

The following temporary registers are added to meet these requirements: 

 

■ The Instruction register (IR) and the Memory data register (MDR) are
added to save the output of the memory for an instruction read and a data
read, respectively. Two separate registers are used, since, as will be clear
shortly, both values are needed during the same clock cycle. 

 

■ The A and B registers are used to hold the register operand values read from
the register file.

 

■ The ALUOut register holds the output of the ALU. 

All the registers except the IR hold data only between a pair of adjacent clock
cycles and will thus not need a write control signal. The IR needs to hold the
instruction until the end of execution of that instruction, and thus will require a
write control signal. This distinction will become more clear when we show the
individual clock cycles for each instruction. 

Because several functional units are shared for different purposes, we need
both to add multiplexors and to expand existing multiplexors. For example, since
one memory is used for both instructions and data, we need a multiplexor to
select between the two sources for a memory address, namely, the PC (for instruc-
tion access) and ALUOut (for data access). 
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Replacing the three ALUs of the single-cycle datapath by a single ALU means that
the single ALU must accommodate all the inputs that used to go to the three differ-
ent ALUs. Handling the additional inputs requires two changes to the datapath: 

1. An additional multiplexor is added for the first ALU input. The multiplexor
chooses between the A register and the PC.

2. The multiplexor on the second ALU input is changed from a two-way to a
four-way multiplexor. The two additional inputs to the multiplexor are the
constant 4 (used to increment the PC) and the sign-extended and shifted
offset field (used in the branch address computation). 

Figure  5.26 shows the details of the datapath with these additional multiplex-
ors. By introducing a few registers and multiplexors, we are able to reduce the
number of memory units from two to one and eliminate two adders. Since regis-
ters and multiplexors are fairly small compared to a memory unit or ALU, this
could yield a substantial reduction in the hardware cost.  

FIGURE 5.26 Multicycle datapath for MIPS handles the basic instructions. Although this datapath supports normal incrementing of the
PC, a few more connections and a multiplexor will be needed for branches and jumps; we will add these shortly. The additions versus the single-clock
datapath include several registers (IR, MDR, A, B, ALUOut), a multiplexor for the memory address, a multiplexor for the top ALU input, and expanding
the multiplexor on the bottom ALU input into a four-way selector. These small additions allow us to remove two adders and a memory unit. 
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Because the datapath shown in Figure 5.26 takes multiple clock cycles per
instruction, it will require a different set of control signals. The programmer-visible
state units (the PC, the memory, and the registers) as well as the IR will need write
control signals. The memory will also need a read signal. We can use the ALU con-
trol unit from the single-cycle datapath (see Figure 5.13 and  Appendix C) to
control the ALU here as well. Finally, each of the two-input multiplexors requires a
single control line, while the four-input multiplexor requires two control lines.
Figure 5.27 shows the datapath of Figure 5.26 with these control lines added. 

The multicycle datapath still requires additions to support branches and
jumps; after these additions, we will see how the instructions are sequenced and
then generate the datapath control.

With the jump instruction and branch instruction, there are three possible
sources for the value to be written into the PC:

1. The output of the ALU, which is the value PC + 4 during instruction fetch.
This value should be stored directly into the PC. 

2. The register ALUOut, which is where we will store the address of the branch
target after it is computed. 

3. The lower 26 bits of the Instruction register (IR) shifted left by two and
concatenated with the upper 4 bits of the incremented PC, which is the
source when the instruction is a jump.

As we observed when we implemented the single-cycle control, the PC is
written both unconditionally and conditionally. During a normal increment
and for jumps, the PC is written unconditionally. If the instruction is a condi-
tional branch, the incremented PC is replaced with the value in ALUOut only if
the two designated registers are equal. Hence, our implementation uses two
separate control signals: PCWrite, which causes an unconditional write of the
PC, and PCWriteCond, which causes a write of the PC if the branch condition
is also true. 

We need to connect these two control signals to the PC write control. Just as we
did in the single-cycle datapath, we will use a few gates to derive the PC write con-
trol signal from PCWrite, PCWriteCond, and the Zero signal of the ALU, which is
used to detect if the two register operands of a 

 

beq are equal. To determine
whether the PC should be written during a conditional branch, we AND together
the Zero signal of the ALU with the PCWriteCond. The output of this AND gate is
then ORed with PCWrite, which is the unconditional PC write signal. The output
of this OR gate is connected to the write control signal for the PC. 

Figure 5.28 shows the complete multicycle datapath and control unit, includ-
ing the additional control signals and multiplexor for implementing the PC
updating. 



322 Chapter 5 The Processor: Datapath and Control

Before examining the steps to execute each instruction, let us informally exam-
ine the effect of all the control signals (just as we did for the single-cycle design in
Figure 5.16 on page 306). Figure 5.29 shows what each control signal does when
asserted and deasserted.  

Elaboration: To reduce the number of signal lines interconnecting the functional
units, designers can use shared buses. A shared bus is a set of lines that connect mul-
tiple units; in most cases, they include multiple sources that can place data on the bus

FIGURE 5.27 The multicycle datapath from Figure 5.26 with the control lines shown. The signals ALUOp and ALUSrcB are 2-bit
control signals, while all the other control lines are 1-bit signals. Neither register A nor B requires a write signal, since their contents are only read on
the cycle immediately after it is written. The memory data register has been added to hold the data from a load when the data returns from memory.
Data from a load returning from memory cannot be written directly into the register file since the clock cycle cannot accommodate the time required
for both the memory access and the register file write. The MemRead signal has been moved to the top of the memory unit to simplify the figures. The
full set of datapaths and control lines for branches will be added shortly.
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and multiple readers of the value. Just as we reduced the number of functional units for
the datapath, we can reduce the number of buses interconnecting these units by shar-
ing the buses. For example, there are six sources coming to the ALU; however, only two
of them are needed at any one time. Thus, a pair of buses can be used to hold values
that are being sent to the ALU. Rather than placing a large multiplexor in front of the

FIGURE 5.28 The complete datapath for the multicycle implementation together with the necessary control lines. The con-
trol lines of Figure 5.27 are attached to the control unit, and the control and datapath elements needed to effect changes to the PC are included. The
major additions from Figure 5.27 include the multiplexor used to select the source of a new PC value; gates used to combine the PC write signals; and
the control signals PCSource, PCWrite, and PCWriteCond. The PCWriteCond signal is used to decide whether a conditional branch should be taken.
Support for jumps is included. 
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ALU, a designer can use a shared bus and then ensure that only one of the sources is
driving the bus at any point. Although this saves signal lines, the same number of con-
trol lines will be needed to control what goes on the bus. The major drawback to using
such bus structures is a potential performance penalty, since a bus is unlikely to be as
fast as a point-to-point connection.

Actions of the 1-bit control signals

Signal name Effect when deasserted Effect when asserted

RegDst The register file destination number for the Write 
register comes from the rt field.

The register file destination number for the Write register comes from the 
rd field.

RegWrite None. The general-purpose register selected by the Write register number is 
written with the value of the Write data input. 

ALUSrcA The first ALU operand is the PC. The first ALU operand comes from the A register. 

MemRead None. Content of memory at the location specified by the Address input is put 
on Memory data output. 

MemWrite None. Memory contents at the location specified by the Address input is 
replaced by value on Write data input.

MemtoReg The value fed to the register file Write data input 
comes from ALUOut.

The value fed to the register file Write data input comes from the MDR.

IorD The PC is used to supply the address to the 
memory unit. 

ALUOut is used to supply the address to the memory unit. 

IRWrite None. The output of the memory is written into the IR.

PCWrite None. The PC is written; the source is controlled by PCSource.

PCWriteCond None. The PC is written if the Zero output from the ALU is also active.

Actions of the 2-bit control signals

Signal name Value (binary) Effect

ALUOp 00 The ALU performs an add operation.

01 The ALU performs a subtract operation.

10 The funct field of the instruction determines the ALU operation. 

ALUSrcB 00 The second input to the ALU comes from the B register.

01 The second input to the ALU is the constant 4.

10 The second input to the ALU is the sign-extended, lower 16 bits of the IR.

11 The second input to the ALU is the sign-extended, lower 16 bits of the IR shifted left
2 bits.

PCSource 00 Output of the ALU (PC + 4) is sent to the PC for writing.

01 The contents of ALUOut (the branch target address) are sent to the PC for writing.

10 The jump target address (IR[25:0] shifted left 2 bits and concatenated with
PC + 4[31:28]) is sent to the PC for writing.

FIGURE 5.29 The action caused by the setting of each control signal in Figure 5.28 on page 323. The top table describes the 1-bit
control signals, while the bottom table describes the 2-bit signals. Only those control lines that affect multiplexors have an action when they are deasserted.
This information is similar to that in Figure 5.16 on page 306 for the single-cycle datapath, but adds several new control lines (IRWrite, PCWrite,
PCWriteCond, ALUSrcB, and PCSource) and removes control lines that are no longer used or have been replaced (PCSrc, Branch, and Jump).
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Breaking the Instruction Execution into Clock Cycles

Given the datapath in Figure 5.28, we now need to look at what should happen in
each clock cycle of the multicycle execution, since this will determine what addi-
tional control signals may be needed, as well as the setting of the control signals. Our
goal in breaking the execution into clock cycles should be to maximize performance.
We can begin by breaking the execution of any instruction into a series of steps, each
taking one clock cycle, attempting to keep the amount of work per cycle roughly
equal. For example, we will restrict each step to contain at most one ALU operation,
or one register file access, or one memory access. With this restriction, the clock
cycle could be as short as the longest of these operations. 

Recall that at the end of every clock cycle any data values that will be needed on
a subsequent cycle must be stored into a register, which can be either one of the
major state elements (e.g., the PC, the register file, or the memory), a temporary
register written on every clock cycle (e.g., A, B, MDR, or ALUOut), or a tempo-
rary register with write control (e.g., IR). Also remember that because our design
is edge-triggered, we can continue to read the current value of a register; the new
value does not appear until the next clock cycle.

In the single-cycle datapath, each instruction uses a set of datapath elements to
carry out its execution. Many of the datapath elements operate in series, using the
output of another element as an input. Some datapath elements operate in paral-
lel; for example, the PC is incremented and the instruction is read at the same
time. A similar situation exists in the multicycle datapath. All the operations listed
in one step occur in parallel within 1 clock cycle, while successive steps operate in
series in different clock cycles. The limitation of one ALU operation, one memory
access, and one register file access determines what can fit in one step. 

Notice that we distinguish between reading from or writing into the PC or one
of the stand-alone registers and reading from or writing into the register file. In
the former case, the read or write is part of a clock cycle, while reading or writing
a result into the register file takes an additional clock cycle. The reason for this dis-
tinction is that the register file has additional control and access overhead com-
pared to the single stand-alone registers. Thus, keeping the clock cycle short
motivates dedicating separate clock cycles for register file accesses. 

The potential execution steps and their actions are given below. Each MIPS
instruction needs from three to five of these steps: 

1. Instruction fetch step
Fetch the instruction from memory and compute the address of the next sequen-
tial instruction: 

IR <= Memory[PC]; 
PC <= PC + 4;
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Operation: Send the PC to the memory as the address, perform a read, and write
the instruction into the Instruction register (IR), where it will be stored. Also,
increment the PC by 4. We use the symbol “<=” from Verilog; it indicates that all
right-hand sides are evaluated and then all assignments are made, which is effec-
tively how the hardware executes during the clock cycle. 

To implement this step, we will need to assert the control signals MemRead and
IRWrite, and set IorD to 0 to select the PC as the source of the address. We also
increment the PC by 4, which requires setting the ALUSrcA signal to 0 (sending the
PC to the ALU), the ALUSrcB signal to 01 (sending 4 to the ALU), and ALUOp to 00
(to make the ALU add). Finally, we will also want to store the incremented instruc-
tion address back into the PC, which requires setting PC source to 00 and setting
PCWrite. The increment of the PC and the instruction memory access can occur in
parallel. The new value of the PC is not visible until the next clock cycle. (The incre-
mented PC will also be stored into ALUOut, but this action is benign.)

2. Instruction decode and register fetch step
In the previous step and in this one, we do not yet know what the instruction is, so
we can perform only actions that are either applicable to all instructions (such as
fetching the instruction in step 1) or are not harmful, in case the instruction isn’t
what we think it might be. Thus, in this step we can read the two registers indi-
cated by the rs and rt instruction fields, since it isn’t harmful to read them even if
it isn’t necessary. The values read from the register file may be needed in later
stages, so we read them from the register file and store the values into the tempo-
rary registers A and B. 

We will also compute the branch target address with the ALU, which also is not
harmful because we can ignore the value if the instruction turns out not to be a
branch. The potential branch target is saved in ALUOut. 

Performing these “optimistic” actions early has the benefit of decreasing the
number of clock cycles needed to execute an instruction. We can do these optimis-
tic actions early because of the regularity of the instruction formats. For
instance, if the instruction has two register inputs, they are always in the rs and rt
fields, and if the instruction is a branch, the offset is always the low-order 16 bits:

A <= Reg[IR[25:21]]; 
B <= Reg[IR[20:16]];
ALUOut <= PC + (sign-extend (IR[15-0]) << 2);

Operation: Access the register file to read registers rs and rt and store the results
into the registers A and B. Since A and B are overwritten on every cycle, the regis-
ter file can be read on every cycle with the values stored into A and B. This step
also computes the branch target address and stores the address in ALUOut, where
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it will be used on the next clock cycle if the instruction is a branch. This requires
setting ALUSrcA to 0 (so that the PC is sent to the ALU), ALUSrcB to the value 11
(so that the sign-extended and shifted offset field is sent to the ALU), and ALUOp
to 00 (so the ALU adds). The register file accesses and computation of branch tar-
get occur in parallel. 

After this clock cycle, determining the action to take can depend on the
instruction contents.

3. Execution, memory address computation, or branch completion
This is the first cycle during which the datapath operation is determined by the
instruction class. In all cases, the ALU is operating on the operands prepared in
the previous step, performing one of four functions, depending on the instruction
class. We specify the action to be taken depending on the instruction class:

Memory reference:

ALUOut <= A + sign-extend (IR[15:0]);

Operation: The ALU is adding the operands to form the memory address. This
requires setting ALUSrcA to 1 (so that the first ALU input is register A) and setting
ALUSrcB to 10 (so that the output of the sign extension unit is used for the second
ALU input). The ALUOp signals will need to be set to 00 (causing the ALU to add). 

Arithmetic-logical instruction (R-type):

ALUOut <= A op B;
Operation: The ALU is performing the operation specified by the function code
on the two values read from the register file in the previous cycle. This requires
setting ALUSrcA = 1 and setting ALUSrcB = 00, which together cause the registers
A and B to be used as the ALU inputs. The ALUOp signals will need to be set to 10
(so that the funct field is used to determine the ALU control signal settings).

Branch:

if (A == B) PC <= ALUOut;

Operation: The ALU is used to do the equal comparison between the two registers
read in the previous step. The Zero signal out of the ALU is used to determine whether
or not to branch. This requires setting ALUSrcA = 1 and setting ALUSrcB = 00 (so that
the register file outputs are the ALU inputs). The ALUOp signals will need to be set to
01 (causing the ALU to subtract) for equality testing. The PCWriteCond signal will
need to be asserted to update the PC if the Zero output of the ALU is asserted. By set-
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ting PCSource to 01, the value written into the PC will come from ALUOut, which
holds the branch target address computed in the previous cycle. For conditional
branches that are taken, we actually write the PC twice: once from the output of the
ALU (during the Instruction decode/register fetch) and once from ALUOut (during
the Branch completion step). The value written into the PC last is the one used for the
next instruction fetch.

Jump:

# {x, y} is the Verilog notation for concatenation of 
bit fields x and y
PC <= {PC [31:28], (IR[25:0]],2'b00)}; 

Operation: The PC is replaced by the jump address. PCSource is set to direct the
jump address to the PC, and PCWrite is asserted to write the jump address into
the PC. 

4. Memory access or R-type instruction completion step
During this step, a load or store instruction accesses memory and an arithmetic-
logical instruction writes its result. When a value is retrieved from memory, it is
stored into the memory data register (MDR), where it must be used on the next
clock cycle.

Memory reference:

MDR <= Memory [ALUOut];

or

Memory [ALUOut] <= B;

Operation: If the instruction is a load, a data word is retrieved from memory and
is written into the MDR. If the instruction is a store, then the data is written into
memory. In either case, the address used is the one computed during the previous
step and stored in ALUOut. For a store, the source operand is saved in B. (B is
actually read twice, once in step 2 and once in step 3. Luckily, the same value is
read both times, since the register number—which is stored in IR and used to read
from the register file—does not change.) The signal MemRead (for a load) or
MemWrite (for store) will need to be asserted. In addition, for loads and stores,
the signal IorD is set to 1 to force the memory address to come from the ALU,
rather than the PC. Since MDR is written on every clock cycle, no explicit control
signal need be asserted.
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Arithmetic-logical instruction (R-type):

Reg[IR[15:11]] <= ALUOut;

Operation: Place the contents of ALUOut, which corresponds to the output of the
ALU operation in the previous cycle, into the Result register. The signal RegDst
must be set to 1 to force the rd field (bits 15:11) to be used to select the register file
entry to write. RegWrite must be asserted, and MemtoReg must be set to 0 so that
the output of the ALU is written, as opposed to the memory data output. 

5. Memory read completion step
During this step, loads complete by writing back the value from memory.

Load:

Reg[IR[20:16]] <= MDR;

Operation: Write the load data, which was stored into MDR in the previous cycle,
into the register file. To do this, we set MemtoReg = 1 (to write the result from
memory), assert RegWrite (to cause a write), and we make RegDst = 0 to choose
the rt (bits 20:16) field as the register number. 

This five-step sequence is summarized in Figure 5.30. From this sequence we
can determine what the control must do on each clock cycle.  

Step name
Action for R-type 

instructions
Action for memory-

reference instructions
Action for
branches

Action for
jumps

Instruction fetch IR <= Memory[PC]
PC <= PC + 4

Instruction decode/register fetch A <= Reg [IR[25:21]] 
B <= Reg [IR[20:16]] 

ALUOut <= PC + (sign-extend (IR[15:0]) << 2)

Execution, address computation, 
branch/jump completion

ALUOut <= A op B ALUOut <= A + sign-extend
(IR[15:0])

if (A == B) 
PC <= ALUOut

PC <= {PC [31:28], 
(IR[25:0]],2'b00)}

Memory access or R-type 
completion

Reg [IR[15:11]] <= 
ALUOut

Load: MDR <= Memory[ALUOut] 
or

Store: Memory [ALUOut] <= B

Memory read completion Load: Reg[IR[20:16]] <= MDR

FIGURE 5.30 Summary of the steps taken to execute any instruction class. Instructions take from three to five execution steps. The
first two steps are independent of the instruction class. After these steps, an instruction takes from one to three more cycles to complete, depending on
the instruction class. The empty entries for the Memory access step or the Memory read completion step indicate that the particular instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as soon as the current instruction completes, so these cycles are
not idle or wasted. As mentioned earlier, the register file actually reads every cycle, but as long as the IR does not change, the values read from the reg-
ister file are identical. In particular, the value read into register B during the Instruction decode stage, for a branch or R-type instruction, is the same as
the value stored into B during the Execution stage and then used in the Memory access stage for a store word instruction.
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Defining the Control 

Now that we have determined what the control signals are and when they must be
asserted, we can implement the control unit. To design the control unit for the
single-cycle datapath, we used a set of truth tables that specified the setting of the
control signals based on the instruction class. For the multicycle datapath, the
control is more complex because the instruction is executed in a series of steps.
The control for the multicycle datapath must specify both the signals to be set in
any step and the next step in the sequence. 

In this subsection and in  Section 5.7, we will look at two different techniques
to specify the control. The first technique is based on finite state machines that are
usually represented graphically. The second technique, called microprogramming,
uses a programming representation for control. Both of these techniques repre-
sent the control in a form that allows the detailed implementation—using gates,
ROMs, or PLAs—to be synthesized by a CAD system. In this chapter, we will
focus on the design of the control and its representation in these two forms.

Section 5.8 shows how hardware design languages are used to design modern
processors with examples of both the multicycle datapath and the finite state control.
In modern digital systems design, the final step of taking a hardware description to
actual gates is handled by logic and datapath synthesis tools. Appendix C shows how
this process operates by translating the multicycle control unit to a detailed hardware
implementation. The key ideas of control can be grasped from this chapter without
examining the material in either  Section 5.8 or Appendix C. However, if you
want to actually do some hardware design, Section 5.9 is useful, and  Appendix C
can show you what the implementations are likely to look like at the gate level.

Given this implementation, and the knowledge that each state requires 1 clock
cycle, we can find the CPI for a typical instruction mix. 

CPI in a Multicycle CPU

Using the SPECINT2000 instruction mix shown in Figure 3.26, what is the
CPI, assuming that each state in the multicycle CPU requires 1 clock cycle?

The mix is 25% loads (1% load byte + 24% load word), 10% stores (1% store
byte + 9% store word), 11% branches (6% beq, 5% bne), 2% jumps (1%
jal + 1% jr), and 52% ALU (all the rest of the mix, which we assume to be
ALU instructions). From Figure 5.30 on page 329, the number of clock cycles
for each instruction class is the following:

microprogram A symbolic 
representation of control in the 
form of instructions, called 
microinstructions, that are exe-
cuted on a simple micromachine.

EXAMPLE

ANSWER
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The first method we use to specify the multicycle control is a finite state
machine. A finite state machine consists of a set of states and directions on how to
change states. The directions are defined by a next-state function, which maps the
current state and the inputs to a new state. When we use a finite state machine for
control, each state also specifies a set of outputs that are asserted when the
machine is in that state. The implementation of a finite state machine usually
assumes that all outputs that are not explicitly asserted are deasserted. Similarly,
the correct operation of the datapath depends on the fact that a signal that is not
explicitly asserted is deasserted, rather than acting as a don’t care. For example,
the RegWrite signal should be asserted only when a register file entry is to be writ-
ten; when it is not explicitly asserted, it must be deasserted.

■ Loads: 5

■ Stores: 4

■ ALU instructions: 4

■ Branches: 3

■ Jumps: 3

The CPI is given by the following:

The ratio

is simply the instruction frequency for the instruction class i. We can there-
fore substitute to obtain

This CPI is better than the worst-case CPI of 5.0 when all the instructions
take the same number of clock cycles. Of course, overheads in both designs
may reduce or increase this difference. The multicycle design is probably also
more cost-effective, since it uses fewer separate components in the datapath. 

CPI CPU clock cycles
Instruction count
--------------------------------------------

Instruction count ∑ i
CPIi ×

Instruction count
--------------------------------------------------------------------= =

Instruction counti

Instruction count
------------------------------------------- CPIi 

× ∑=

Instruction counti

Instruction count
----------------------------------------------------------

CPI 0.25 5 0.10 4 0.52 4 0.11 3 0.02 3×+×+×+×+× 4.12= =

finite state machine A sequen-
tial logic function consisting of a 
set of inputs and outputs, a next-
state function that maps the cur-
rent state and the inputs to a new 
state, and an output function 
that maps the current state and 
possibly the inputs to a set of 
asserted outputs.

next-state function A combi-
national function that, given the 
inputs and the current state, 
determines the next state of a 
finite state machine.
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Multiplexor controls are slightly different, since they select one of the inputs
whether they are 0 or 1. Thus, in the finite state machine, we always specify the
setting of all the multiplexor controls that we care about. When we implement the
finite state machine with logic, setting a control to 0 may be the default and thus
may not require any gates. A simple example of a finite state machine appears in
Appendix B, and if you are unfamiliar with the concept of a finite state machine,
you may want to examine Appendix B before proceeding.

The finite state control essentially corresponds to the five steps of execution
shown on pages 325 through 329; each state in the finite state machine will take 1
clock cycle. The finite state machine will consist of several parts. Since the first two
steps of execution are identical for every instruction, the initial two states of the
finite state machine will be common for all instructions. Steps 3 through 5 differ,
depending on the opcode. After the execution of the last step for a particular
instruction class, the finite state machine will return to the initial state to begin
fetching the next instruction. 

Figure 5.31 shows this abstracted representation of the finite state machine. To
fill in the details of the finite state machine, we will first expand the instruction
fetch and decode portion, and then we will show the states (and actions) for the
different instruction classes. 

We show the first two states of the finite state machine in Figure 5.32 using a
traditional graphic representation. We number the states to simplify the explana-
tion, though the numbers are arbitrary. State 0, corresponding to step 1, is the
starting state of the machine. 

The signals that are asserted in each state are shown within the circle represent-
ing the state. The arcs between states define the next state and are labeled with

FIGURE 5.31 The high-level view of the finite state machine control. The first steps are inde-
pendent of the instruction class; then a series of sequences that depend on the instruction opcode are used
to complete each instruction class. After completing the actions needed for that instruction class, the con-
trol returns to fetch a new instruction. Each box in this figure may represent one to several states. The arc
labeled Start marks the state in which to begin when the first instruction is to be fetched. 

Start

Memory access
instructions

(Figure 5.33)

R-type instructions
(Figure 5.34)

Branch instruction
(Figure 5.35)

Jump instruction
(Figure 5.36)

Instruction fetch/decode and register fetch
(Figure 5.32)
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conditions that select a specific next state when multiple next states are possible.
After state 1, the signals asserted depend on the class of instruction. Thus, the
finite state machine has four arcs exiting state 1, corresponding to the four
instruction classes: memory reference, R-type, branch on equal, and jump. This
process of branching to different states depending on the instruction is called
decoding, since the choice of the next state, and hence the actions that follow,
depend on the instruction class. 

FIGURE 5.32 The instruction fetch and decode portion of every instruction is identi-
cal. These states correspond to the top box in the abstract finite state machine in Figure 5.31. In the first
state we assert two signals to cause the memory to read an instruction and write it into the Instruction
register (MemRead and IRWrite), and we set IorD to 0 to choose the PC as the address source. The signals
ALUSrcA, ALUSrcB, ALUOp, PCWrite, and PCSource are set to compute PC + 4 and store it into the PC.
(It will also be stored into ALUOut, but never used from there.) In the next state, we compute the branch
target address by setting ALUSrcB to 11 (causing the shifted and sign-extended lower 16 bits of the IR to
be sent to the ALU), setting ALUSrcA to 0 and ALUOp to 00; we store the result in the ALUOut register,
which is written on every cycle. There are four next states that depend on the class of the instruction,
which is known during this state. The control unit input, called Op, is used to determine which of these
arcs to follow. Remember that all signals not explicitly asserted are deasserted; this is particularly impor-
tant for signals that control writes. For multiplexors controls, lack of a specific setting indicates that we
do not care about the setting of the multiplexor.

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

Memory-reference FSM
(Figure 5.33)

R-type FSM
(Figure 5.34)

Branch FSM
(Figure 5.35)

Jump FSM
(Figure 5.36)
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Figure 5.33 shows the portion of the finite state machine needed to implement
the memory-reference instructions. For the memory-reference instructions, the
first state after fetching the instruction and registers computes the memory
address (state 2). To compute the memory address, the ALU input multiplexors
must be set so that the first input is the A register, while the second input is the
sign-extended displacement field; the result is written into the ALUOut register.
After the memory address calculation, the memory should be read or written; this
requires two different states. If the instruction opcode is 

 

lw, then state 3 (corre-

FIGURE 5.33 The finite state machine for controlling memory-reference instructions has
four states. These states correspond to the box labeled “Memory access instructions” in Figure 5.31.
After performing a memory address calculation, a separate sequence is needed for load and for store. The
setting of the control signals ALUSrcA, ALUSrcB, and ALUOp is used to cause the memory address compu-
tation in state 2. Loads require an extra state to write the result from the MDR (where the result is written in
state 3) into the register file.

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

From state 1

(Op = 'LW') or (Op = 'SW')

Memory address computation

Memory
access

MemRead
IorD = 1

MemWrite
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sponding to the step Memory access) does the memory read (MemRead is
asserted). The output of the memory is always written into MDR. If it is 

 

sw, state 5
does a memory write (MemWrite is asserted). In states 3 and 5, the signal IorD is
set to 1 to force the memory address to come from the ALU. After performing a
write, the instruction 

 

sw has completed execution, and the next state is state 0. If
the instruction is a load, however, another state (state 4) is needed to write the
result from the memory into the register file. Setting the multiplexor controls
MemtoReg = 1 and RegDst = 0 will send the loaded value in the MDR to be writ-
ten into the register file, using rt as the register number. After this state, corre-
sponding to the Memory read completion step, the next state is state 0.

To implement the R-type instructions requires two states corresponding to
steps 3 (Execute) and 4 (R-type completion). Figure 5.34 shows this two-state
portion of the finite state machine. State 6 asserts ALUSrcA and sets the ALUSrcB

FIGURE 5.34 R-type instructions can be implemented with a simple two-state finite
state machine. These states correspond to the box labeled “R-type instructions” in Figure 5.31. The first
state causes the ALU operation to occur, while the second state causes the ALU result (which is in ALUOut)
to be written in the register file. The three signals asserted during state 7 cause the contents of ALUOut to be
written into the register file in the entry specified by the rd field of the Instruction register.

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

From state 1

(Op = R-Type)

Execution

RegDst =1
RegWrite

MemtoReg = 0

To state 0
(Figure 5.32)

6

7
R-type completion
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signals to 00; this forces the two registers that were read from the register file to be
used as inputs to the ALU. Setting ALUOp to 10 causes the ALU control unit to
use the function field to set the ALU control signals. In state 7, RegWrite is
asserted to cause the register file to write, RegDst is asserted to cause the rd field to
be used as the register number of the destination, and MemtoReg is deasserted to
select ALUOut as the source of the value to write into the register file. 

For branches, only a single additional state is necessary because they complete
execution during the third step of instruction execution. During this state, the
control signals that cause the ALU to compare the contents of registers A and B
must be set, and the signals that cause the PC to be written conditionally with the
address in the ALUOut register are also set. To perform the comparison requires
that we assert ALUSrcA and set ALUSrcB to 00, and set the ALUOp value to 01
(forcing a subtract). (We use only the Zero output of the ALU, not the result of the
subtraction.) To control the writing of the PC, we assert PCWriteCond and set
PCSource = 01, which will cause the value in the ALUOut register (containing the
branch address calculated in state 1, Figure 5.32 on page 333) to be written into
the PC if the Zero bit out of the ALU is asserted. Figure 5.35 shows this single
state. 

The last instruction class is jump; like branch, it requires only a single state
(shown in Figure 5.36) to complete its execution. In this state, the signal PCWrite
is asserted to cause the PC to be written. By setting PCSource to 10, the  value sup-
plied for writing will be the lower 26 bits of the Instruction register with 00two
added as the low-order bits concatenated with the upper 4 bits of the PC.

We can now put these pieces of the finite state machine together to form a spec-
ification for the control unit, as shown in Figure 5.38. In each state, the signals
that are asserted are shown. The next state depends on the opcode bits of the
instruction, so we label the arcs with a comparison for the corresponding instruc-
tion opcodes. 

A finite state machine can be implemented with a temporary register that holds
the current state and a block of combinational logic that determines both the datap-
ath signals to be asserted as well as the next state. Figure 5.37 shows how such an
implementation might look.  Appendix C describes in detail how the finite state
machine is implemented using this structure. In  Section C.3, the combinational
control logic for the finite state machine of Figure 5.38 is implemented both with a
ROM (read-only memory) and a PLA (programmable logic array). (Also see 
Appendix B for a description of these logic elements.) In the next section of this
chapter, we consider another way to represent control. Both of these techniques are
simply different representations of the same control information. 

Pipelining, which is the subject of Chapter 6, is almost always used to accelerate
the execution of instructions. For simple instructions, pipelining is capable of
achieving the higher clock rate of a multicycle design and a single-cycle CPI of a
single-clock design. In most pipelined processors, however, some instructions
take longer than a single cycle and require multicycle control. Floating point-



5.5 A Multicycle Implementation 337

FIGURE 5.35 The branch instruction requires a single state. The first three outputs that are
asserted cause the ALU to compare the registers (ALUSrcA, ALUSrcB, and ALUOp), while the signals
PCSource and PCWriteCond perform the conditional write if the branch condition is true. Notice that we
do not use the value written into ALUOut; instead, we use only the Zero output of the ALU. The branch tar-
get address is read from ALUOut, where it was saved at the end of state 1.

FIGURE 5.36 The jump instruction requires a single state that asserts two control sig-
nals to write the PC with the lower 26 bits of the Instruction register shifted left 2 bits
and concatenated to the upper 4 bits of the PC of this instruction.
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Branch completion
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(Figure 5.32)
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instructions are one universal example. There are many examples in the IA-32
architecture that require the use of multicycle control. 

Elaboration: The style of finite state machine in Figure 5.37 is called a Moore
machine, after Edward Moore. Its identifying characteristic is that the output depends
only on the current state. For a Moore machine, the box labeled combinational control
logic can be split into two pieces. One piece has the control output and only the state
input, while the other has only the next-state output.

An alternative style of machine is a Mealy machine, named after George Mealy. The
Mealy machine allows both the input and the current state to be used to determine the
output. Moore machines have potential implementation advantages in speed and size
of the control unit. The speed advantages arise because the control outputs, which are
needed early in the clock cycle, do not depend on the inputs, but only on the current
state. In Appendix C, when the implementation of this finite state machine is taken
down to logic gates, the size advantage can be clearly seen.The potential disadvantage
of a Moore machine is that it may require additional states. For example, in situations

FIGURE 5.37 Finite state machine controllers are typically implemented using a block of
combinational logic and a register to hold the current state. The outputs of the combinational
logic are the next-state number and the control signals to be asserted for the current state. The inputs to the
combinational logic are the current state and any inputs used to determine the next state. In this case, the inputs
are the instruction register opcode bits. Notice that in the finite state machine used in this chapter, the outputs
depend only on the current state, not on the inputs. The Elaboration above explains this in more detail.

Combinational
control logic

Outputs

Inputs

State register
Next state

Datapath control outputs

Inputs from instruction
register opcode field
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FIGURE 5.38 The complete finite state machine control for the datapath shown in
Figure 5.28. The labels on the arcs are conditions that are tested to determine which state is the next state;
when the next state is unconditional, no label is given. The labels inside the nodes indicate the output sig-
nals asserted during that state; we always specify the setting of a multiplexor control signal if the correct
operation requires it. Hence, in some states a multiplexor control will be set to 0.
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where there is a one-state difference between two sequences of states, the Mealy
machine may unify the states by making the outputs depend on the inputs.

 

 

Check
Yourself

1. True or false: Since the jump instruction does not depend on the register
values or on computing the branch target address, it can be completed dur-
ing the second state, rather than waiting until the third.

2. True, false, or maybe: The control signal PCWriteCond can be replaced by
PCSource[0].

Control is the most challenging aspect of processor design: it is both the hardest
part to get right and the hardest part to make fast. One of the hardest parts of con-
trol is implementing exceptions and interrupts—events other than branches or
jumps that change the normal flow of instruction execution. An exception is an
unexpected event from within the processor; arithmetic overflow is an example of
an exception. An interrupt is an event that also causes an unexpected change in
control flow but comes from outside of the processor. Interrupts are used by I/O
devices to communicate with the processor, as we will see in Chapter 8. 

Many architectures and authors do not distinguish between interrupts and
exceptions, often using the older name interrupt to refer to both types of events.
We follow the MIPS convention, using the term exception to refer to any unex-
pected change in control flow without distinguishing whether the cause is internal

Understanding
Program

Performance

For a processor with a given clock rate, the relative performance between two code
segments will be determined by the product of the CPI and the instruction count
to execute each segment. As we have seen here, instructions can vary in their CPI,
even for a simple processor. In the next two chapters, we will see that the intro-
duction of pipelining and the use of caches create even larger opportunities for
variation in the CPI. Although many factors that affect the CPI are controlled by
the hardware designer, the programmer, the compiler, and software system dictate
what instructions are executed, and it is this process that determines what the
effective CPI for the program will be. Programmers seeking to improve perfor-
mance must understand the role of CPI and the factors that affect it.

5.6 Exceptions 5.6

exception Also called inter-
rupt. An unscheduled event that 
disrupts program execution; 
used to detect overflow.

interrupt An exception that 
comes from outside of the pro-
cessor. (Some architectures 
use the term interrupt for all 
exceptions.)
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or external; we use the term interrupt only when the event is externally caused.
The Intel IA-32 architecture uses the word interrupt for all these events. 

Interrupts were initially created to handle unexpected events like arithmetic
overflow and to signal requests for service from I/O devices. The same basic
mechanism was extended to handle internally generated exceptions as well. Here
are some examples showing whether the situation is generated internally by the
processor or externally generated:

Many of the requirements to support exceptions come from the specific situa-
tion that causes an exception to occur. Accordingly, we will return to this topic in
Chapter 7, when we discuss memory hierarchies, and in Chapter 8, when we dis-
cuss I/O, and we better understand the motivation for additional capabilities in
the exception mechanism. In this section, we deal with the control implementa-
tion for detecting two types of exceptions that arise from the portions of the
instruction set and implementation that we have already discussed. 

Detecting exceptional conditions and taking the appropriate action is often on the
critical timing path of a machine, which determines the clock cycle time and thus
performance. Without proper attention to exceptions during design of the control
unit, attempts to add exceptions to a complicated implementation can significantly
reduce performance, as well as complicate the task of getting the design correct.

How Exceptions Are Handled

The two types of exceptions that our current implementation can generate are
execution of an undefined instruction and an arithmetic overflow. The basic
action that the machine must perform when an exception occurs is to save the
address of the offending instruction in the exception program counter (EPC) and
then transfer control to the operating system at some specified address. 

The operating system can then take the appropriate action, which may
involve providing some service to the user program, taking some predefined
action in response to an overflow, or stopping the execution of the program
and reporting an error. After performing whatever action is required because
of the exception, the operating system can terminate the program or may con-
tinue its execution, using the EPC to determine where to restart the execution

Type of event From where? MIPS terminology

I/O device request External Interrupt

Invoke the operating system from user program Internal Exception

Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception

Hardware malfunctions Either Exception or interrupt
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of the program. In Chapter 7, we will look more closely at the issue of restart-
ing the execution. 

For the operating system to handle the exception, it must know the reason for
the exception, in addition to the instruction that caused it. There are two main
methods used to communicate the reason for an exception. The method used in
the MIPS architecture is to include a status register (called the Cause register),
which holds a field that indicates the reason for the exception. 

A second method is to use vectored interrupts. In a vectored interrupt, the
address to which control is transferred is determined by the cause of the excep-
tion. For example, to accommodate the two exception types listed above, we
might define the following two exception vector addresses:

The operating system knows the reason for the exception by the address at which
it is initiated. The addresses are separated by 32 bytes or 8 instructions, and the
operating system must record the reason for the exception and may perform some
limited processing in this sequence. When the exception is not vectored, a single
entry point for all exceptions can be used, and the operating system decodes the
status register to find the cause. 

We can perform the processing required for exceptions by adding a few extra
registers and control signals to our basic implementation and by slightly extend-
ing the finite state machine. Let’s assume that we are implementing the exception
system used in the MIPS architecture. (Implementing vectored exceptions is no
more difficult.) We will need to add two additional registers to the datapath:

■ EPC: A 32-bit register used to hold the address of the affected instruction.
(Such a register is needed even when exceptions are vectored.)

■ Cause: A register used to record the cause of the exception. In the MIPS
architecture, this register is 32 bits, although some bits are currently unused.
Assume that the low-order bit of this register encodes the two possible
exception sources mentioned above: undefined instruction = 0 and arith-
metic overflow = 1.

We will need to add two control signals to cause the EPC and Cause registers to be
written; call these EPCWrite and CauseWrite. In addition, we will need a 1-bit
control signal to set the low-order bit of the Cause register appropriately; call this
signal IntCause. Finally, we will need to be able to write the exception address,
which is the operating system entry point for exception handling, into the PC; in

Exception type Exception vector address (in hex)

Undefined instruction C000 0000hex

Arithmetic overflow C000 0020hex

vectored interrupt An inter-
rupt for which the address to 
which control is transferred is 
determined by the cause of the 
exception.
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the MIPS architecture, this address is 8000 0180hex. (The SPIM simulator for
MIPS uses 8000 0080 hex.) Currently, the PC is fed from the output of a three-way
multiplexor, which is controlled by the signal PCSource (see Figure 5.28 on page
323). We can change this to a four-way multiplexor, with additional input wired to
the constant value 8000 0180hex. Then PCSource can be set to 11two to select this
value to be written into the PC. 

Because the PC is incremented during the first cycle of every instruction, we
cannot just write the value of the PC into the EPC, since the value in the PC will
be the instruction address plus 4. However, we can use the ALU to subtract 4 from
the PC and write the output into the EPC. This requires no additional control sig-
nals or paths, since we can use the ALU to subtract, and the constant 4 is already a
selectable ALU input. The data write port of the EPC, therefore, is connected to
the ALU output. Figure 5.39 shows the multicycle datapath with these additions
needed for implementing exceptions.

Using the datapath of Figure 5.39, the action to be taken for each different type
of exception can be handled in one state apiece. In each case, the state sets the
Cause register, computes and saves the original PC into the EPC, and writes the
exception address into the PC. Thus, to handle the two exception types we are
considering, we will need to add only the two states, but before we add them we
must determine how to check for exceptions, since these checks will control the
arcs to the new states.

How Control Checks for Exceptions

Now we have to design a method to detect these exceptions and to transfer control
to the appropriate state in the exception states. Figure 5.40 shows the two new
states (10 and 11) as well as their connection to the rest of the finite state control.
Each of the two possible exceptions is detected differently:

■ Undefined instruction: This is detected when no next state is defined from
state 1 for the op value. We handle this exception by defining the next-state
value for all op values other than lw, sw, 0 (R-type), j, and beq as state 10.
We show this by symbolically using other to indicate that the op field does
not match any of the opcodes that label arcs out of state 1 to the new state
10, which is used for this exception. 

■ Arithmetic overflow: The ALU, designed in Appendix B, included logic to
detect overflow, and a signal called Overflow is provided as an output from the
ALU. This signal is used in the modified finite state machine to specify an
additional possible next state (state 11) for state 7, as shown in Figure  5.40.
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Figure 5.40 represents a complete specification of the control for this MIPS
subset with two types of exceptions. Remember that the challenge in designing the
control of a real machine is to handle the variety of different interactions between
instructions and other exception-causing events in such a way that the control
logic remains both small and fast. The complex interactions that are possible are
what make the control unit the most challenging aspect of hardware design.

FIGURE 5.39 The multicycle datapath with the addition needed to implement exceptions. The specific additions include the Cause
and EPC registers, a multiplexor to control the value sent to the Cause register, an expansion of the multiplexor controlling the value written into the
PC, and control lines for the added multiplexor and registers. For simplicity, this figure does not show the ALU overflow signal, which would need to
be stored in a one-bit register and delivered as an additional input to the control unit (see Figure 5.40 to see how it is used).
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FIGURE 5.40 This shows the finite state machine with the additions to handle exception detection. States 10 and 11 are the new
states that generate the appropriate control for exceptions. The branch out of state 1 labeled (Op = other) indicates the next state when the input does
not match the opcode of any of lw, sw, 0 (R-type), j, or beq. The branch out of state 7 labeled Overflow indicates the action to be taken when the
ALU signals an overflow. 
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Elaboration: If you examine the finite state machine in Figure 5.40 closely, you can
see that some problems could occur in the way the exceptions are handled. For exam-
ple, in the case of arithmetic overflow, the instruction causing the overflow completes
writing its result because the overflow branch is in the state when the write completes.
However, it’s possible that the architecture defines the instruction as having no effect if
the instruction causes an exception; this is what the MIPS instruction set architecture
specifies. In Chapter 7, we will see that certain classes of exceptions require us to pre-
vent the instruction from changing the machine state, and that this aspect of handling
exceptions becomes complex and potentially limits performance. 

Check
Yourself

Is this optimization proposed in the Check Yourself on page 340 concerning
PCSource still valid in the extended control for exceptions shown in Figure 5.40
on page 345? Why or why not? 

Microprogramming is a technique for designing complex control units. It uses a
very simple hardware engine that can then be programmed to implement a
more complex instruction set. Microprogramming is  used today  to implement
some parts of a complex instruction set, such as a Pentium, as well as in special-
purpose processors. This section, which appears on the CD, explains the basic
concepts and shows how they can be used to implement the MIPS multicycle
control. 

Modern digital design is done using hardware description languages and modern
computer-aided synthesis tools that can create detailed hardware designs from the
descriptions using both libraries and logic synthesis. Entire books are written on
such languages and their use in digital design. This section, which appears on the
CD, gives a brief introduction and shows how a hardware design language, Verilog
in this case, can be used to describe the MIPS multicycle control both behaviorally
and in a form suitable for hardware synthesis.

Microprogramming: Simplifying 
Control Design 5.7

An Introduction to Digital Design Using a 
Hardware Design Language 5.8

5.7

5.8
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The techniques described in this chapter for building datapaths and control units
are at the heart of every computer. All recent computers, however, go beyond the
techniques of this chapter and use pipelining. Pipelining, which is the subject of
the next chapter, improves performance by overlapping the execution of multiple
instructions, achieving throughput close to one instruction per clock cycle (like
our single-cycle implementation) with a clock cycle time determined by the delay
of individual functional units rather than the entire execution path of an instruc-
tion (like our multicycle design). The last Intel IA-32 processor without pipelining
was the 80386, introduced in 1985; the very first MIPS processor, the R2000, also
introduced in 1985, was pipelined. 

Recent Intel IA-32 processors (the Pentium II, III, and 4) employ sophisticated
pipelining approaches. These processors, however, are still faced with the chal-
lenge of implementing control for the complex IA-32 instruction set, described in
Chapter 2. The basic functional units and datapaths in use in modern processors,
while significantly more complex than those described in this chapter, have the
same basic functionality and similar types of control signals. Thus the task of
designing a control unit builds on the same principles used in this chapter. 

Challenges Implementing More Complex Architectures

Unlike the MIPS architecture, the IA-32 architecture contains instructions that are
very complex and can take tens, if not hundreds, of cycles to execute. For example,
the string move instruction (MOVS) requires calculating and updating two different
memory addresses as well as loading and storing a byte of the string. The larger
number and greater complexity of addressing modes in the IA-32 architecture
complicates implementation of even simple instructions similar to those on MIPS.
Fortunately, a multicycle datapath is well structured to adapt to variations in the
amount of work required per instruction that are inherent in IA-32 instructions.
This adaptability comes from two capabilities:

1. A multicycle datapath allows instructions to take varying numbers of clock
cycles. Simple IA-32 instructions that are similar to those in the MIPS
architecture can execute in 3 or 4 clock cycles, while more complex instruc-
tions can take tens of cycles.

2. A multicycle datapath can use the datapath components more than once
per instruction. This is critical to handling more complex addressing
modes, as well as implementing more complex operations, both of which
are present in the IA-32 architecture. Without this capability, the datapath

5.9 Real Stuff: The Organization of Recent 
Pentium Implementations 5.9
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would need to be extended to handle the demands of the more complex
instructions without reusing components, which would be completely
impractical. For example, a single-cycle datapath, which doesn’t reuse com-
ponents, for the IA-32 would require several data memories and a very
large number of ALUs.

Using the multicycle datapath and a microprogrammed controller pro-
vides a framework for implementing the IA-32 instruction set. The challeng-
ing task, however, is creating a high-performance implementation, which
requires dealing with the diversity of the requirements arising from different
instructions. Simply put, a high-performance implementation needs to ensure
that the simple instructions execute quickly, and that the burden of the com-
plexities of the instruction set penalize primarily the complex, less frequently
used, instructions. 

To accomplish this goal, every Intel implementation of the IA-32 architecture
since the 486 has used a combination of hardwired control to handle simple
instructions, and microcoded control to handle the more complex instructions. For
those instructions that can be executed in a single pass through the datapath—those
with complexity similar to a MIPS instruction—the hardwired control generates the
control information and executes the instruction in one pass through the datapath
that takes a small number of clock cycles. Those instructions that require multiple
datapath passes and complex sequencing are handled by the microcoded controller
that takes a larger number of cycles and multiple passes through the datapath to
complete the execution of the instruction. The benefit of this approach is that it
enables the designer to achieve low cycle counts for the simple instructions without
having to build the enormously complex datapath that would be required to handle
the full generality of the most complex instructions.

The Structure of the Pentium 4 Implementation

Recent Pentium processors are capable of executing more than one instruction
per clock, using an advanced pipelining technique, called superscalar. We
describe how a superscalar processor works in the next chapter. The important
thing to understand here is that executing more than one instruction per clock
requires duplicating the datapath resources. The simplest way to think about this
is that the processor has multiple datapaths, although these are tailored to handle
one class of instructions: say, loads and stores, ALU operations, or branches. In
this way, the processor is able to execute a load or store in the same clock cycle that
it is also executing a branch and an ALU operation. The Pentium III and 4 allow
up to three IA-32 instructions to execute in a clock cycle. 

The Pentium III and Pentium 4 execute simple microinstructions similar to
MIPS instructions, called micro-operations in Intel terminology. These microin-
structions are fully self-contained operations that are initially about 70 bits wide.
The control of datapath to implement these microinstructions is completely hard-

microprogrammed control A
method of specifying control 
that uses microcode rather than 
a finite state representation.

hardwired control An imple-
mentation of finite state 
machine control typically using 
programmable logic arrays 
(PLAs) or collections of PLAs 
and random logic.

microcode The set of micro-
instructions that control a 
processor.

superscalar An advanced pipe-
lining technique that enables the 
processor to execute more than 
one instruction per clock cycle.

microinstruction A represen-
tation of control using low-level 
instructions, each of which 
asserts a set of control signals 
that are active on a given clock 
cycle as well as specifies what 
microinstruction to execute next.

micro-operations The RISC-
like instructions directly exe-
cuted by the hardware in recent 
Pentium implementations. 
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wired. This last level of control expands up to three microinstructions into about
120 control lines for the integer datapaths and 275 to over 400 control lines for the
floating-point datapath—the latter number for the new SSE2 instructions
included in the Pentium 4. This last step of expanding the microinstructions into
control lines is very similar to the control generation for the single-cycle datapath
or for the ALU control.

How is the translation between IA-32 instructions and microinstructions per-
formed? In earlier Pentium implementations (i.e., the Pentium Pro, Pentium II,
and Pentium III), the instruction decode unit would look at up to three IA-32
instructions at a time and use a set of PLAs to generate up to six microinstructions
per cycle. With the significantly higher clock rate introduced in the Pentium 4,
this solution was no longer adequate and an entirely new method of generating
microinstructions was needed. 

The solution adopted in the Pentium 4 is to include a trace cache of microin-
structions, which is accessed by the IA-32 program counter. A trace cache is a
sophisticated form of instruction cache, which we explain in detail in Chapter 7.
For now, think of it as a buffer that holds the microinstructions that implement a
given IA-32 instruction. When the trace cache is accessed with the address of the
next IA-32 instruction to be executed, one of several events occurs:

■ The translation of the IA-32 instruction is in the trace cache. In this case, up
to three microinstructions are produced from the trace cache. These three
microinstructions represent from one to three IA-32 instructions. The IA-32
PC is advanced one to three instructions depending on how many fit in the
three microinstruction sequence.

■ The translation of the IA-32 instruction is in the trace cache, but it requires
more than four microinstructions to implement. For such complex IA-32
instructions, there is a microcode ROM; the control unit transfers control to the
microprogram residing in the ROM. Microinstructions are produced from the
microprogram until the more complex IA-32 instruction has been completed.
The microcode ROM provides a total of more than 8000 microinstructions,
with a number of sequences being shared among IA-32 instructions. Control
then transfers back to fetching instructions from the trace cache. 

■ The translation of the designated IA-32 instruction is not in the trace cache.
In this case, an IA-32 instruction decoder is used to decode the IA-32
instruction. If the number of microinstructions is four or less, the decoded
microinstructions are placed in the trace cache, where they may be found on
the next execution of this instruction. Otherwise, the microcode ROM is
used to complete the sequence. 

From one to three microinstructions are sent from the trace cache to the Pen-
tium 4 microinstruction pipeline, which we describe in detail at the end of Chap-
ter 6. The use of simple low-level hardwired control and simple datapaths for

trace cache An instruction 
cache that holds a sequence of 
instructions with a given start-
ing address; in recent Pentium 
implementations the trace cache 
holds microoperations rather 
than IA-32 instructions. 
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handling the microinstructions together with the trace cache of decoded instruc-
tions allows the Pentium 4 to achieve impressive clock rates, similar to those for
microprocessors implementing simpler instruction set architectures. Further-
more, the translation process, which combines direct hardwired control for sim-
ple instructions with microcoded control for complex instructions, allows the
Pentium 4 to execute the simple, high-frequency instructions in the IA-32 instruc-
tion set at a high rate, yielding a low, and very competitive, CPI. 

Pitfall:  Adding a complex instruction implemented with microprogramming may
not be faster than a sequence using simpler instructions.

Most machines with a large and complex instruction set are implemented, at least
in part, using microcode stored in ROM. Surprisingly, on such machines,
sequences of individual simpler instructions are sometimes as fast as or even faster
than the custom microcode sequence for a particular instruction. 

How can this possibly be true? At one time, microcode had the advantage of
being fetched from a much faster memory than instructions in the program. Since
caches came into use in 1968, microcode no longer has such a consistent edge in
fetch time. Microcode does, however, still have the advantage of using internal
temporary registers in the computation, which can be helpful on machines with
few general-purpose registers. The disadvantage of microcode is that the
algorithms must be selected before the machine is announced and can’t be

Understanding
Program

Performance

Although most of the Pentium 4 performance, ignoring the memory system,
depends on the efficiency of the pipelined microoperations, the effectiveness of
the front end in decoding IA-32 instructions can have a significant effect on per-
formance. In particular, because of the structure of the decoder, using simpler IA-
32 instructions that require four or fewer microoperations, and hence, avoiding a
microcode dispatch, is likely to lead to better performance. Because of this imple-
mentation strategy (and a similar one on the Pentium III), compiler writers and
assembly language programmers should try to make use of sequences of simple
IA-32 instructions rather than more complex alternatives.

dispatch An operation in a 
microprogrammed control unit 
in which the next microinstruc-
tion is selected on the basis of 
one or more fields of a macroin-
struction, usually by creating a 
table containing the addresses of
the target microinstructions and 
indexing the table using a field 
of the macroinstruction. The 
dispatch tables are typically 
implemented in ROM or pro-
grammable logic array (PLA). 
The term dispatch is also used in 
dynamically scheduled proces-
sors to refer to the process of 
sending an instruction to a 
queue.

5.10 Fallacies and Pitfalls 5.10
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changed until the next model of the architecture. The instructions in a program,
on the other hand, can utilize improvements in its algorithms at any time during
the life of the machine. Along the same lines, the microcode sequence is probably
not optimal for all possible combinations of operands.

One example of such an instruction in the IA-32 implementations is the move
string instruction (MOVS) used with a repeat prefix that we discussed in Chapter 2.
This instruction is often slower than a loop that moves words at a time, as we saw
earlier in the Fallacies and Pitfalls (see page 350). 

Another example involves the LOOP instruction, which decrements a register
and branches to the specified label if the decremented register is not equal to zero.
This instruction is designed to be used as the branch at the bottom of loops that
have a fixed number of iterations (e.g., many for loops). Such an instruction, in
addition to packing in some extra work, has benefits in minimizing the potential
losses from the branch in pipelined machines (as we will see when we discuss
branches in the next chapter). 

Unfortunately, on all recent Intel IA-32 implementations, the LOOP instruction
is always slower than the macrocode sequence consisting of simpler individual
instructions (assuming that the small code size difference is not a factor). Thus,
optimizing compilers focusing on speed never generate the LOOP instruction.
This, in turn, makes it hard to motivate making LOOP fast in future implementa-
tions, since it is so rarely used!

Fallacy: If there is space in the control store, new instructions are free of cost.

One of the benefits of a microprogrammed approach is that control store
implemented in ROM is not very expensive, and as transistor budgets grew,
extra ROM was practically free. The analogy here is that of building a house
and discovering, near completion, that you have enough land and materials
left to add a room. This room wouldn’t be free, however, since there would be
the costs of labor and maintenance for the life of the home. The temptation to
add “free” instructions can occur only when the instruction set is not fixed, as
is likely to be the case in the first model of a computer. Because upward com-
patibility of binary programs is a highly desirable feature, all future models of
this machine will be forced to include these so-called free instructions, even if
space is later at a premium. 

During the design of the 80286, many instructions were added to the instruc-
tion set. The availability of more silicon resource and the use of micropro-
grammed implementation made such additions seem painless. Possibly the largest
addition was a sophisticated protection mechanism, which is largely unused
today, but still must be implemented in newer implementations. This addition
was motivated by a perceived need for such a mechanism and the desire to
enhance microprocessor architectures to provide functionality equal to that of



352 Chapter 5 The Processor: Datapath and Control

larger computers. Likewise, a number of decimal instructions were added to pro-
vide decimal arithmetic on bytes. Such instructions are rarely used today because
using binary arithmetic on 32 bits and converting back and forth to decimal rep-
resentation is considerably faster. Like the protection mechanisms, the decimal
instructions must be implemented in newer processors even if only rarely used. 

As we have seen in this chapter, both the datapath and control for a processor can be
designed starting with the instruction set architecture and an understanding of the
basic characteristics of the technology. In Section 5.3, we saw how the datapath for a
MIPS processor could be constructed based on the architecture and the decision to
build a single-cycle implementation. Of course, the underlying technology also
affects many design decisions by dictating what components can be used in the
datapath, as well as whether a single-cycle implementation even makes sense. Along
the same lines, in the first portion of Section 5.5, we saw how the decision to break
the clock cycle into a series of steps led to the revised multicycle datapath. In both
cases, the top-level organization—a single-cycle or multicycle machine—together
with the instruction set, prescribed many characteristics of the datapath design.    

Similarly, the control is largely defined by the instruction set architecture, the
organization, and the datapath design. In the single-cycle organization, these
three aspects essentially define how the control signals must be set. In the multicy-
cle design, the exact decomposition of the instruction execution into cycles, which
is based on the instruction set architecture, together with the datapath, defines the
requirements on the control. 

Control is one of the most challenging aspects of computer design. A major
reason is that designing the control requires an understanding of how all the com-

5.11 Concluding Remarks 5.11

Control may be designed using one of several initial representations. The
choice of sequence control, and how logic is represented, can then be deter-
mined independently; the control can then be implemented with one of
several methods using a structured logic technique. Figure 5.41 shows the
variety of methods for specifying the control and moving from the specifi-
cation to an implementation using some form of structured logic.

The BIG
Picture
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ponents in the processor operate. To help meet this challenge, we examined two
techniques for specifying control: finite state diagrams and microprogramming.
These control representations allow us to abstract the specification of the control
from the details of how to implement it. Using abstraction in this fashion is the
major method we have to cope with the complexity of computer designs.

Once the control has been specified, we can map it to detailed hardware. The
exact details of the control implementation will depend on both the structure of
the control and on the underlying technology used to implement it. Abstracting
the specification of control is also valuable because the decisions of how to imple-
ment the control are technology dependent and likely to change over time. 

The rise of microprogramming and its effect on instruction set design and com-
puter development is one of the more interesting interactions in the first few
decades of the electronic computer. This story is the focus of the historical per-
spectives section on the CD.

FIGURE 5.41 Alternative methods for specifying and implementing control. The arrows
indicate possible design paths: any path from the initial representation to the final implementation technol-
ogy is viable. Traditionally, “hardwired control” means that the techniques on the left-hand side are used,
and “microprogrammed control” means that the techniques on the right-hand side are used.

Historical Perspective and Further 
Reading 5.12
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5.1 [6] <§5.2> Do we need combinational logic, sequential logic, or a combina-
tion of the two to implement each of the following:

a. multiplexor

b. comparator

c. incrementer/decrementer

d. barrel shifter

e. multiplier with shifters and adders

f. register

g. memory

h. ALU (the ones in single-cycle and multiple-cycle datapaths)

i. carry look-ahead adder

j. latch

k. general finite state machine (FSM)

5.2 [10] <§5.4> Describe the effect that a single stuck-at-0 fault (i.e., regardless of
what it should be, the signal is always 0) would have for the signals shown below,
in the single-cycle datapath in Figure 5.17 on page 307. Which instructions, if any,
will not work correctly? Explain why.

Consider each of the following faults separately: 

a. RegWrite = 0

b. ALUop0 = 0

c. ALUop1 = 0

d. Branch = 0

e. MemRead = 0

f. MemWrite = 0

5.3 [5] <§5.4> This exercise is similar to Exercise 5.2, but this time consider
stuck-at-1 faults (the signal is always 1).

5.4 [5] <§5.4>  For More Practice: Single Cycle Datapaths with Floating Point.

5.5 [5] <§5.4>  For More Practice: Single Cycle Datapaths with Floating Point.

5.6 [10] <§5.4>  For More Practice: Single Cycle Datapaths with Floating Point.

5.13 Exercises 5.13
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5.7 [2–3 months] <§§5.1–5.4> Using standard parts, build a machine that imple-
ments the single-cycle machine in this chapter.

5.8 [15] <§5.4> We wish to add the instruction jr (jump register) to the single-cy-
cle datapath described in this chapter. Add any necessary datapaths and control sig-
nals to the single-cycle datapath of Figure 5.17 on page 307 and show the necessary
additions to Figure 5.18 on page 308. You can photocopy these figures to make it
faster to show the additions. 

5.9 [10] <§5.4> This question is similar to Exercise 5.8 except that we wish to add
the instruction sll (shift left logical), which is described in Section 2.5.

5.10 [15] <§5.4> This question is similar to Exercise 5.8 except that we wish to
add the instruction lui (load upper immediate), which is described in Section 2.9.

5.11 [20] <§5.4> This question is similar to Exercise 5.8 except that we wish to
add a variant of the lw (load word) instruction, which increments the index regis-
ter after loading word from memory. This instruction (l_inc) corresponds to the
following two instructions:

lw   $rs,L($rt)
addi $rt,$rt,1

5.12 [5] <§5.4> Explain why it is not possible to modify the single-cycle imple-
mentation to implement the load with increment instruction described in Exercise
5.12 without modifying the register file.

5.13 [7] <§5.4> Consider the single-cycle datapath in Figure 5.17. A friend is pro-
posing to modify this single-cycle datapath by eliminating the control signal Mem-
toReg. The multiplexor that has MemtoReg as an input will instead use either the
ALUSrc or the MemRead control signal. Will your friend's modification work?
Can one of the two signals (MemRead and ALUSrc) substitute for the other? Ex-
plain.

5.14 [10] <§5.4> MIPS chooses to simplify the structure of its instructions. The
way we implement complex instructions through the use of MIPS instructions is
to decompose such complex instructions into multiple simpler MIPS ones. Show
how MIPS can implement the instruction swap $rs, $rt, which swaps the con-
tents of registers $rs and $rt. Consider the case in which there is an available reg-
ister that may be destroyed as well as the care in which no such register exists.

If the implementation of this instruction in hardware will increase the clock period
of a single-instruction implementation by 10%, what percentage of swap operations
in the instruction mix would recommend implementing it in hardware?

5.15 [5] <§5.4>  For More Practice: Effects of Faults in Control Multiplexors
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5.16 [5] <§5.4>  For More Practice: Effects of Faults in Control Multiplexors

5.17 [5] <§5.5>  For More Practice: Effects of Faults in Control Multiplexors

5.18 [5] <§5.5>  For More Practice: Effects of Faults in Control Multiplexors

5.19 [15] <§5.4>  For More Practice: Adding Instructions to the Datapath

5.20 [15] <§5.4>  For More Practice: Adding Instructions to the Datapath

5.21 [8] <§5.4>  For More Practice: Adding Instructions to the Datapath

5.22 [8] <§5.4>  For More Practice: Adding Instructions to the Datapath

5.23 [5] <§5.4>  For More Practice: Adding Instructions to the Datapath

5.24 [10] <§5.4>  For More Practice: Datapath Control Signals

5.25 [10] <§5.4>  For More Practice: Datapath Control Signals

5.26 [15] <§5.4>  For More Practice: Modifying the Datapath and Control 

5.27 [8] <§5.4> Repeat Exercise 5.14, but apply your solution to the instruction
load with increment: l_incr $rt,Address($rs).

5.28 [5] <§5.4> The concept of the “critical path,” the longest possible path in the
machine, was introduced in 5.4 on page 315. Based on your understanding of the
single-cycle implementation, show which units can tolerate more delays (i.e., are
not on the critical path), and which units can benefit from hardware optimization.
Quantify your answers taking the same numbers presented on page 315 (Section
5.4, “Example: Performance of Single-Cycle Machines”).

5.29 [5] <§5.5> This exercise is similar to Exercise 5.2, but this time consider the
effect that the stuck-at-0 faults would have on the multiple-cycle datapath in Figure
5.27. Consider each of the following faults: 

a. RegWrite = 0

b. MemRead = 0

c. MemWrite = 0

d. IRWrite = 0

e. PCWrite = 0

f. PCWriteCond = 0.

5.30 [5] <§5.5> This exercise is similar to Exercise 5.29, but this time consider
stuck-at-1 faults (the signal is always 1).

5.31 [[15] <§§5.4, 5.5> This exercise is similar to Exercise 5.13 but more general.
Determine whether any of the control signals in the single-cycle implementation
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can be eliminated and replaced by another existing control signal, or its inverse.
Note that such redundancy is there because we have a very small set of instruc-
tions at this point, and it will disappear (or be harder to find) when we implement
a larger number of instructions.

5.32 15] <§5.5> We wish to add the instruction lui (load upper immediate) de-
scribed in Chapter 3 to the multicycle datapath described in this chapter. Use the
same structure of the multicycle datapath of Figure 5.28 on page 323 and show the
necessary modifications to the finite state machine of Figure 5.38 on page 339. You
may find it helpful to examine the execution steps shown on pages 325 through 329
and consider the steps that will need to be performed to execute the new instruc-
tion. How many cycles are required to implement this instruction?

5.33 [15] <§5.5> You are asked to modify the implementation of lui in Exercise
5.32 in order to cut the execution time by 1 cycle. Add any necessary datapaths and
control signals to the multicycle datapath of Figure 5.28 on page 323. You can pho-
tocopy existing figures to make it easier to show your modifications. You have to
maintain the assumption that you don't know what the instruction is before the
end of state 1 (end of second cycle). Please explicitly state how many cycles it takes
to execute the new instruction on your modified datapath and finite state machine.

5.34 [20] <§5.5> This question is similar to Exercise 5.32 except that we wish to
implement a new instruction ldi (load immediate) that loads a 32-bit immediate
value from the memory location following the instruction address.

5.35 [15] <§5.5> Consider a change to the multiple-cycle implementation that
alters the register file so that it has only one read port. Describe (via a diagram) any
additional changes that will need to be made to the datapath in order to support
this modification. Modify the finite state machine to indicate how the instructions
will work, given your new datapath.

5.36 [15] <§5.5> Two important parameters control the performance of a pro-
cessor: cycle time and cycles per instruction. There is an enduring trade-off be-
tween these two parameters in the design process of microprocessors. While some
designers prefer to increase the processor frequency at the expense of large CPI,
other designers follow a different school of thought in which reducing the CPI
comes at the expense of lower processor frequency. 

Consider the following machines, and compare their performance using the SPEC
CPUint 2000 data from Figure 3.26 on page 228. 

M1: The multicycle datapath of Chapter 5 with a 1 GHz clock.

M2: A machine like the multicycle datapath of Chapter 5, except that register
updates are done in the same clock cycle as a memory read or ALU operation.
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Thus in Figure 5.38 on page 339, states 6 and 7 and states 3 and 4 are combined.
This machine has an 3.2 GHz clock, since the register update increases the length
of the critical path.

M3: A machine like M2 except that effective address calculations are done in the
same clock cycle as a memory access. Thus states 2, 3, and 4 can be combined, as
can 2 and 5, as well as 6 and 7. This machine has a 2.8 GHz clock because of the
long cycle created by combining address calculation and memory access.

Find out which of the machines is fastest. Are there instruction mixes that would
make another machine faster, and if so, what are they?

5.37 [20] <§5.5> Your friends at C3 (Creative Computer Corporation) have de-
termined that the critical path that sets the clock cycle length of the multicycle
datapath is memory access for loads and stores (not for fetching instructions). This
has caused their newest implementation of the MIPS 30000 to run at a clock rate
of 4.8 GHz rather than the target clock rate of 5.6 GHz. However, Clara at C3 has
a solution. If all the cycles that access memory are broken into two clock cycles,
then the machine can run at its target clock rate. 

Using the SPEC CPUint 2000 mixes shown in Chapter 3 (Figure 3.26 on page
228), determine how much faster the machine with the two-cycle memory
accesses is compared with the 4.8 GHz machine with single-cycle memory access.
Assume that all jumps and branches take the same number of cycles and that the
set instructions and arithmetic immediate instructions are implemented as R-type
instructions.  Would you consider the further step of splitting instruction fetch
into two cycles if it would raise the clock rate up to 6.4 GHz? Why?

5.38 [20] <§5.5> Suppose there were a MIPS instruction, called bcmp, that com-
pares two blocks of words in two memory addresses. Assume that this instruction
requires that the starting address of the first block is in register $t1 and the starting
address of the second block is in $t2, and that the number of words to compare is
in $t3 (which is $t3≥0). Assume the instruction can leave the result (the address
of the first mismatch or zero if a complete match) in $t1 and/or $t2. Further-
more, assume that the values of these registers as well as registers $t4 and t5 can
be destroyed in executing this instruction (so that the registers can be used as tem-
poraries to execute the instruction). 

Write the MIPS assembly language program to implement (emulate the behavior
of) block compare. How many instructions will be executed to compare two 100-
word blocks? Using the CPI of the instructions in the multicycle implementation,
how many cycles are needed for the 100-word block compare?

5.39 [2–3 months] <§§5.1–5.5> Using standard parts, build a machine that im-
plements the multicycle machine in this chapter.
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5.40 [15] <§5.5>  For More Practice: Adding Instructions to the Datapath

5.41 [15] <§5.5>  For More Practice: Adding Instructions to the Datapath

5.42 [15] <§5.5>  For More Practice: Adding Instructions to the Datapath

5.43 [15] <§5.5>  For More Practice: Adding Instructions to the Datapath

5.44 [15] <§5.5>  For More Practice: Adding Instructions to the Datapath

5.45 [20] <§5.5>  For More Practice: Adding Instructions to the Datapath

5.46 [10] <§5.5>  For More Practice: Adding Instructions to the Datapath

5.47 [15] <§§5.1–5.5>  For More Practice: Comparing Processor Performance

5.48 [20] <§5.5>  For More Practice: Implementing Instructions in MIPS

5.49 [30] <§5.6> We wish to add the instruction eret (exception return) to the
multicycle datapath described in this chapter. A primary task of the eret instruc-
tion is to reload the PC with the return address at which an exception, or error trap
occurred. Suppose that if the processor is serving an error trap, then the PC has to
be loaded from a register ErrorPC. Otherwise the processor is serving an excep-
tion) the PC has to be loaded from EPC. Suppose that there is a bit in the cause reg-
ister called trap to encode an error trap when it occurs and to save the PC in the
ErrorPC register. Add any necessary datapaths and control signals to the multicy-
cle datapath of Figure 5.39 on page 344 to accommodate the trap/exception call
and return, and show the necessary modifications to the finite state machine of
Figure 5.40 on page 345 to implement the eret instruction. You can photocopy
the figures to make it easier to show your modifications.

5.50 [6] <§5.6> Exceptions occur when a control flow change is required to han-
dle an unexpected event in the processor. How can the cause and the instruction
that caused the exception, be represented by the hardware in a MIPS machine?
Give two examples for conditions that a processor can handle by restarting execu-
tion of instructions after handling the exception, and two others for exceptions
that lead to program termination.

5.51 [6] <§5.6> Exception detection is an important aspect of exception han-
dling. Try to identify the cycle in which the following exceptions can be detected
for the multicycle datapath in Figure 5.28 on page 323.

Consider the following exceptions:

a. Divide by zero exception (suppose we use the same ALU for division in one
cycle, and that it is recognized by the rest of the control)

b. Overflow exception
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c. Invalid instruction

d. External interrupt

e. Invalid instruction memory address

f. Invalid data memory address

5.52 [15] <§5.6>  For More Practice: Adding Instructions to the Datapath

5.53 [30] <§5.7> Microcode has been used to add more powerful instructions to
an instruction set; let’s explore the potential benefits of this approach. Devise a
strategy for implementing the bcmp instruction described in Exercise 5.38 using
the multicycle datapath and microcode. You will probably need to make some
changes to the datapath in order to efficiently implement the bcmp instruction.
Provide a description of your proposed changes and describe how the bcmp in-
struction will work. Are there any advantages that can be obtained by adding inter-
nal registers to the datapath to help support the bcmp instruction? Estimate the
improvement in performance that you can achieve by implementing the instruc-
tion in hardware (as opposed to the software solution you obtained in Exercise
5.38) and explain where the performance increase comes from.

5.54 [30] <§5.7>  For More Practice: Microcode

5.55 [30] <§5.7>  For More Practice: Microcode

5.56 [5] <§5.7>  For More Practice: Microcode

5.57 [30] <§5.8> Using the strategy you developed in Exercise 5.53, modify the
MIPS microinstruction format described in  Figure 5.7.1 and provide the com-
plete microprogram for the bcmp instruction. Describe in detail how you extended
the microcode so as to support the creation of more complex control structures
(such as a loop) within the microcode. Has support for the bcmp instruction
changed the size of the microcode? Will other instructions besides bcmp be affected
by the change in the microinstruction format?

5.58 [5] <§5.8> A and B are registers defined through the following Verilog ini-
tialization code:

    reg A,B
   initial begin
       A = 1;
       B = 2;
   end
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Analyze the following two segments of Verilog description lines, and compare the
results of variables A and B, and the operation done in each example.

a)     always @(negedge clock) begin
       A = B;
       B = A;
   end
b)    always @(negedge clock) begin
       A <= B;
       B <= A;
   end

5.59 [15] <§§5.4, 5.8> Write the ALUControl module in combinational Verilog
using the following form as the basis: 

module ALUControl (ALUOp, FuncCode, ALUCtl); 

input ALUOp[1:0], FuncCode[5:0]; 

output ALUCtl[3:0]; 

.... 

endmodule 

5.60 [1 week] <§§5.3, 5.4, 5.8> Using a hardware simulation language such as
Verilog, implement a functional simulator for the single-cycle version. Build your
simulator using an existing library of parts, if such a library is available. If the parts
contain timing information, determine what the cycle time of your implementa-
tion will be. 

5.61 [2–4 hours] <§§4.7, 5.5, 5.8, 5.8> Extend the multicycle Verilog description
in  5.8 by adding an implementation of the unsigned MIPS multiply instruction;
assume it is implemented using the MIPS ALU and a shift and add operation.

5.62 [2-4 hours] <§§4.7, 5.5, 5.8, 5.9> Extend the multicycle Verilog description
in  5.8 by adding an implementation of the unsigned MIPS divide instruction;
assume it is implemented using the MIPS ALU with a one-bit-at-a-time algorithm. 

5.63 [1 week] <§§5.5, 5.8> Using a hardware simulation language such as Ver-
ilog, implement a functional simulator for a multicycle implementation of the de-
sign of a PowerPC processor. Build your simulator using an existing library of
parts, if such a library is available. If the parts contain timing information, deter-
mine what the cycle time of your implementation will be.
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Like MIPS, the PowerPC instructions are 32 bits each. Assume that your instruc-
tion set supports the following instruction formats:

R-type

 -------------------------------------------------------------

|    op    |    Rd     |    Rt      |   Rs     | 0 |    Func    |RC|

 -------------------------------------------------------------

 0        5 6       10 11      15 16     20  21 22         30 31

Load/store & immediate

 -------------------------------------------------------------

|    op    |    Rd    |    Rt    |            Address         |

 -------------------------------------------------------------

 0        5 6       10 11      15 16                         31

Branch conditional

 -------------------------------------------------------------

|    op    |    0     |    BI    |             BD       |AA|LK|

 -------------------------------------------------------------

 0        5 6       10 11      15 16                  29 30 31

Jump

 -------------------------------------------------------------

|    op    |                 Address                    |AA|LK|

 -------------------------------------------------------------

 0        5 6       10 11      15 16                  29 30 31

RC-reg

 -------------------

| LT | GT | EQ | OV |
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 -------------------

  0    1    2    3

Func field (22:30): Similar to MIPS, identifies function code.

RC bit(31): IF set (1), update the RC-reg control bits to reflect the

results of the instruction (all R-type).

AA(30): 1 indicates that the given address is an absolute address;

    0 indicates relative address.

LK:     IF 1, updates LNKR (the link register), which can be later used

for subroutine return implementation.

BI:     Encodes the branch condition (e.g., beg -> BI = 2, blt -> BI = 0, etc.)

BD:     Branch relative destination.

Your simplified PowerPC implementation should be able to implement the

following instructions:

add:    add $Rd, $Rt, $Rs     ($Rd <- $Rt + $Rs)

addi $Rd, $Rt, #n     ($Rd <- $Rt + #n)

subtract: sub $Rd, $Rt, $Rs   ($Rd <- $Rt - $Rs)

subi $Rd, $Rt, #n   ($Rd <- $Rt - #n)

load:      lw $Rd, Addr($Rt)   ($Rd <- Memory[$Rt + Addr])

store:    sw $Rd, Addr($Rt)   (Memory[$Rt + Addr] <- $Rd)

AND, OR: and/or $Rd, $Rt, $Rs     ($Rd <- $Rt AND/OR $Rs)

     andi/ori $Rd, $Rt, #n     ($Rd <- $Rt AND/OR #n)

Jump:   jmp Addr  (PC <- Addr)

Branch conditional:  Beq Addr   (CR[2]==1? PC<- PC+BD : PC <- 
PC+4)

subroutine call:  jal Addr (LNKR <- PC+4; PC<- Addr)

subroutine restore: Ret    (PC <- LNKR)

5.64 [Discussion] <§§5.7, 5.10, 5.11> Hypothesis: If the first implementation of
an architecture uses microprogramming, it affects the instruction set architecture.
Why might this be true? Can you find an architecture that will probably always use
microcode? Why? Which machines will never use microcode? Why? What control
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implementation do you think the architect had in mind when designing the in-
struction set architecture?

5.65 [Discussion] <§§5.7, 5.12> Wilkes invented microprogramming in large
part to simplify construction of control. Since 1980, there has been an explosion of
computer-aided design software whose goal is also to simplify construction of con-
trol. This has made control design much easier. Can you find evidence, based ei-
ther on the tools or on real designs, that supports or refutes this hypothesis?

5.66 [Discussion] <§5.12> The MIPS instructions and the MIPS microinstruc-
tions have many similarities. What would make it difficult for a compiler to pro-
duce MIPS microcode rather than macrocode? What changes to the
microarchitecture would make the microcode more useful for this application.

Answers to
Check Yourself

§5.1, page 289: 3.
§5.2, page 292: false. 
§5.3, page 299: A.
§5.4, page 318: Yes, MemtoReg and RegDst are inverses of one another. Yes, simply
use the other signal and flip the order of the inputs to the multiplexor!
§5.5, page 340: 1. False. 2. Maybe: If the signal PCSource[0] is always set to zero
when it is a don’t care (which is most states), then it is identical to PCWriteCond.
§5.6, page 346: No, since the value of 11, which was formerly unused, is now used!
§5.7, page 5.7-13: 4 tables with 55 entries (don’t forget the primary dispatch!)
§5.8, page 5.8-7: 1. 0, 1, 1, X, 0. 2. No, since state is not assigned on every path.
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Computers 
in the 

Real World

Empowering 
the Disabled

Problem to solve: To overcome the obsta-

cles faced  by disabled people.

Solution: Use robotics, sensors, and com-

puter control to replace  or supplement dam-

aged limbs and organs.

The picture on the right shows a system

developed for a firefighter who was injured

while fighting a fire. Sensors in latex fingers

instantly register hot and cold, and an elec-

tronic interface in his artificial limb stimulates

the nerve endings in his upper arm, which

then pass the information to his brain. The

$3000 system allows his hand to feel pressure

and weight, so for the first time since losing

his arms in a 1986 accident, he can pick up a

can of soda without crushing it or having it

slip through his fingers. The main enabling

device is an electronic interface that can trans-

mit signals to nerve endings in Whitten's

upper arm, which then pass this information

to his brain.

Harvey Fishman and Mark Peterman of

Stanford have taken steps towards informa-

tion technology that might someday treat

age-related blindness. Their approach is to

bypass the photoreceptors of the eye with a

signal from a digital camera that connects

directly to the visual system. They are devel-

oping a neural interface to the visual system

called the artificial synapse chip. The chal-

lenge is to turn electrical signals into the

chemicals that cells use to communicate. This

chip is attached to cells, and from the cell’s

perspective the artificial synapse is simply a

hole in the silicon. This hole is connected to a

reservoir of neurotransmitter. When an elec-

tric field is applied to the chip, the neu-

rotransmitter is pumped through the hole,

stimulating nearby cells. In 2003 they have

Firefighter Ken Whitten proudly displays his new 
bionic arm.



created four artificial synapses on a chip one

centimeter on a side. 

Although this work is in its early stages, the

potential is not limited to eye problems.

According to Fishman, "Anywhere there's a

severing of a nerve connection, there's a

potential for us to reconnect it."

To learn more see these references on 
the  library

■ Rick Smolan and Jennifer Erwitt, One Digital Day:
How the Microchip Is Changing Our World, Times
Publishing, 1998

■ Peterman et al, “The artificial synapse chip: A flexible
retinal interface based on directed retinal cell growth
and neurotransmitter stimulation,” Artificial Organs:
27(11), November 18, 2003

Artificial retina using artificial synapse chips. From 
The San Francisco Chronicle, January 5, 2004.
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Thus times do shift,
each thing his turn does hold;
New things succeed,
as former things grow old.

Robert Herrick
Hesperides: Ceremonies for Christmas Eve, 1648
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Pipelining is an implementation technique in which multiple instructions are
overlapped in execution. Today, pipelining is key to making processors fast. 

This section relies heavily on one analogy to give an overview of the pipelining
terms and issues. If you are interested in just the big picture, you should concen-
trate on this section and then skip to Sections 6.9 and 6.10 to see an introduction
to the advanced pipelining techniques used in recent processors such as the Pen-
tium III and 4. If you are interested in exploring the anatomy of a pipelined com-
puter, this section is a good introduction to Sections 6.2 through 6.8.

Anyone who has done a lot of laundry has intuitively used pipelining. The non-
pipelined approach to laundry would be

1. Place one dirty load of clothes in the washer.

2. When the washer is finished, place the wet load in the dryer.

3. When the dryer is finished, place the dry load on a table and fold. 

4. When folding is finished, ask your roommate to put the clothes away. 

When your roommate is done, then start over with the next dirty load. 
The pipelined approach takes much less time, as Figure 6.1 shows. As soon as

the washer is finished with the first load and placed in the dryer, you load the
washer with the second dirty load. When the first load is dry, you place it on the
table to start folding, move the wet load to the dryer, and the next dirty load into
the washer. Next you have your roommate put the first load away, you start fold-
ing the second load, the dryer has the third load, and you put the fourth load into
the washer. At this point all steps––called stages in pipelining—are operating con-
currently. As long as we have separate resources for each stage, we can pipeline the
tasks.

The pipelining paradox is that the time from placing a single dirty sock in the
washer until it is dried, folded, and put away is not shorter for pipelining; the rea-
son pipelining is faster for many loads is that everything is working in parallel, so
more loads are finished per hour. Pipelining improves throughput of our laundry
system without improving the time to complete a single load. Hence, pipelining
would not decrease the time to complete one load of laundry, but when we have
many loads of laundry to do, the improvement in throughput decreases the total
time to complete the work. 

If all the stages take about the same amount of time and there is enough work
to do, then the speedup due to pipelining is equal to the number of stages in the
pipeline, in this case four: washing, drying, folding, and putting away. So, pipe-
lined laundry is potentially four times faster than nonpipelined: 20 loads would

6.1 An Overview of Pipelining 6.1

Never waste time.

American proverb

pipelining An implementa-
tion technique in which multi-
ple instructions are overlapped 
in execution, much like to an 
assembly line.
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take about 5 times as long as 1 load, while 20 loads of sequential laundry takes 20
times as long as 1 load. It’s only 2.3 times faster in Figure 6.1 because we only
show 4 loads. Notice that at the beginning and end of the workload in the pipe-
lined version in Figure 6.1, the pipeline is not completely full, this start-up and
wind-down affects performance when the number of tasks is not large compared
to the number of stages in the pipeline. If the number of loads is much larger than
4, then the stages will be full most of the time and the increase in throughput will
be very close to 4. 

The same principles apply to processors where we pipeline instruction
execution. MIPS instructions classically take five steps: 

1. Fetch instruction from memory.

2. Read registers while decoding the instruction. The format of MIPS instruc-
tions allows reading and decoding to occur simultaneously. 

FIGURE 6.1 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty
clothes to be washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30
minutes for their task. Sequential laundry takes 8 hours for four loads of wash, while pipelined laundry
takes just 3.5 hours. We show the pipeline stage of different loads over time by showing copies of the four
resources on this two-dimensional time line, but we really have just one of each resource.
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3. Execute the operation or calculate an address.

4. Access an operand in data memory.

5. Write the result into a register.

Hence, the MIPS pipeline we explore in this chapter has five stages. The following
example shows that pipelining speeds up instruction execution just as it speeds up
the laundry.  

Single-Cycle versus Pipelined Performance

To make this discussion concrete, let’s create a pipeline. In this example, and
in the rest of this chapter, we limit our attention to eight instructions: load
word (lw), store word (sw), add (add), subtract (sub), and (and), or (or),
set-less-than (slt), and branch-on-equal (beq). 

Compare the average time between instructions of a single-cycle imple-
mentation, in which all instructions take 1 clock cycle, to a pipelined
implementation. The operation times for the major functional units in this ex-
ample are 200 ps for memory access, 200 ps for ALU operation, and 100 ps for
register file read or write. As we said in Chapter 5, in the single-cycle model ev-
ery instruction takes exactly 1 clock cycle, so the clock cycle must be stretched
to accommodate the slowest instruction. 

Figure 6.2 shows the time required for each of the eight instructions. The sin-
gle-cycle design must allow for the slowest instruction—in Figure 6.2 it is
lw—so the time required for every instruction is 800 ps. Similarly to Figure
6.1, Figure 6.3 compares nonpipelined and pipelined execution of three load
word instructions. Thus, the time between the first and fourth instructions in
the nonpipelined design is 3 ¥ 800 ns or 2400 ps.

All the pipeline stages take a single clock cycle, so the clock cycle must be
long enough to accommodate the slowest operation. Just as the single-cycle
design must take the worst-case clock cycle of 800 ps even though some in-
structions can be as fast as 500 ps, the pipelined execution clock cycle must
have the worst-case clock cycle of 200 ps even though some stages take only
100 ps. Pipelining still offers a fourfold performance improvement: the time
between the first and fourth instructions is 3 ¥ 200 ps or 600 ps. 

EXAMPLE

ANSWER
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Instruction class
Instruction

fetch
Register

read
ALU

operation
Data

access
Register

write
Total
time

Load word (lw) 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

Store word (sw) 200 ps 100 ps 200 ps 200 ps 700 ps

R-format (add, sub, and,
or, slt)

200 ps 100 ps 200 ps 100 ps 600 ps

Branch (beq) 200 ps 100 ps 200 ps 500 ps

FIGURE 6.2 Total time for each instruction calculated from the time for each compo-
nent. This calculation assumes that the multiplexors, control unit, PC accesses, and sign extension unit
have no delay.

FIGURE 6.3 Single-cycle, nonpipelined execution in top versus pipelined execution in
bottom. Both use the same hardware components, whose time is listed in Figure 6.2. In this case we see a
fourfold speedup on average time between instructions, from 800 ps down to 200 ps. Compare this figure to
Figure 6.1. For the laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage
would set the stage time. The computer pipeline stage times are limited by the slowest resource, either the
ALU operation or the memory access. We assume the write to the register file occurs in the first half of the
clock cycle and the read from the register file occurs in the second half. We use this assumption throughout
this chapter.
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We can turn the pipelining speedup discussion above into a formula. If the
stages are perfectly balanced, then the time between instructions on the pipelined
processor—assuming ideal conditions—is equal to

Under ideal conditions and with a large number of instructions, the speedup from
pipelining is approximately equal to the number of pipe stages; a five-stage pipe-
line is nearly five times faster.

The formula suggests that a five-stage pipeline should offer nearly a fivefold
improvement over the 800 ps nonpipelined time, or a 160 ps clock cycle. The
example shows, however, that the stages may be imperfectly balanced. In addition,
pipelining involves some overhead, the source of which will be more clear shortly.
Thus, the time per instruction in the pipelined processor will exceed the mini-
mum possible, and speedup will be less than the number of pipeline stages. 

Moreover, even our claim of fourfold improvement for our example is not
reflected in the total execution time for the three instructions: it’s 1400 ps versus
2400 ps. Of course, this is because the number of instructions is not large. What
would happen if we increased the number of instructions? We could extend the
previous figures to 1,000,003 instructions. We would add 1,000,000 instructions
in the pipelined example; each instruction adds 200 ps to the total execution time.
The total execution time would be 1,000,000 ¥ 200 ps + 1400 ps, or 200,001,400
ps. In the nonpipelined example, we would add 1,0000,000 instructions, each tak-
ing 800 ps, so total execution time would be 1,000,000 ¥ 800 ps + 2400 ps, or
800,002,400 ps. Under these ideal conditions, the ratio of total execution times for
real programs on nonpipelined to pipelined processors is close to the ratio of
times between instructions:

Pipelining improves performance by increasing instruction throughput, as
opposed to decreasing the execution time of an individual instruction, but instruc-
tion throughput is the important metric because real programs execute billions of
instructions.

Designing Instruction Sets for Pipelining

Even with this simple explanation of pipelining, we can get insight into the design
of the MIPS instruction set, which was designed for pipelined execution. 

First, all MIPS instructions are the same length. This restriction makes it much
easier to fetch instructions in the first pipeline stage and to decode them in the

Time between instructionspipelined
Time between instructionsnonpipelined

Number of pipe stages
-------------------------------------------------------------------------------=

800,002,400 ps
200,001,400 ps
----------------------------------- 4.00 800 ps

200 ps
---------------ª ª
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second stage. In an instruction set like the IA-32, where instructions vary from 1
byte to 17 bytes, pipelining is considerably more challenging. As we saw in Chap-
ter 5, all recent implementations of the IA-32 architecture actually translate IA-32
instructions into simple microoperations that look like MIPS instructions. As we
will see in Section 6.10, the Pentium 4 actually pipelines the microoperations
rather than the native IA-32 instructions!

Second, MIPS has only a few instruction formats, with the source register fields
being located in the same place in each instruction. This symmetry means that the
second stage can begin reading the register file at the same time that the hardware
is determining what type of instruction was fetched. If MIPS instruction formats
were not symmetric, we would need to split stage 2, resulting in six pipeline
stages. We will shortly see the downside of longer pipelines.

Third, memory operands only appear in loads or stores in MIPS. This restric-
tion means we can use the execute stage to calculate the memory address and then
access memory in the following stage. If we could operate on the operands in
memory, as in the IA-32, stages 3 and 4 would expand to an address stage, mem-
ory stage, and then execute stage. 

Fourth, as discussed in Chapter 2, operands must be aligned in memory.
Hence, we need not worry about a single data transfer instruction requiring two
data memory accesses; the requested data can be transferred between processor
and memory in a single pipeline stage.

Pipeline Hazards

There are situations in pipelining when the next instruction cannot execute in the
following clock cycle. These events are called hazards, and there are three different
types.

Structural Hazards
The first hazard is called a structural hazard. It means that the hardware cannot
support the combination of instructions that we want to execute in the same clock
cycle. A structural hazard in the laundry room would occur if we used a washer-
dryer combination instead of a separate washer and dryer, or if our roommate was
busy doing something else and wouldn’t put clothes away. Our carefully scheduled
pipeline plans would then be foiled. 

As we said above, the MIPS instruction set was designed to be pipelined, mak-
ing it fairly easy for designers to avoid structural hazards when designing a pipe-
line. Suppose, however, that we had a single memory instead of two memories. If
the pipeline in Figure 6.3 had a fourth instruction, we would see that in the same
clock cycle that the first instruction is accessing data from memory while the
fourth instruction is fetching an instruction from that same memory. Without
two memories, our pipeline could have a structural hazard.

structural hazard An occur-
rence in which a planned 
instruction cannot execute in 
the proper clock cycle because 
the hardware cannot support 
the combination of instructions 
that are set to execute in the 
given clock cycle. 
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Data Hazards
Data hazards occur when the pipeline must be stalled because one step must wait
for another to complete. Suppose you found a sock at the folding station for
which no match existed. One possible strategy is to run down to your room and
search through your clothes bureau to see if you can find the match. Obviously,
while you are doing the search, loads that have completed drying and are ready to
fold and those that have finished washing and are ready to dry must wait. 

In a computer pipeline, data hazards arise from the dependence of one instruc-
tion on an earlier one that is still in the pipeline (a relationship that does not really
exist when doing laundry). For example, suppose we have an add instruction fol-
lowed immediately by a subtract instruction that uses the sum (

 

$s0):

 

add    $s0, $t0, $t1
sub    $t2, $s0, $t3

Without intervention, a data hazard could severely stall the pipeline. The 

 

add
instruction doesn’t write its result until the fifth stage, meaning that we would
have to add three bubbles to the pipeline.

Although we could try to rely on compilers to remove all such hazards, the
results would not be satisfactory. These dependences happen just too often and
the delay is just too long to expect the compiler to rescue us from this dilemma.

The primary solution is based on the observation that we don’t need to wait for
the instruction to complete before trying to resolve the data hazard. For the code
sequence above, as soon as the ALU creates the sum for the add, we can supply it
as an input for the subtract. Adding extra hardware to retrieve the missing item
early from the internal resources is called forwarding or bypassing.

In this graphical representation of events, forwarding paths are valid only if the
destination stage is later in time than the source stage. For example, there cannot
be a valid forwarding path from the output of the memory access stage in the first

Forwarding with Two Instructions

For the two instructions above, show what pipeline stages would be con-
nected by forwarding. Use the drawing in Figure 6.4 to represent the datapath
during the five stages of the pipeline. Align a copy of the datapath for each
instruction, similar to the laundry pipeline in Figure 6.1.

Figure 6.5 shows the connection to forward the value in 

 

$s0 after the execu-
tion stage of the 

 

add instruction as input to the execution stage of the 

 

sub in-
struction. 

data hazard Also called pipe-
line data hazard. An occurrence 
in which a planned instruction 
cannot execute in the proper 
clock cycle because data that is 
needed to execute the instruc-
tion is not yet available.

forwarding Also called 
bypassing. A method of 
resolving a data hazard by 
retrieving the missing data 
element from internal buffers 
rather than waiting for it to 
arrive from programmer-visible 
registers or memory.

EXAMPLE

ANSWER
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instruction to the input of the execution stage of the following, since that would
mean going backwards in time.

Forwarding works very well and is described in detail in Section 6.4. It cannot
prevent all pipeline stalls, however. For example, suppose the first instruction
were a load of 

 

$s0 instead of an add. As we can imagine from looking at Figure
6.5, the desired data would be available only after the fourth stage of the first
instruction in the dependence, which is too late for the input of the third stage of
sub. Hence, even with forwarding, we would have to stall one stage for a load-use
data hazard, as Figure 6.6 shows. This figure shows an important pipeline con-
cept, officially called a pipeline stall, but often given the nickname bubble. We
shall see stalls elsewhere in the pipeline. Section 6.5 shows how we can handle
hard cases like these, using either hardware detection and stalls or software that
treats the load delay like a branch delay. 

FIGURE 6.4 Graphical representation of the instruction pipeline, similar in spirit to the
laundry pipeline in Figure 6.1 on page 371. Here we use symbols representing the physical
resources with the abbreviations for pipeline stages used throughout the chapter. The symbols for the five
stages: IF for the instruction fetch stage, with the box representing instruction memory; ID for the instruc-
tion decode/register file read stage, with the drawing showing the register file being read; EX for the execu-
tion stage, with the drawing representing the ALU; MEM for the memory access stage, with the box
representing data memory; and WB for the write back stage, with the drawing showing the register file
being written. The shading indicates the element is used by the instruction. Hence, MEM has a white back-
ground because add does not access the data memory. Shading on the right half of the register file or mem-
ory means the element is read in that stage, and shading of the left half means it is written in that stage.
Hence the right half of ID is shaded in the second stage because the register file is read, and the left half of
WB is shaded in the fifth stage because the register file is written.

FIGURE 6.5 Graphical representation of forwarding. The connection shows the forwarding path
from the output of the EX stage of add to the input of the EX stage for sub, replacing the value from regis-
ter $s0 read in the second stage of sub.

200 400 600 800 1000
Time

add $s0, $t0, $t1 IF MEMID WBEX
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Time

add $s0, $t0, $t1

sub $t2, $s0, $t3

IF MEMID WBEX

IF MEMID WBEX

Program
execution
order
(in instructions)

load-use data hazard A spe-
cific form of data hazard in 
which the data requested by a 
load instruction has not yet 
become available when it is 
requested.
pipeline stall Also called bub-
ble. A stall initiated in order to 
resolve a hazard.
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FIGURE 6.6 We need a stall even with forwarding when an R-format instruction follow-
ing a load tries to use the data. Without the stall, the path from memory access stage output to exe-
cution stage input would be going backwards in time, which is impossible. This figure is actually a
simplification, since we cannot know until after the subtract instruction is fetched and decoded whether or
not a stall will be necessary. Section 6.5 shows the details of what really happens in the case of a hazard. 

Reordering Code to Avoid Pipeline Stalls

Consider the following code segment in C:

A = B + E;
C = B + F; 

Here is the generated MIPS code for this segment, assuming all variables are
in memory and are addressable as offsets from $t0:

lw $t1, 0($t0)
lw $t2, 4($t0)
add $t3, $t1,$t2
sw $t3, 12($t0)
lw $t4, 8($01)
add $t5, $t1,$t4
sw $t5, 16($t0)

Find the hazards in the following code segment and reorder the instructions
to avoid any pipeline stalls.

200 400 600 800 1000 1200 1400
Time

lw $s0, 20($t1)

sub $t2, $s0, $t3

IF MEMID WBEX

IF MEMID WBEX

Program
execution
order
(in instructions)

bubble bubble bubble bubble bubble

EXAMPLE
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Forwarding yields another insight into the MIPS architecture, in addition to
the four mentioned on page 374–375. Each MIPS instruction writes at most one
result and does so near the end of the pipeline. Forwarding is harder if there are
multiple results to forward per instruction or they need to write a result early on
in instruction execution.

Elaboration: The name “forwarding” comes from the idea that the result is passed
forward from an earlier instruction to a later instruction. “Bypassing” comes from pass-
ing the result by the register file to the desired unit. 

Control Hazards
The third type of hazard is called a control hazard, arising from the need to make
a decision based on the results of one instruction while others are executing. 

Suppose our laundry crew was given the happy task of cleaning the uniforms of
a football team. Given how filthy the laundry is, we need to determine whether the
detergent and water temperature setting we select is strong enough to get the uni-
forms clean but not so strong that the uniforms wear out sooner. In our laundry
pipeline, we have to wait until the second stage to examine the dry uniform to see
if we need to change the washer setup or not. What to do?

Here is the first of two solutions to control hazards in the laundry room and its
computer equivalent.

Stall: Just operate sequentially until the first batch is dry and then repeat until
you have the right formula. This conservative option certainly works, but it is
slow. 

Both add instructions have a hazard because of their respective dependence
on the immediately preceding lw instruction. Notice that bypassing elimi-
nates several other potential hazards including the dependence of the first
add on the first lw and any hazards for store instructions. Moving up the
third lw instruction eliminates both hazards:

lw $t1, 0($t0)
lw $t2, 4($t1)
lw $t4, 8($01)
add $t3, $t1,$t2
sw $t3, 12($t0)
add $t5, $t1,$t4
sw $t5, 16($t0)

On a pipelined processor with forwarding, the reordered sequence will
complete in two fewer cycles than the original version. 

ANSWER

control hazard Also called 
branch hazard. An occurrence 
in which the proper instruction 
cannot execute in the proper 
clock cycle because the instruc-
tion that was fetched is not the 
one that is needed; that is, the 
flow of instruction addresses is 
not what the pipeline expected.
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The equivalent decision task in a computer is the branch instruction. Notice that
we must begin fetching the instruction following the branch on the very next
clock cycle. But, the pipeline cannot possibly know what the next instruction
should be, since it only just received the branch instruction from memory! Just as
with laundry, one possible solution is to stall immediately after we fetch a branch,
waiting until the pipeline determines the outcome of the branch and knows what
instruction address to fetch from. 

Let’s assume that we put in enough extra hardware so that we can test registers,
calculate the branch address, and update the PC during the second stage of the
pipeline (see Section 6.6 for details). Even with this extra hardware, the pipeline
involving conditional branches would look like Figure 6.7. The lw instruction,
executed if the branch fails, is stalled one extra 200-ps clock cycle before starting.   

FIGURE 6.7 Pipeline showing stalling on every conditional branch as solution to control
hazards. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the process of creating a
stall is slightly more complicated, as we will see in Section 6.6. The effect on performance, however, is the
same as would occur if a bubble were inserted.

Performance of “Stall on Branch” 

Estimate the impact on the clock cycles per instruction (CPI) of stalling on
branches. Assume all other instructions have a CPI of 1.

Figure 3.26 on page 228 in Chapter 3 shows that branches are 13% of the in-
structions executed in SPECint2000. Since other instructions run have a CPI
of 1 and branches took one extra clock cycle for the stall, then we would see a
CPI of 1.13 and hence a slowdown of 1.13 versus the ideal case. Notice that
this includes only branches and that jumps might also incur a stall.
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If we cannot resolve the branch in the second stage, as is often the case for longer
pipelines, then we’d see an even larger slowdown if we stall on branches. The cost of
this option is too high for most computers to use and motivates a second solution
to the control hazard:

Predict: If you’re pretty sure you have the right formula to wash uniforms, then
just predict that it will work and wash the second load while waiting for the
first load to dry. This option does not slow down the pipeline when you are
correct. When you are wrong, however, you need to redo the load that was
washed while guessing the decision.

Computers do indeed use prediction to handle branches. One simple approach
is to always predict that branches will be untaken. When you’re right, the pipeline
proceeds at full speed. Only when branches are taken does the pipeline stall. Fig-
ure 6.8 shows such an example. 

FIGURE 6.8 Predicting that branches are not taken as a solution to control hazard. The
top drawing shows the pipeline when the branch is not taken. The bottom drawing shows the pipeline when
the branch is taken. As we noted in Figure 6.7, the insertion of a bubble in this fashion simplifies what actu-
ally happens, at least during the first clock cycle immediately following the branch. Section 6.6 will reveal
the details. 

untaken branch One that 
falls through to the successive 
instruction. A taken branch is 
one that causes transfer to the 
branch target.
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A more sophisticated version of branch prediction would have some branches
predicted as taken and some as untaken. In our analogy, the dark or home uni-
forms might take one formula while the light or road uniforms might take
another. As a computer example, at the bottom of loops are branches that jump
back to the top of the loop. Since they are likely to be taken and they branch back-
wards, we could always predict taken for branches that jump to an earlier address.

Such rigid approaches to branch prediction rely on stereotypical behavior and
don’t account for the individuality of a specific branch instruction. Dynamic hard-
ware predictors, in stark contrast, make their guesses depending on the behavior
of each branch and may change predictions for a branch over the life of a pro-
gram. Following our analogy, in dynamic prediction a person would look at how
dirty the uniform was and guess at the formula, adjusting the next guess depend-
ing on the success of recent guesses. One popular approach to dynamic prediction
of branches is keeping a history for each branch as taken or untaken, and then
using the recent past behavior to predict the future. As we will see later, the
amount and type of history kept have become extensive with the result being that
dynamic branch predictors can correctly predict branches with over 90% accuracy
(see Section 6.6). When the guess is wrong, the pipeline control must ensure that
the instructions following the wrongly guessed branch have no effect and must
restart the pipeline from the proper branch address. In our laundry analogy, we
must stop taking new loads so that we can restart the load that we incorrectly pre-
dicted.

As in the case of all other solutions to control hazards, longer pipelines exacer-
bate the problem, in this case by raising the cost of misprediction. Solutions to
control hazards are described in more detail in Section 6.6.

Elaboration: There is a third approach to the control hazard, called delayed decision.
In our analogy, whenever you are going to make such a decision about laundry, just
place a load of nonfootball clothes in the washer while waiting for football uniforms to
dry. As long as you have enough dirty clothes that are not affected by the test, this solu-
tion works fine.

Called the delayed branch in computers, this is the solution actually used by the
MIPS architecture. The delayed branch always executes the next sequential instruction,
with the branch taking place after that one instruction delay. It is hidden from the MIPS
assembly language programmer because the assembler can automatically arrange the
instructions to get the branch behavior desired by the programmer. MIPS software will
place an instruction immediately after the delayed branch instruction that is not
affected by the branch, and a taken branch changes the address of the instruction that
follows this safe instruction. In our example, the add instruction before the branch in
Figure 6.7 does not affect the branch and can be moved after the branch to fully hide
the branch delay. Since delayed branches are useful when the branches are short, no
processor uses a delayed branch of more than 1 cycle. For longer branch delays, hard-
ware-based branch prediction is usually used. 

branch prediction A method 
of resolving a branch hazard 
that assumes a given outcome 
for the branch and proceeds 
from that assumption rather 
than waiting to ascertain the 
actual outcome.
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Pipeline Overview Summary

Pipelining is a technique that exploits parallelism among the instructions in a
sequential instruction stream. It has the substantial advantage that, unlike some
speedup techniques (see  Chapter 9), it is fundamentally invisible to the pro-
grammer.

In the next sections of this chapter, we cover the concept of pipelining using the
MIPS instruction subset lw, sw, add, sub, and, or, slt, and beq (same as Chap-
ter 5) and a simplified version of its pipeline. We then look at the problems that
pipelining introduces and the performance attainable under typical situations.

If you wish to focus more on the software and the performance implications of
pipelining, you now have sufficient background to skip to Section 6.9. Section 6.9
introduces advanced pipelining concepts, such as superscalar and dynamic sched-
uling, and Section 6.10 examines the pipeline of the Pentium 4 microprocessor. 

Alternatively, if you are interested in understanding how pipelining is imple-
mented and the challenges of dealing with hazards, you can proceed to examine
the design of a pipelined datapath, explained in Section 6.2, and the basic control,
explained in Section 6.3. You can then use this understanding to explore the
implementation of forwarding in Section 6.4, and the implementation of stalls in
Section 6.5. You can then read Section 6.6 to learn more about solutions to branch
hazards, and then see how exceptions are handled in Section 6.8.

Pipelining increases the number of simultaneously executing instructions
and the rate at which instructions are started and completed. Pipelining
does not reduce the time it takes to complete an individual instruction,
also called the latency. For example, the five-stage pipeline still takes 5
clock cycles for the instruction to complete. In the terms used in Chapter
4, pipelining improves instruction throughput rather than individual
instruction execution time or latency.

Instruction sets can either simplify or make life harder for pipeline
designers, who must already cope with structural, control, and data haz-
ards. Branch prediction, forwarding, and stalls help make a computer fast
while still getting the right answers.

The BIG
Picture

latency (pipeline) The num-
ber of stages in a pipeline or the 
number of stages between two 
instructions during execution.
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Check
Yourself

For each code sequence below, state whether it must stall, can avoid stalls using
only forwarding, or can execute without stalling or forwarding: 

Figure 6.9 shows the single-cycle datapath from Chapter 5. The division of an
instruction into five stages means a five-stage pipeline, which in turn means that
up to five instructions will be in execution during any single clock cycle. Thus, we

Understanding
Program

Performance

Outside of the memory system, the effective operation of the pipeline is usually
the most important factor in determining the CPI of the processor and hence its
performance. As we will see in Section 6.9, understanding the performance of a
modern multiple-issue pipelined processor is complex and requires understand-
ing more than just the issues that arise in a simple pipelined processor. Nonethe-
less, structural, data, and control hazards remain important in both simple
pipelines and in more sophisticated ones. 

For modern pipelines, structural hazards usually revolve around the floating-
point unit, which may not be fully pipelined, while control hazards are usually
more of a problem in integer programs, which tend to have higher branch fre-
quencies as well as less predictable branches. Data hazards can be performance
bottlenecks in both integer and floating-point programs. Often it is easier to deal
with data hazards in floating-point programs because the lower branch frequency
and more regular access patterns allow the compiler to try to schedule instruc-
tions to avoid hazards. It is more difficult to perform such optimizations in inte-
ger programs that have less regular access involving more use of pointers. As we
will see in Section 6.9, there are more ambitious compiler and hardware tech-
niques for reducing data dependences through scheduling.

Sequence 1 Sequence 2 Sequence 3

lw   $t0,0($t0)
add  $t1,$t0,$t0

add   $t1,$t0,$t0
addi  $t2,$t0,#5
addi  $t4,$t1,#5

addi  $t1,$t0,#1
addi  $t2,$t0,#2
addi  $t3,$t0,#2
addi  $t3,$t0,#4
addi  $t5,$t0,#5

6.2 A Pipelined Datapath 6.2

There is less in this than 
meets the eye.

Tallulah Bankhead, remark to 
Alexander Wollcott, 1922
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must separate the datapath into five pieces, with each piece named corresponding
to a stage of instruction execution:

1. IF: Instruction fetch

2. ID: Instruction decode and register file read

3. EX: Execution or address calculation

4. MEM: Data memory access

5. WB: Write back

In Figure 6.9, these five components correspond roughly to the way the data-
path is drawn; instructions and data move generally from left to right through the
five stages as they complete execution. Going back to our laundry analogy, clothes
get cleaner, drier, and more organized as they move through the line, and they
never move backwards.

FIGURE 6.9 The single-cycle datapath from Chapter 5 (similar to Figure 5.17 on page 307). Each step of the instruction can be
mapped onto the datapath from left to right. The only exceptions are the update of the PC and the write-back step, shown in color, which sends either
the ALU result or the data from memory to the left to be written into the register file. (Normally we use color lines for control, but these are data lines.)
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There are, however, two exceptions to this left-to-right flow of instructions:

■ The write-back stage, which places the result back into the register file in the
middle of the datapath

■ The selection of the next value of the PC, choosing between the incremented
PC and the branch address from the MEM stage

Data flowing from right to left does not affect the current instruction; only later
instructions in the pipeline are influenced by these reverse data movements. Note
that the first right-to-left arrow can lead to data hazards and the second leads to
control hazards.

One way to show what happens in pipelined execution is to pretend that each
instruction has its own datapath, and then to place these datapaths on a time line
to show their relationship. Figure 6.10 shows the execution of the instructions in
Figure 6.3 by displaying their private datapaths on a common time line. We use a
stylized version of the datapath in Figure 6.9 to show the relationships in
Figure 6.10. 

Figure 6.10 seems to suggest that three instructions need three datapaths. In
Chapter 5, we added registers to hold data so that portions of the datapath could
be shared during instruction execution; we use the same technique here to share
the multiple datapaths. For example, as Figure 6.10 shows, the instruction mem-
ory is used during only one of the five stages of an instruction, allowing it to be
shared by other instructions during the other four stages. 

To retain the value of an individual instruction for its other four stages, the
value read from instruction memory must be saved in a register. Similar argu-
ments apply to every pipeline stage, so we must place registers wherever there are
dividing lines between stages in Figure 6.9. This change is similar to the registers
added in Chapter 5 when we went from a single-cycle to a multicycle datapath.
Returning to our laundry analogy, we might have a basket between each pair of
stages to hold the clothes for the next step. 

Figure 6.11 shows the pipelined datapath with the pipeline registers high-
lighted. All instructions advance during each clock cycle from one pipeline regis-
ter to the next. The registers are named for the two stages separated by that
register. For example, the pipeline register between the IF and ID stages is called
IF/ID.

Notice that there is no pipeline register at the end of the write-back stage. All
instructions must update some state in the processor—the register file, memory,
or the PC—so a separate pipeline register is redundant to the state that is updated.
For example, a load instruction will place its result in 1 of the 32 registers, and any
later instruction that needs that data will simply read the appropriate register. 

Of course, every instruction updates the PC, whether by incrementing it or by
setting it to a branch destination address. The PC can be thought of as a pipeline
register: one that feeds the IF stage of the pipeline. Unlike the shaded pipeline reg-
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Administrator
Highlight
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isters in Figure 6.11, however, the PC is part of the visible architectural state; its
contents must be saved when an exception occurs, while the contents of the pipe-
line registers can be discarded. In the laundry analogy, you could think of the PC
as corresponding to the basket that holds the load of dirty clothes before the wash
step!

To show how the pipelining works, throughout this chapter we show sequences
of figures to demonstrate operation over time. These extra pages would seem to
require much more time for you to understand. Fear not; the sequences take
much less time than it might appear because you can compare them to see what
changes occur in each clock cycle. Sections 6.4 and 6.5 describe what happens
when there are data hazards between pipelined instructions; ignore them for now.

Figures 6.12 through 6.14, our first sequence, show the active portions of the
datapath highlighted as a load instruction goes through the five stages of pipelined

FIGURE 6.10 Instructions being executed using the single-cycle datapath in Figure 6.9,
assuming pipelined execution. Similar to Figures 6.4 through 6.6, this figure pretends that each
instruction has its own datapath, and shades each portion according to use. Unlike those figures, each stage
is labeled by the physical resource used in that stage, corresponding to the portions of the datapath in
Figure 6.9. IM represents the instruction memory and the PC in the instruction fetch stage, Reg stands for
the register file and sign extender in the instruction decode/register file read stage (ID), and so on. To main-
tain proper time order, this stylized datapath breaks the register file into two logical parts: registers read
during register fetch (ID) and registers written during write back (WB). This dual use is represented by
drawing the unshaded left half of the register file using dashed lines in the ID stage, when it is not being
written, and the unshaded right half in dashed lines in the WB stage, when it is not being read. As before, we
assume the register file is written in the first half of the clock cycle and the register file is read during the sec-
ond half. 

Program
execution
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(in instructions)

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

Time (in clock cycles)

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC7

IM DMReg RegALU

IM DMReg RegALU
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execution. We show a load first because it is active in all five stages. As in Figures
6.4 through 6.11, we highlight the right half of registers or memory when they are
being read and highlight the left half when they are being written. We show the
instruction abbreviation lw with the name of the pipe stage that is active in each
figure. The five stages are the following:

1. Instruction fetch: The top portion of Figure 6.12 shows the instruction
being read from memory using the address in the PC and then placed in the
IF/ID pipeline register. The IF/ID pipeline register is similar to the Instruc-
tion register in Figure 5.26 on page 320. The PC address is incremented by 4
and then written back into the PC to be ready for the next clock cycle. This
incremented address is also saved in the IF/ID pipeline register in case it is
needed later for an instruction, such as beq. The computer cannot know
which type of instruction is being fetched, so it must prepare for any
instruction, passing potentially needed information down the pipeline.

FIGURE 6.11 The pipelined version of the datapath in Figure 6.9. The pipeline registers, in color, separate each pipeline stage. They are
labeled by the stages that they separate; for example, the first is labeled IF/ID because it separates the instruction fetch and instruction decode stages.
The registers must be wide enough to store all the data corresponding to the lines that go through them. For example, the IF/ID register must be 64
bits wide because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC address. We will expand these regis-
ters over the course of this chapter, but for now the other three pipeline registers contain 128, 97, and 64 bits, respectively.
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FIGURE 6.12 IF and ID: first and second pipe stages of an instruction, with the active portions of the datapath in
Figure 6.11 highlighted. The highlighting convention is the same as that used in Figure 6.4. As in Chapter 5, there is no confusion when reading
and writing registers because the contents change only on the clock edge. Although the load needs only the top register in stage 2, the processor doesn’t
know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers into the ID/EX pipeline register. We don’t need
all three operands, but it simplifies control to keep all three.
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2. Instruction decode and register file read: The bottom portion of Figure 6.12
shows the instruction portion of the IF/ID pipeline register supplying the
16-bit immediate field, which is sign-extended to 32 bits, and the register
numbers to read the two registers. All three values are stored in the ID/EX
pipeline register, along with the incremented PC address. We again transfer
everything that might be needed by any instruction during a later clock
cycle.

3. Execute or address calculation: Figure 6.13 shows that the load instruction
reads the contents of register 1 and the sign-extended immediate from the
ID/EX pipeline register and adds them using the ALU. That sum is placed in
the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 6.14  shows the load instruction
reading the data memory using the address from the EX/MEM pipeline
register and loading the data into the MEM/WB pipeline register.

FIGURE 6.13 EX: the third pipe stage of a load instruction, highlighting the portions of the datapath in Figure 6.11 used in
this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the EX/MEM pipeline register.
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FIGURE 6.14 MEM and WB: the fourth and fifth pipe stages of a load instruction, highlighting the portions of the
datapath in Figure 6.11 used in this pipe stage. Data memory is read using the address in the EX/MEM pipeline registers, and the
data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB pipeline register and written into the register file in
the middle of the datapath.
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5. Write back: The bottom portion of Figure 6.14 shows the final step: reading
the data from the MEM/WB pipeline register and writing it into the register
file in the middle of the figure.

This walk-through of the load instruction shows that any information needed
in a later pipe stage must be passed to that stage via a pipeline register. Walking
through a store instruction shows the similarity of instruction execution, as well
as passing the information for later stages. Here are the five pipe stages of the store
instruction:

1. Instruction fetch: The instruction is read from memory using the address in
the PC and then is placed in the IF/ID pipeline register. This stage occurs
before the instruction is identified, so the top portion of Figure 6.12 works
for store as well as load.

2. Instruction decode and register file read: The instruction in the IF/ID pipe-
line register supplies the register numbers for reading two registers and
extends the sign of the 16-bit immediate. These three 32-bit values are all
stored in the ID/EX pipeline register. The bottom portion of Figure 6.12 for
load instructions also shows the operations of the second stage for stores.
These first two stages are executed by all instructions, since it is too early to
know the type of the instruction.

3. Execute and address calculation: Figure 6.15 shows the third step; the effec-
tive address is placed in the EX/MEM pipeline register.

4. Memory access: The top portion of Figure 6.16 shows the data being writ-
ten to memory. Note that the register containing the data to be stored was
read in an earlier stage and stored in ID/EX. The only way to make the data
available during the MEM stage is to place the data into the EX/MEM pipe-
line register in the EX stage, just as we stored the effective address into
EX/MEM.

5. Write back: The bottom portion of Figure 6.16 shows the final step of the
store. For this instruction, nothing happens in the write-back stage. Since
every instruction behind the store is already in progress, we have no way to
accelerate those instructions. Hence, an instruction passes through a stage
even if there is nothing to do because later instructions are already pro-
gressing at the maximum rate.

The store instruction again illustrates that to pass something from an early pipe
stage to a later pipe stage, the information must be placed in a pipeline register;
otherwise, the information is lost when the next instruction enters that pipeline
stage. For the store instruction we needed to pass one of the registers read in the
ID stage to the MEM stage, where it is stored in memory. The data was first placed
in the ID/EX pipeline register and then passed to the EX/MEM pipeline register. 
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Load and store illustrate a second key point: each logical component of the
datapath—such as instruction memory, register read ports, ALU, data memory,
and register write port—can be used only within a single pipeline stage. Otherwise
we would have a structural hazard (see page 375). Hence these components, and
their control, can be associated with a single pipeline stage. 

Now we can uncover a bug in the design of the load instruction. Did you see it?
Which register is changed in the final stage of the load? More specifically, which
instruction supplies the write register number? The instruction in the IF/ID pipe-
line register supplies the write register number, yet this instruction occurs consid-
erably after the load instruction!

Hence, we need to preserve the destination register number in the load instruc-
tion. Just as store passed the register contents from the ID/EX to the EX/MEM
pipeline registers for use in the MEM stage, load must pass the register number
from the ID/EX through EX/MEM to the MEM/WB pipeline register for use in

FIGURE 6.15 EX: the third pipe stage of a store instruction. Unlike the third stage of the load instruction in Figure 6.13, the second reg-
ister value is loaded into the EX/MEM pipeline register to be used in the next stage. Although it wouldn’t hurt to always write this second register into
the EX/MEM pipeline register, we write the second register only on a store instruction to make the pipeline easier to understand.
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FIGURE 6.16 MEM and WB: the fourth and fifth pipe stage of a store instruction. In the fourth stage, the data is written into data
memory for the store. Note that the data comes from the EX/MEM pipeline register and that nothing is changed in the MEM/WB pipeline register.
Once the data is written in memory, there is nothing left for the store instruction to do, so nothing happens in stage 5.
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the WB stage. Another way to think about the passing of the register number is
that, in order to share the pipelined datapath, we needed to preserve the instruc-
tion read during the IF stage, so each pipeline register contains a portion of the
instruction needed for that stage and later stages. 

Figure 6.17 shows the correct version of the datapath, passing the write register
number first to the ID/EX register, then to the EX/MEM register, and finally to the
MEM/WB register. The register number is used during the WB stage to specify the
register to be written. Figure 6.18 is a single drawing of the corrected datapath,
highlighting the hardware used in all five stages of the load word instruction in
Figures 6.12 through 6.14. See Section 6.6 for an explanation of how to make the
branch instruction work as expected. 

Graphically Representing Pipelines

Pipelining can be difficult to understand, since many instructions are simulta-
neously executing in a single datapath in every clock cycle. To aid understanding,
there are two basic styles of pipeline figures: multiple-clock-cycle pipeline dia-
grams, such as Figure 6.10 on page 387, and single-clock-cycle pipeline diagrams,

FIGURE 6.17 The corrected pipelined datapath to properly handle the load instruction. The write register number now comes from
the MEM/WB pipeline register along with the data. The register number is passed from the ID pipe stage until it reaches the MEM/WB pipeline regis-
ter, adding 5 more bits to the last three pipeline registers. This new path is shown in color.
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such as Figures 6.12 through 6.16. The multiple-clock-cycle diagrams are simpler
but do not contain all the details. For example, consider the following five-
instruction sequence:

lw     $10, 20($1)
sub    $11, $2, $3 
add    $12, $3, $4
lw     $13, 24($1)
add    $14, $5, $6

Figure 6.19 shows the multiple-clock-cycle pipeline diagram for these instruc-
tions. Time advances from left to right across the page in these diagrams, and
instructions advance from the top to the bottom of the page, similar to the laun-
dry pipeline in Figure 6.1 on page 371. A representation of the pipeline stages is
placed in each portion along the instruction axis, occupying the proper clock
cycles. These stylized datapaths represent the five stages of our pipeline, but a rect-
angle naming each pipe stage works just as well. Figure 6.20 shows the more tradi-
tional version of the multiple-clock-cycle pipeline diagram. Note that Figure 6.19
shows the physical resources used at each stage, while Figure 6.20 uses the name of
each stage. We use multiple-clock-cycle diagrams to give overviews of pipelining
situations.  

FIGURE 6.18 The portion of the datapath in Figure 6.17 that is used in all five stages of a load instruction.
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FIGURE 6.19 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation shows the complete execu-
tion of instructions in a single figure. Instructions are listed in instruction execution order from top to bottom, and clock cycles move from left to
right. Unlike Figure 6.4, here we show the pipeline registers between each stage. Figure 6.20 shows the traditional way to draw this diagram. 

FIGURE 6.20 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 6.19.
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Single-clock-cycle pipeline diagrams show the state of the entire datapath dur-
ing a single clock cycle, and usually all five instructions in the pipeline are identi-
fied by labels above their respective pipeline stages. We use this type of figure to
show the details of what is happening within the pipeline during each clock cycle;
typically, the drawings appear in groups to show pipeline operation over a
sequence of clock cycles. A single-clock-cycle diagram represents a vertical slice
through a set of multiple-clock-cycle diagram, showing the usage of the datapath
by each of the instructions in the pipeline at the designated clock cycle. For exam-
ple, Figure 6.21 shows the single-clock-cycle diagram corresponding to clock cycle
5 of Figures 6.19 and 6.20. Obviously, the single-clock-cycle diagrams have more
detail and take significantly more space to show the same number of clock cycles.
The For More Practice section included on the CD includes the corresponding
single-clock-cycle diagrams for these two instructions as well as exercises asking
you to create such diagrams for another code sequence.

FIGURE 6.21 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 6.19 and 6.20. As you
can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.
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Check
Yourself

A group of students have been debating the efficiency of the five-stage pipeline
when one student pointed out that not all instructions are active in every stage of
the pipeline. After deciding to ignore the effects of hazards, they made the follow-
ing five statements. Which ones are correct? 

1. Allowing jumps, branches, and ALU instructions to take fewer stages than
the five required by the load instruction will increase pipeline performance
under all circumstances.

2. Trying to allow some instructions to take fewer cycles does not help, since
the throughput is determined by the clock cycle; the number of pipe stages
per instruction affects latency, not throughput. 

3. Allowing jumps, branches, and ALU operations to take fewer cycles only
helps when no loads or stores are in the pipeline, so the benefits are small.

4. You cannot make ALU instructions take fewer cycles because of the write-
back of the result, but branches and jumps can take fewer cycles, so there is
some opportunity for improvement.

5. Instead of trying to make instructions take fewer cycles, we should explore
making the pipeline longer, so that instructions take more cycles, but the
cycles are shorter. This could improve performance. 

Just as we added control to the simple datapath in Section 5.4, we now add control
to the pipelined datapath. We start with a simple design that views the problem
through rose-colored glasses; in Sections 6.4 through 6.8, we remove these glasses
to reveal the hazards of the real world.

The first step is to label the control lines on the existing datapath. Figure 6.22
shows those lines. We borrow as much as we can from the control for the simple
datapath in Figure 5.17 on page 307. In particular, we use the same ALU control
logic, branch logic, destination-register-number multiplexor, and control lines.
These functions are defined in Figure 5.12 on page 302, Figure 5.16 on page 306,
and Figure 5.18 on page 308. We reproduce the key information in Figures 6.23
through 6.25 to make the remaining text easier to follow.  

As for the single-cycle implementation discussed in Chapter 5, we assume that
the PC is written on each clock cycle, so there is no separate write signal for the

6.3 Pipelined Control 6.3

In the 6600 Computer, per-
haps even more than in any 
previous computer, the con-
trol system is the difference.

 James Thornton, 
Design of a Computer:
The Control Data 6600, 1970

Administrator
Highlight
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PC. By the same argument, there are no separate write signals for the pipeline reg-
isters (IF/ID, ID/EX, EX/MEM, and MEM/WB), since the pipeline registers are
also written during each clock cycle.

To specify control for the pipeline, we need only set the control values during
each pipeline stage. Because each control line is associated with a component
active in only a single pipeline stage, we can divide the control lines into five
groups according to the pipeline stage.        

1. Instruction fetch: The control signals to read instruction memory and to
write the PC are always asserted, so there is nothing special to control in
this pipeline stage.

FIGURE 6.22 The pipelined datapath of Figure 6.17 with the control signals identified. This datapath borrows the control logic for
PC source, register destination number, and ALU control from Chapter 5. Note that we now need the 6-bit funct field (function code) of the instruc-
tion in the EX stage as input to ALU control, so these bits must also be included in the ID/EX pipeline register. Recall that these 6 bits are also the 6
least significant bits of the immediate field in the instruction, so the ID/EX pipeline register can supply them from the immediate field since sign
extension leaves these bits unchanged.
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Instruction
opcode ALUOp

Instruction
operation Function code

Desired
ALU action

ALU control
input

LW 00 load word XXXXXX add 0010

SW 00 store word XXXXXX add 0010

Branch equal 01 branch equal XXXXXX subtract 0110

R-type 10 add 100000 add 0010

R-type 10 subtract 100010 subtract 0110

R-type 10 AND 100100 and 0000

R-type 10 OR 100101 or 0001

R-type 10 set on less than 101010 set on less than 0111

FIGURE 6.23 A copy of Figure 5.12 on page 302. This figure shows how the ALU control bits are
set depending on the ALUOp control bits and the different function codes for the R-type instruction.

Signal name Effect when deasserted (0) Effect when asserted (1)

RegDst The register destination number for the Write register 
comes from the rt field (bits 20:16).

The register destination number for the Write register comes from 
the rd field (bits 15:11).

RegWrite None. The register on the Write register input is written with the value on 
the Write data input. 

ALUSrc The second ALU operand comes from the second 
register file output (Read data 2).

The second ALU operand is the sign-extended, lower 16 bits of the 
instruction.

PCSrc The PC is replaced by the output of the adder that 
computes the value of PC + 4.

The PC is replaced by the output of the adder that computes the 
branch target.

MemRead None. Data memory contents designated by the address input are put on 
the Read data output. 

MemWrite None. Data memory contents designated by the address input are 
replaced by the value on the Write data input.

MemtoReg The value fed to the register Write data input comes 
from the ALU.

The value fed to the register Write data input comes from the data 
memory.

FIGURE 6.24 A copy of Figure 5.16 on page 306. The function of each of seven control signals is defined. The ALU control lines (ALUOp)
are defined in the second column of Figure 6.23. When a 1-bit control to a two-way multiplexor is asserted, the multiplexor selects the input corre-
sponding to 1. Otherwise, if the control is deasserted, the multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 6.22.
If the Branch signal and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only during a beq instruc-
tion; otherwise, PCSrc is set to 0.

Instruction

Execution/address calculation stage
control lines

Memory access stage
control lines

Write-back stage
control lines

Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src  Branch

 Mem
Read

Mem
Write

Reg
Write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

FIGURE 6.25 The values of the control lines are the same as in Figure 5.18 on page 308, but they have been shuffled into
three groups corresponding to the last three pipeline stages.
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2. Instruction decode/register file read: As in the previous stage, the same thing
happens at every clock cycle, so there are no optional control lines to set.

3. Execution/address calculation: The signals to be set are RegDst, ALUOp,
and ALUSrc (see Figures 6.23 and 6.24). The signals select the Result regis-
ter, the ALU operation, and either Read data 2 or a sign-extended immedi-
ate for the ALU.

4. Memory access: The control lines set in this stage are Branch, MemRead,
and MemWrite. These signals are set by the branch equal, load, and store
instructions, respectively. Recall that PCSrc in Figure 6.24 selects the next
sequential address unless control asserts Branch and the ALU result was
zero.

5. Write back: The two control lines are MemtoReg, which decides between
sending the ALU result or the memory value to the register file, and Reg-
Write, which writes the chosen value.

Since pipelining the datapath leaves the meaning of the control lines
unchanged, we can use the same control values as before. Figure 6.25 has the same
values as in Chapter 5, but now the nine control lines are grouped by pipeline
stage.

Implementing control means setting the nine control lines to these values in
each stage for each instruction. The simplest way to do this is to extend the pipe-
line registers to include control information.

Since the control lines start with the EX stage, we can create the control infor-
mation during instruction decode. Figure 6.26 shows that these control signals are
then used in the appropriate pipeline stage as the instruction moves down the
pipeline, just as the destination register number for loads moves down the pipe-
line in Figure 6.17 on page 395. Figure 6.27 shows the full datapath with the
extended pipeline registers and with the control lines connected to the proper
stage.

The examples in the previous section show the power of pipelined execution and
how the hardware performs the task. It’s now time to take off the rose-colored
glasses and look at what happens with real programs. The instructions in Figures
6.19 through 6.21 were independent; none of them used the results calculated by
any of the others. Yet in Section 6.1 we saw that data hazards are obstacles to pipe-
lined execution.

Let’s look at a sequence with many dependences, shown in color:

6.4 Data Hazards and Forwarding 6.4

What do you mean, why's it 
got to be built? It's a bypass. 
You've got to build bypasses.

Douglas Adams, Hitchhikers 
Guide to the Galaxy, 1979
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sub   $2, $1,$3     # Register $2 written by sub
and   $12,$2,$5     # 1st operand($2) depends on sub
or    $13,$6,$2     # 2nd operand($2) depends on sub
add   $14,$2,$2     # 1st($2) & 2nd($2) depend on sub
sw    $15,100($2)   # Base ($2) depends on sub

The last four instructions are all dependent on the result in register $2 of the first
instruction. If register $2 had the value 10 before the subtract instruction and –20
afterwards, the programmer intends that –20 will be used in the following
instructions that refer to register $2.

How would this sequence perform with our pipeline? Figure 6.28 illustrates the
execution of these instructions using a multiple-clock-cycle pipeline representa-
tion. To demonstrate the execution of this instruction sequence in our current
pipeline, the top of Figure 6.28 shows the value of register $2, which changes dur-
ing the middle of clock cycle 5, when the sub instruction writes its result.

One potential hazard can be resolved by the design of the register file hardware:
what happens when a register is read and written in the same clock cycle? We
assume that the write is in the first half of the clock cycle and the read is in the sec-
ond half, so the read delivers what is written. As is the case for many implementa-
tions of register files, we have no data hazard in this case. 

FIGURE 6.26 The control lines for the final three stages. Note that four of the nine control
lines are used in the EX phase, with the remaining five control lines passed on to the EX/MEM pipeline reg-
ister extended to hold the control lines; three are used during the MEM stage, and the last two are passed to
MEM/WB for use in the WB stage.
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Figure 6.28 shows that the values read for register $2 would not be the result of
the sub instruction unless the read occurred during clock cycle 5 or later. Thus,
the instructions that would get the correct value of –20 are add and sw; the and
and or instructions would get the incorrect value 10! Using this style of drawing,
such problems become apparent when a dependence line goes backwards in time. 

But, look carefully at Figure 6.28: When is the data from the sub instruction
actually produced? The result is available at the end of the EX stage or clock cycle
3. When is the data actually needed by the and and or instructions? At the begin-
ning of the EX stage, or clock cycles 4 and 5, respectively. Thus, we can execute

FIGURE 6.27 The pipelined datapath of Figure 6.22, with the control signals connected to the control portions of the pipe-
line registers. The control values for the last three stages are created during the instruction decode stage and then placed in the ID/EX pipeline reg-
ister. The control lines for each pipe stage are used, and remaining control lines are then passed to the next pipeline stage.
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this segment without stalls if we simply forward the data as soon as it is available
to any units that need it before it is available to read from the register file. 

How does forwarding work? For simplicity in the rest of this section, we con-
sider only the challenge of forwarding to an operation in the EX stage, which may
be either an ALU operation or an effective address calculation. This means that
when an instruction tries to use a register in its EX stage that an earlier instruction
intends to write in its WB stage, we actually need the values as inputs to the ALU. 

A notation that names the fields of the pipeline registers allows for a more pre-
cise notation of dependences. For example, “ID/EX.RegisterRs” refers to the num-
ber of one register whose value is found in the pipeline register ID/EX; that is, the
one from the first read port of the register file. The first part of the name, to the
left of the period, is the name of the pipeline register; the second part is the name

FIGURE 6.28 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the dependences.
All the dependent actions are shown in color, and “CC i” at the top of the figure means clock cycle i. The first instruction writes into $2, and all the fol-
lowing instructions read $2. This register is written in clock cycle 5, so the proper value is unavailable before clock cycle 5. (A read of a register during
a clock cycle returns the value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from the top datapath to the
lower ones show the dependences. Those that must go backwards in time are pipeline data hazards.
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of the field in that register. Using this notation, the two pairs of hazard conditions
are

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

The first hazard in the sequence on page 403 is on register $2, between the
result of sub $2,$1,$3 and the first read operand of and $12,$2,$5. This
hazard can be detected when the and instruction is in the EX stage and the prior
instruction is in the MEM stage, so this is hazard 1a:

EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

Because some instructions do not write registers, this policy is inaccurate;
sometimes it would forward when it was unnecessary. One solution is simply to
check to see if the RegWrite signal will be active: examining the WB control field

Dependence Detection

Classify the dependences in this sequence from page 403:

sub $2, $1, $3  # Register $2 set by sub
and $12, $2, $5  # 1st operand($2) set by sub
or $13, $6, $2  # 2nd operand($2) set by sub
add $14, $2, $2  # 1st($2) & 2nd($2) set by sub
sw $15, 100($2) # Index($2) set by sub

As mentioned above, the sub-and is a type 1a hazard. The remaining hazards
are

■ The sub-or is a type 2b hazard:

MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

■ The two dependences on sub-add are not hazards because the register
file supplies the proper data during the ID stage of add.

■ There is no data hazard between sub and sw because sw reads $2 the
clock cycle after sub writes $2.

EXAMPLE

ANSWER
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of the pipeline register during the EX and MEM stages determines if RegWrite is
asserted. Also, MIPS requires that every use of $0 as an operand must yield an
operand value of zero. In the event that an instruction in the pipeline has $0 as its
destination (for example, sll $0, $1, 2), we want to avoid forwarding its possibly
nonzero result value. Not forwarding results destined for $0 frees the assembly
programmer and the compiler of any requirement to avoid using $0 as a destina-
tion. The conditions above thus work properly as long we add EX/MEM.Regis-
terRd 0 to the first hazard condition and MEM/WB.RegisterRd 0 to the
second. 

Now that we can detect hazards, half of the problem is resolved—but we must
still forward the proper data.

Figure 6.29 shows the dependences between the pipeline registers and the
inputs to the ALU for the same code sequence as in Figure 6.28. The change is that
the dependence begins from a pipeline register rather than waiting for the WB
stage to write the register file. Thus the required data exists in time for later
instructions, with the pipeline registers holding the data to be forwarded.

If we can take the inputs to the ALU from any pipeline register rather than just
ID/EX, then we can forward the proper data. By adding multiplexors to the input
of the ALU and with the proper controls, we can run the pipeline at full speed in
the presence of these data dependences. 

For now, we will assume the only instructions we need to forward are the four
R-format instructions: add, sub, and, and or. Figure 6.30 shows a close-up of
the ALU and pipeline register before and after adding forwarding. Figure 6.31
shows the values of the control lines for the ALU multiplexors that select either the
register file values or one of the forwarded values.

This forwarding control will be in the EX stage because the ALU forwarding
multiplexors are found in that stage. Thus, we must pass the operand register
numbers from the ID stage via the ID/EX pipeline register to determine whether
to forward values. We already have the rt field (bits 20–16). Before forwarding, the
ID/EX register had no need to include space to hold the rs field. Hence, rs (bits
25–21) is added to ID/EX. 

Let’s now write both the conditions for detecting hazards and the control sig-
nals to resolve them:

1. EX hazard:

if (EX/MEM.RegWrite 
and (EX/MEM.RegisterRd � 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA = 10

if (EX/MEM.RegWrite 
and (EX/MEM.RegisterRd � 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10



408 Chapter 6 Enhancing Performance with Pipelining

This case forwards the result from the previous instruction to either input of the
ALU. If the previous instruction is going to write to the register file and the write
register number matches the read register number of ALU inputs A or B, provided
it is not register 0, then steer the multiplexor to pick the value instead from the
pipeline register EX/MEM.

FIGURE 6.29 The dependences between the pipeline registers move forward in time, so it is possible to supply the inputs
to the ALU needed by the and instruction and or instruction by forwarding the results found in the pipeline registers. The val-
ues in the pipeline registers show that the desired value is available before it is written into the register file. We assume that the register file forwards
values that are read and written during the same clock cycle, so the add does not stall, but the values come from the register file instead of a pipeline
register. Register file “forwarding”––that is, the read gets the value of the write in that clock cycle––is why clock cycle 5 shows register $2 having the
value 10 at the beginning and –20 at the end of the clock cycle. As in the rest of this section, we handle all forwarding except for the value to be stored
by a store instruction.

Program
execution
order
(in instructions)

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2 , $2

sw $15, 100($2)

Time (in clock cycles)
CC 1 CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

IM DMReg Reg

10 10 10 10         10/–20        –20          –20          –20          –20Value of register $2:
Value of EX/MEM:        X        X        X      –20         X        X        X        X        X
Value of MEM/WB:         X         X         X         X        –20         X         X         X         X
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FIGURE 6.30 On the top are the ALU and pipeline registers before adding forwarding. On the bottom, the multiplexors have been
expanded to add the forwarding paths, and we show the forwarding unit. The new hardware is shown in color. This figure is a stylized drawing, how-
ever, leaving out details from the full datapath such as the sign extension hardware. Note that the ID/EX.RegisterRt field is shown twice, once to con-
nect to the mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding of a store value to a store
instruction.
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2. MEM hazard:

if (MEM/WB.RegWrite 
and (MEM/WB.RegisterRd � 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite 
and (MEM/WB.RegisterRd � 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

As mentioned above, there is no hazard in the WB stage because we assume
that the register file supplies the correct result if the instruction in the ID stage
reads the same register written by the instruction in the WB stage. Such a register
file performs another form of forwarding, but it occurs within the register file.

One complication is potential data hazards between the result of the instruc-
tion in the WB stage, the result of the instruction in the MEM stage, and the
source operand of the instruction in the ALU stage. For example, when summing
a vector of numbers in a single register, a sequence of instructions will all read and
write to the same register: 

add $1,$1,$2 
add $1,$1,$3 
add $1,$1,$4 
. . .

In this case, the result is forwarded from the MEM stage because the result in
the MEM stage is the more recent result. Thus the control for the MEM hazard
would be (with the additions highlighted)

Mux control Source Explanation

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier 
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an 
earlier ALU result.

FIGURE 6.31 The control values for the forwarding multiplexors in Figure 6.30. The signed
immediate that is another input to the ALU is described in the elaboration at the end of this section.
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if (MEM/WB.RegWrite 
and (MEM/WB.RegisterRd � 0)
and (EX/MEM.RegisterRd � ID/EX.RegisterRs)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA = 01

if (MEM/WB.RegWrite 
and (MEM/WB.RegisterRd � 0)
and (EX/MEM.RegisterRd � ID/EX.RegisterRt)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB = 01

Figure 6.32 shows the hardware necessary to support forwarding for operations
that use results during the EX stage. 

FIGURE 6.32 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure 6.27 on page 404, the
additions are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however, leaving out details from the full datapath such
as the branch hardware and the sign extension hardware.
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Elaboration: Forwarding can also help with hazards when store instructions are
dependent on other instructions. Since they use just one data value during the MEM
stage, forwarding is easy. But consider loads immediately followed by stores. We need
to add more forwarding hardware to make memory-to-memory copies run faster. If we
were to redraw Figure 6.29 on page 408, replacing the sub and and instructions by lw
and an sw, we would see that it is possible to avoid a stall, since the data exists in the
MEM/WB register of a load instruction in time for its use in the MEM stage of a store
instruction. We would need to add forwarding into the memory access stage for this
option. We leave this modification as an exercise.

In addition, the signed-immediate input to the ALU, needed by loads and stores, is
missing from the datapath in Figure 6.32 on page 411. Since central control decides
between register and immediate, and since the forwarding unit chooses the pipeline
register for a register input to the ALU, the easiest solution is to add a 2:1 multiplexor
that chooses between the ForwardB multiplexor output and the signed immediate.
Figure 6.33 shows this addition. Note that this solution differs from what we learned in
Chapter 5, where the multiplexor controlled by line ALUSrcB was expanded to include
the immediate input. 

FIGURE 6.33 A close-up of the datapath in Figure 6.30 on page 409 shows a 2:1 multi-
plexor, which has been added to select the signed immediate as an ALU input.
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As we said in Section 6.1, one case where forwarding cannot save the day is when
an instruction tries to read a register following a load instruction that writes the
same register. Figure 6.34 illustrates the problem. The data is still being read from
memory in clock cycle 4 while the ALU is performing the operation for the fol-
lowing instruction. Something must stall the pipeline for the combination of load
followed by an instruction that reads its result.

Hence, in addition to a forwarding unit, we need a hazard detection unit. It
operates during the ID stage so that it can insert the stall between the load and its
use. Checking for load instructions, the control for the hazard detection unit is
this single condition:

if (ID/EX.MemRead and 
   ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
     (ID/EX.RegisterRt = IF/ID.RegisterRt)))
      stall the pipeline

The first line tests to see if the instruction is a load: the only instruction that reads
data memory is a load. The next two lines check to see if the destination register
field of the load in the EX stage matches either source register of the instruction in
the ID stage. If the condition holds, the instruction stalls 1 clock cycle. After this
1-cycle stall, the forwarding logic can handle the dependence and execution pro-
ceeds. (If there were no forwarding, then the instructions in Figure 6.34 would
need another stall cycle.)

If the instruction in the ID stage is stalled, then the instruction in the IF stage
must also be stalled; otherwise, we would lose the fetched instruction. Preventing
these two instructions from making progress is accomplished simply by prevent-
ing the PC register and the IF/ID pipeline register from changing. Provided these
registers are preserved, the instruction in the IF stage will continue to be read
using the same PC, and the registers in the ID stage will continue to be read using
the same instruction fields in the IF/ID pipeline register. Returning to our favorite
analogy, it’s as if you restart the washer with the same clothes and let the dryer
continue tumbling empty. Of course, like the dryer, the back half of the pipeline
starting with the EX stage must be doing something; what it is doing is executing
instructions that have no effect: nops.

How can we insert these nops, which act like bubbles, into the pipeline? In
Figure 6.25 on page 401, we see that deasserting all nine control signals (setting
them to 0) in the EX, MEM, and WB stages will create a “do nothing” or nop
instruction. By identifying the hazard in the ID stage, we can insert a bubble into

6.5 Data Hazards and Stalls 6.5

If at first you don’t succeed, 
redefine success.

Anonymous 

nop An instruction that does 
no operation to change state.
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the pipeline by changing the EX, MEM, and WB control fields of the ID/EX pipe-
line register to 0. These benign control values are percolated forward at each clock
cycle with the proper effect: no registers or memories are written if the control
values are all 0. 

Figure 6.35 shows what really happens in the hardware: the pipeline execution
slot associated with the and instruction is turned into a nop and all instructions
beginning with the and instruction are delayed one cycle. The hazard forces the
and and or instructions to repeat in clock cycle 4 what they did in clock cycle 3:
and reads registers and decodes, and or is refetched from instruction memory.
Such repeated work is what a stall looks like, but its effect is to stretch the time of
the and and or instructions and delay the fetch of the add instruction. Like an air
bubble in a water pipe, a stall bubble delays everything behind it and proceeds
down the instruction pipe one stage each cycle until it exits at the end.

Figure 6.36 highlights the pipeline connections for both the hazard detection
unit and the forwarding unit. As before, the forwarding unit controls the ALU
multiplexors to replace the value from a general-purpose register with the value

FIGURE 6.34 A pipelined sequence of instructions. Since the dependence between the load and the following instruction (and) goes back-
wards in time, this hazard cannot be solved by forwarding. Hence, this combination must result in a stall by the hazard detection unit.
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from the proper pipeline register. The hazard detection unit controls the writing
of the PC and IF/ID registers plus the multiplexor that chooses between the real
control values and all 0s. The hazard detection unit stalls and deasserts the control
fields if the load-use hazard test above is true. We show the single-clock-cycle dia-
grams in the  For More Practice section on the CD. 

FIGURE 6.35 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle 4, by changing the and
instruction to a nop. Note that the and instruction is really fetched and decoded in clock cycles 2 and 3, but its EX stage is delayed until clock cycle 5
(versus the unstalled position in clock cycle 4). Likewise the or instruction is fetched in clock cycle 3, but its IF stage is delayed until clock cycle 5 (ver-
sus the unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no further hazards occur. 
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Although the hardware may or may not rely on the compiler to resolve
hazard dependences to ensure correct execution, the compiler must
understand the pipeline to achieve the best performance. Otherwise,
unexpected stalls will reduce the performance of the compiled code.

The BIG
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Elaboration: Regarding the remark earlier about setting control lines to 0 to avoid
writing registers or memory: only the signals RegWrite and MemWrite need be 0, while
the other control signals can be don’t cares.

Thus far we have limited our concern to hazards involving arithmetic operations
and data transfers. But as we saw in Section 6.1, there are also pipeline hazards
involving branches. Figure 6.37 shows a sequence of instructions and indicates

FIGURE 6.36 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection unit, and the
forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate and branch logic are missing—this drawing
gives the essence of the forwarding hardware requirements.
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There are a thousand hack-
ing at the branches of evil to 
one who is striking at 
the root.

Henry David Thoreau, 
Walden, 1854
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when the branch would occur in this pipeline. An instruction must be fetched at
every clock cycle to sustain the pipeline, yet in our design the decision about
whether to branch doesn’t occur until the MEM pipeline stage. As mentioned in
Section 6.1, this delay in determining the proper instruction to fetch is called a
control hazard or branch hazard, in contrast to the data hazards we have just
examined.

This section on control hazards is shorter than the previous sections on data
hazards. The reasons are that control hazards are relatively simple to understand,
they occur less frequently than data hazards, and there is nothing as effective
against control hazards as forwarding is for data hazards. Hence, we use simpler
schemes. We look at two schemes for resolving control hazards and one optimiza-
tion to improve these schemes.

FIGURE 6.37 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction (40, 44, . . . ) are the
addresses of the instructions. Since the branch instruction decides whether to branch in the MEM stage—clock cycle 4 for the beq instruction
above—the three sequential instructions that follow the branch will be fetched and begin execution. Without intervention, those three following
instructions will begin execution before beq branches to lw at location 72. (Figure 6.7 on page 380 assumed extra hardware to reduce the control haz-
ard to 1 clock cycle; this figure uses the nonoptimized datapath.)
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Assume Branch Not Taken

As we saw in Section 6.1, stalling until the branch is complete is too slow. A com-
mon improvement over branch stalling is to assume that the branch will not be
taken and thus continue execution down the sequential instruction stream. If the
branch is taken, the instructions that are being fetched and decoded must be dis-
carded. Execution continues at the branch target. If branches are untaken half the
time, and if it costs little to discard the instructions, this optimization halves the
cost of control hazards.

To discard instructions, we merely change the original control values to 0s,
much as we did to stall for a load-use data hazard. The difference is that we must
also change the three instructions in the IF, ID, and EX stages when the branch
reaches the MEM stage; for load-use stalls, we just changed control to 0 in the ID
stage and let them percolate through the pipeline. Discarding instructions, then,
means we must be able to flush instructions in the IF, ID, and EX stages of the
pipeline.

Reducing the Delay of Branches

One way to improve branch performance is to reduce the cost of the taken branch.
Thus far we have assumed the next PC for a branch is selected in the MEM stage,
but if we move the branch execution earlier in the pipeline, then fewer instruc-
tions need be flushed. The MIPS architecture was designed to support fast single-
cycle branches that could be pipelined with a small branch penalty. The designers
observed that many branches rely only on simple tests (equality or sign, for exam-
ple) and that such tests do not require a full ALU operation but can be done with
at most a few gates. When a more complex branch decision is required, a separate
instruction that uses an ALU to perform a comparison is required—a situation
that is similar to the use of condition codes for branches. 

Moving the branch decision up requires two actions to occur earlier: comput-
ing the branch target address and evaluating the branch decision. The easy part of
this change is to move up the branch address calculation. We already have the PC
value and the immediate field in the IF/ID pipeline register, so we just move the
branch adder from the EX stage to the ID stage; of course, the branch target
address calculation will be performed for all instructions, but only used when
needed. 

The harder part is the branch decision itself. For branch equal, we would com-
pare the two registers read during the ID stage to see if they are equal. Equality can
be tested by first exclusive ORing their respective bits and then ORing all the
results. Moving the branch test to the ID stage implies additional forwarding and
hazard detection hardware, since a branch dependent on a result still in the pipe-
line must still work properly with this optimization. For example, to implement
branch-on-equal (and its inverse), we will need to forward results to the equality
test logic that operates during ID. There are two complicating factors: 

flush (instructions) To dis-
card instructions in a pipeline, 
usually due to an unexpected 
event.
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1. During ID, we must decode the instruction, decide whether a bypass to the
equality unit is needed, and complete the equality comparison so that if the
instruction is a branch, we can set the PC to the branch target address. For-
warding for the operands of branches was formerly handled by the ALU
forwarding logic, but the introduction of the equality test unit in ID will
require new forwarding logic. Note that the bypassed source operands of a
branch can come from either the ALU/MEM or MEM/WB pipeline latches.

2. Because the values in a branch comparison are needed during ID but may
be produced later in time, it is possible that a data hazard can occur and a
stall will be needed. For example, if an ALU instruction immediately pre-
ceding a branch produces one of the operands for the comparison in the
branch, a stall will be required, since the EX stage for the ALU instruction
will occur after the ID cycle of the branch. 

Despite these difficulties, moving the branch execution to the ID stage is an
improvement since it reduces the penalty of a branch to only one instruction if the
branch is taken, namely, the one currently being fetched. The exercises explore the
details of implementing the forwarding path and detecting the hazard.

To flush instructions in the IF stage, we add a control line, called IF.Flush, that
zeros the instruction field of the IF/ID pipeline register. Clearing the register
transforms the fetched instruction into a nop, an instruction that has no action
and changes no state. 

Pipelined Branch

Show what happens when the branch is taken in this instruction sequence,
assuming the pipeline is optimized for branches that are not taken and that
we moved the branch execution to the ID stage:

36 sub $10, $4, $8
40 beq  $1, $3, 7 # PC-relative branch to 40 + 4 
+ 7 * 4 = 72
44 and $12, $2, $5
48 or  $13, $2, $6
52 add $14, $4, $2
56 slt $15, $6, $7
. . .
72 lw  $4,  50($7)

Figure 6.38 shows what happens when a branch is taken. Unlike Figure 6.37,
there is only one pipeline bubble on a taken branch.

EXAMPLE

ANSWER
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FIGURE 6.38 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the next PC address
and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at location 72 being fetched and the single
bubble or nop instruction in the pipeline as a result of the taken branch. (Since the nop is really sll $0, $0, 0, it’s arguable whether or not the ID
stage in clock 4 should be highlighted.)
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Dynamic Branch Prediction

Assuming a branch is not taken is one simple form of branch prediction. In that
case, we predict that branches are untaken, flushing the pipeline when we are
wrong. For the simple five-stage pipeline, such an approach, possibly coupled with
compiler-based prediction, is probably adequate. With deeper pipelines, the
branch penalty increases when measured in clock cycles. Similarly, with multiple
issue, the branch penalty increases in terms of instructions lost. This combination
means that in an aggressive pipeline, a simple static prediction scheme will proba-
bly waste too much performance. As we mentioned in Section 6.1, with more hard-
ware it is possible to try to predict branch behavior during program execution. 

One approach is to look up the address of the instruction to see if a branch was
taken the last time this instruction was executed, and, if so, to begin fetching new
instructions from the same place as the last time. This technique is called dynamic
branch prediction.

One implementation of that approach is a branch prediction buffer or branch
history table. A branch prediction buffer is a small memory indexed by the lower
portion of the address of the branch instruction. The memory contains a bit that
says whether the branch was recently taken or not. 

This is the simplest sort of buffer; we don’t know, in fact, if the prediction is the
right one—it may have been put there by another branch that has the same low-
order address bits. But this doesn’t affect correctness. Prediction is just a hint that
is assumed to be correct, so fetching begins in the predicted direction. If the hint
turns out to be wrong, the incorrectly predicted instructions are deleted, the pre-
diction bit is inverted and stored back, and the proper sequence is fetched and
executed. 

This simple 1-bit prediction scheme has a performance shortcoming: even if a
branch is almost always taken, we will likely predict incorrectly twice, rather than
once, when it is not taken. The following example shows this dilemma.

Loops and Prediction

Consider a loop branch that branches nine times in a row, then is not taken
once. What is the prediction accuracy for this branch, assuming the predic-
tion bit for this branch remains in the prediction buffer?

dynamic branch 
prediction Prediction of 
branches at runtime using run-
time information.

branch prediction buffer
Also called branch history 
table. A small memory that is 
indexed by the lower portion of 
the address of the branch 
instruction and that contains 
one or more bits indicating 
whether the branch was recently 
taken or not.

EXAMPLE
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Ideally, the accuracy of the predictor would match the taken branch frequency
for these highly regular branches. To remedy this weakness, 2-bit prediction
schemes are often used. In a 2-bit scheme, a prediction must be wrong twice
before it is changed. Figure 6.39 shows the finite state machine for a 2-bit predic-
tion scheme.

A branch prediction buffer can be implemented as a small, special buffer
accessed with the instruction address during the IF pipe stage. If the instruction is
predicted as taken, fetching begins from the target as soon as the PC is known; as
mentioned on page 418, it can be as early as the ID stage. Otherwise, sequential

The steady-state prediction behavior will mispredict on the first and last loop
iterations. Mispredicting the last iteration is inevitable since the prediction
bit will say taken: the branch has been taken nine times in a row at that point.
The misprediction on the first iteration happens because the bit is flipped on
prior execution of the last iteration of the loop, since the branch was not tak-
en on that exiting iteration. Thus, the prediction accuracy for this branch that
is taken 90% of the time is only 80% (two incorrect predictions and eight
correct ones).

FIGURE 6.39 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that
strongly favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are
used to encode the four states in the system. The two-bit scheme is a general instance of a counter-based
predictor, which is incremented when the prediction is accurate and decremented otherwise, and uses the
midpoint of its range as the division between taken and not taken. 
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fetching and executing continue. If the prediction turns out to be wrong, the pre-
diction bits are changed as shown in Figure 6.39.

Elaboration: As we described in Section 6.1, in a five-stage pipeline we can make
the control hazard a feature by redefining the branch. A delayed branch always executes
the following instruction, but the second instruction following the branch will be
affected by the branch. 

Compilers and assemblers try to place an instruction that always executes after the
branch in the branch delay slot. The job of the software is to make the successor
instructions valid and useful. Figure 6.40 shows the three ways in which the branch
delay slot can be scheduled.

The limitations on delayed-branch scheduling arise from (1) the restrictions on the
instructions that are scheduled into the delay slots and (2) our ability to predict at com-
pile time whether a branch is likely to be taken or not. 

Delayed branching was a simple and effective solution for a five-stage pipeline issu-
ing one instruction each clock cycle. As processors go to both longer pipelines and
issuing multiple instructions per clock cycle (see Section 6.9), the branch delay
becomes longer and a single delay slot is insufficient. Hence, delayed branching has
lost popularity compared to more expensive but more flexible dynamic approaches.
Simultaneously, the growth in available transistors per chip has made dynamic predic-
tion relatively cheaper. 

Elaboration: A branch predictor tells us whether or not a branch is taken, but still
requires the calculation of the branch target. In the five-stage pipeline, this calculation
takes 1 cycle, meaning that taken branches will have a 1-cycle penalty. Delayed
branches are one approach to eliminate that penalty. Another approach is to use a
cache to hold the destination program counter or destination instruction, using a
branch target buffer.

Elaboration: The 2-bit dynamic prediction scheme uses only information about a par-
ticular branch. Researchers noticed that using information about both a local branch
and the global behavior of recently executed branches together yields greater prediction
accuracy for the same number of prediction bits. Such predictors are called correlating
predictors. A typical correlating predictor might have two 2-bit predictors for each
branch with the choice between predictors made on the basis of whether the last exe-
cuted branch was taken or not taken. Thus, the global branch behavior can be thought
of as adding additional index bits for the prediction lookup.

A more recent innovation in branch prediction is the use of tournament predictors. A
tournament predictor uses multiple predictors, tracking, for each branch, which predic-
tor yields the best results. A typical tournament predictor might contain two predictions
for each branch index: one based on local information and one based on global branch
behavior. A selector would choose which predictor to use for any given prediction. The
selector can operate similarly to a 1- or 2-bit predictor favoring whichever of the two pre-
dictors has been more accurate. Many recent advanced microprocessors make use of
such elaborate predictors. 

branch delay slot The slot 
directly after a delayed branch 
instruction, which in the MIPS 
architecture is filled by an 
instruction that does not affect 
the branch.

branch target buffer A struc-
ture that caches the destination 
PC or destination instruction 
for a branch. It is usually orga-
nized as a cache with tags, mak-
ing it more costly than a simple 
prediction buffer.

correlating predictor A
branch predictor that combines 
local behavior of a particular 
branch and global information 
about the behavior of some 
recent number of executed 
branches.

tournament branch 
predictor A branch predictor 
with multiple predictions for 
each branch and a selection 
mechanism that chooses which 
predictor to enable for a given 
branch.
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Pipeline Summary

Thus far, we have seen three models of execution: single cycle, multicycle, and
pipelined. Pipelined control strives for 1 clock cycle per instruction, like single
cycle, but also for a fast clock cycle, like multicycle. Let’s revisit the example com-
parison of single-cycle and multicycle processors.   

FIGURE 6.40  Scheduling the branch delay slot. The top box in each pair shows the code before
scheduling; the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an indepen-
dent instruction from before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is
not possible. In the code sequences for (b) and (c), the use of $s1 in the branch condition prevents the add
instruction (whose destination is $s1) from being moved into the branch delay slot. In (b) the branch-
delay slot is scheduled from the target of the branch; usually the target instruction will need to be copied
because it can be reached by another path. Strategy (b) is preferred when the branch is taken with high
probability, such as a loop branch. Finally, the branch may be scheduled from the not-taken fall-through as
in (c). To make this optimization legal for (b) or (c), it must be OK to execute the sub instruction when the
branch goes in the unexpected direction. By “OK” we mean that the work is wasted, but the program will
still execute correctly. This is the case, for example, if $t4 were an unused temporary register when the
branch goes in the unexpected direction. 

add $s1, $s2, $s3

if $s2 = 0 then

Delay slot

if $s2 = 0 then

add $s1, $s2, $s3

Becomes

a.  From before

sub $t4, $t5, $t6

...

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

Becomes

b.  From target

add $s1, $s2, $s3

if $s1 = 0 then

Delay slot

add $s1, $s2, $s3

if $s1 = 0 then

sub $t4, $t5, $t6

Becomes

c.  From fall through

sub $t4, $t5, $t6
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Comparing Performance of Several Control Schemes

Compare performance for single-cycle, multicycle, and pipelined control
using the SPECint2000 instruction mix (see examples on pages 315 and 330)
and assuming the same cycle times per unit as the example on page 315. For
pipelined execution, assume that half of the load instructions are immedi-
ately followed by an instruction that uses the result, that the branch delay on
misprediction is 1 clock cycle, and that one-quarter of the branches are
mispredicted. Assume that jumps always pay 1 full clock cycle of delay, so
their average time is 2 clock cycles. Ignore any other hazards.

From the example on page 315 (Performance of Single-Cycle Machines), we
get the following functional unit times:

■ 200 ps for memory access 

■ 100 ps for ALU operation 

■ 50 ps for register file read or write

For the single-cycle datapath, this leads to a clock cycle of

The example on page 330 (CPI in a Multicycle CPU) has the following in-
struction frequencies: 

■ 25% loads

■ 10% stores

■ 11% branches

■ 2% jumps 

■ 52% ALU instructions

Furthermore, the example on page 330 showed that the CPI for the multiple
design was 4.12. The clock cycle for the multicycle datapath and the pipelined
design must be the same as the longest functional unit: 200 ps.

For the pipelined design, loads take 1 clock cycle when there is no load-use
dependence and 2 when there is. Hence, the average clock cycles per load in-
struction is 1.5. Stores take 1 clock cycle, as do the ALU instructions. Branches
take 1 when predicted correctly and 2 when not, so the average clock cycles per
branch instruction is 1.25. The jump CPI is 2. Hence the average CPI is

EXAMPLE

ANSWER

200 50 100 200 50+ + + + 600 ps=

1.5 25% 1 10% 1 52% 1.25 11% 2 2%¥+¥+¥+¥+¥ 1.17=
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This chapter started in the laundry room, showing principles of pipelining in
an everyday setting. Using that analogy as a guide, we explained instruction pipe-
lining step-by-step, starting with the single-cycle datapath and then adding pipe-
line registers, forwarding paths, data hazard detection, branch prediction, and
flushing instructions on exceptions. Figure 6.41 shows the final evolved datapath
and control.

Check
Yourself

Consider three branch prediction schemes: branch not taken, predict taken, and
dynamic prediction. Assume that they all have zero penalty when they predict cor-
rectly and 2 cycles when they are wrong. Assume that the average predict accuracy
of the dynamic predictor is 90%. Which predictor is the best choice for the follow-
ing branches?

1. A branch that is taken with 5% frequency

2. A branch that is taken with 95% frequency

3. A branch that is taken with 70% frequency

This section, which appears on the CD, provides a behavioral model in Verilog of
the MIPS five-stage pipeline. The initial model ignores hazards, and additions to
the model highlight the changes for forwarding, data hazards, and branch haz-
ards.

Let’s compare the three designs by the average instruction time. For the sin-
gle-cycle design, it is fixed at 600 ps. For the multicycle design, it is 200 x
4.12 = 824 ps. For the pipelined design, the average instruction time is 1.17 x
200 = 234 ps, making it almost twice as fast as either approach.

The clever reader will notice that the long cycle time of the memory is a per-
formance bottleneck for both the pipelined and multicycle designs. Breaking
memory accesses into two clock cycles and thereby allowing the clock cycle to
be 100 ps would improve the performance in both cases. We explore this in the
exercises.

Using a Hardware Description Language to 
Describe and Model a Pipeline 6.7

6.7
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Another form of control hazard involves exceptions. For example, suppose the
following instruction

add  $1,$2,$1

has an arithmetic overflow. We need to transfer control to the exception routine
immediately after this instruction because we wouldn’t want this invalid value to
contaminate other registers or memory locations. 

Just as we did for the taken branch in the previous section, we must flush the
instructions that follow the add instruction from the pipeline and begin fetching
instructions from the new address. We will use the same mechanism we used for
taken branches, but this time the exception causes the deasserting of control lines. 

When we dealt with branch mispredict, we saw how to flush the instruction in
the IF stage by turning it into a nop. To flush instructions in the ID stage, we use
the multiplexor already in the ID stage that zeros control signals for stalls. A new

FIGURE 6.41 The final datapath and control for this chapter. 
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To make a computer with 
automatic program-inter-
ruption facilities behave 
[sequentially] was not an 
easy matter, because the 
number of instructions in 
various stages of processing 
when an interrupt signal 
occurs may be large.

Fred Brooks Jr., Planning a 
Computer System:
Project Stretch, 1962
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control signal, called ID.Flush, is ORed with the stall signal from the Hazard
Detection Unit to flush during ID. To flush the instruction in the EX phase, we use
a new signal called EX.Flush to cause new multiplexors to zero the control lines.
To start fetching instructions from location 8000 0180hex, which is the exception
location for an arithmetic overflow, we simply add an additional input to the PC
multiplexor that sends 8000 0180hex to the PC. Figure 6.42 shows these changes.

This example points out a problem with exceptions: If we do not stop execu-
tion in the middle of the instruction, the programmer will not be able to see the
original value of register $1 that helped cause the overflow because it will be clob-
bered as the destination register of the add instruction. Because of careful plan-
ning, the overflow exception is detected during the EX stage; hence, we can use the
EX.Flush signal to prevent the instruction in the EX stage from writing its result in
the WB stage. Many exceptions require that we eventually complete the instruc-
tion that caused the exception as if it executed normally. The easiest way to do this

FIGURE 6.42 The datapath with controls to handle exceptions. The key additions include a new input, with the value 8000 0180hex, in
the multiplexor that supplies the new PC value; a Cause register to record the cause of the exception; and an Exception PC register to save the address
of the instruction that caused the exception. The 8000 0180hex input to the multiplexor is the initial address to begin fetching instructions in the event
of an exception. Although not shown, the ALU overflow signal is an input to the control unit.

0

0

0 M

WB

WB

Data
memory

Instruction
memory

M
u
x

M
u
x

M
u
x M

u
x

M
u
x

ALU

ID/EX

EX/MEM

Cause

EPC

MEM/WB

Forwarding
unit

PC

Control

EX

M

WB

IF/ID

M
u
x

M
u
x

M
u
x

Hazard
detection

unit

+

+
Shift
left 2

=

IF.Flush

ID.Flush

EX.Flush

4

Sign
extend

80000180

Registers



6.8 Exceptions 429

is to flush the instruction and restart it from the beginning after the exception is
handled.

The final step is to save the address of the offending instruction in the Excep-
tion Program Counter (EPC), as we did in Chapter 5. In reality, we save the
address + 4, so the exception handling routine must first subtract 4 from the saved
value. Figure 6.42 shows a stylized version of the datapath, including the branch
hardware and necessary accommodations to handle exceptions.

Chapter 5 lists some other causes of exceptions:

■ I/O device request

■ Invoking an operating system service from a user program

■ Using an undefined instruction

■ Hardware malfunction

Exception in a Pipelined Computer

Given this instruction sequence,

40hex sub $11, $2, $4
44hex and $12, $2, $5
48hex or $13, $2, $6
4Chex add  $1, $2, $1
50hex slt $15, $6, $7
54hex lw $16, 50($7)
...

assume the instructions to be invoked on an exception begin like this:

40000040hex sw $25, 1000($0)
40000044hex sw $26, 1004($0)
...

Show what happens in the pipeline if an overflow exception occurs in the add
instruction.

Figure 6.43 shows the events, starting with the add instruction in the EX
stage. The overflow is detected during that phase, and 4000 0040hex is forced
into the PC. Clock cycle 7 shows that the add and following instructions are
flushed, and the first instruction of the exception code is fetched. Note that
the address of the instruction following the add is saved: 4Chex + 4 = 50hex.

EXAMPLE

ANSWER
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FIGURE 6.43 The result of an exception due to arithmetic overflow in the add instruction. The overflow is detected during the EX
stage of clock 6, saving the address following the add in the EPC register (4C + 4 = 50hex). Overflow causes all the Flush signals to be set near the end
of this clock cycle, deasserting control values (setting them to 0) for the add. Clock cycle 7 shows the instructions converted to bubbles in the pipeline
plus the fetching of the first instruction of the exception routine—sw $25,1000($0)—from instruction location 4000 0040hex. Note that the and
and or instructions, which are prior to the add, still complete. Although not shown, the ALU overflow signal is an input to the control unit.
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With five instructions active in any clock cycle, the challenge is to associate an
exception with the appropriate instruction. Moreover, multiple exceptions can
occur simultaneously in a single clock cycle. The normal solution is to prioritize
the exceptions so that it is easy to determine which is serviced first; this strategy
works for pipelined processors as well. In most MIPS implementations, the hard-
ware sorts exceptions so that the earliest instruction is interrupted.

I/O device requests and hardware malfunctions are not associated with a spe-
cific instruction, so the implementation has some flexibility as to when to inter-
rupt the pipeline. Hence, using the mechanism used for other exceptions works
just fine.

The EPC captures the address of the interrupted instructions, and the MIPS
Cause register records all possible exceptions in a clock cycle, so the exception
software must match the exception to the instruction. An important clue is know-
ing in which pipeline stage a type of exception can occur. For example, an unde-
fined instruction is discovered in the ID stage, and invoking the operating system
occurs in the EX stage. Exceptions are collected in the Cause register so that the
hardware can interrupt based on later exceptions, once the earliest one has been
serviced. 

The hardware and the operating system must work in conjunction so that excep-
tions behave as you would expect. The hardware contract is normally to stop the
offending instruction in midstream, let all prior instructions complete, flush all
following instructions, set a register to show the cause of the exception, save the
address of the offending instruction, and then jump to a prearranged address. The
operating system contract is to look at the cause of the exception and act appro-
priately. For an undefined instruction, hardware failure, or arithmetic overflow
exception, the operating system normally kills the program and returns an indica-
tor of the reason. For an I/O device request or an operating system service call, the
operating system saves the state of the program, performs the desired task, and, at
some point in the future, restores the program to continue execution. In the case
of I/O device requests, we may often choose to run another task before resuming
the task that requested the I/O, since that task may often not be able to proceed
until the I/O is complete. This is why the ability to save and restore the state of any
task is critical. One of the most important and frequent uses of exceptions is han-
dling page faults and TLB exceptions; Chapter 7 describes these exceptions and
their handling in more detail.

Hardware
Software
Interface
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The difficulty of always associating the correct exception with the correct
instruction in pipelined computers has led some computer designers to relax this
requirement in noncritical cases. Such processors are said to have imprecise
interrupts or imprecise exceptions. In the example above, PC would normally
have 58hex at the start of the clock cycle after the exception is detected, even
though the offending instruction is at address 4Chex. A processor with imprecise
exceptions might put 58hex into EPC and leave it up to the operating system to
determine which instruction caused the problem. MIPS and the vast majority of
computers today support precise interrupts or precise exceptions. (One reason is
to support virtual memory, which we shall see in Chapter 7.)

Check
Yourself

The MIPS designers wanted the integer multiply and divide instructions to oper-
ate in parallel with other integer instructions. Since multiply and divide take mul-
tiple clock cycles, a group of students is arguing over whether it is possible to
implement precise exceptions. Which of the following arguments are completely
accurate? 

1. It is impossible to implement precise exceptions, since a multiply or divide
can raise an exception after instructions that follow it.

2. It is trivial to implement precise exceptions since multiply and divide can-
not raise an exception once they start, and so the timing of all exceptions is
obviously precise.

3. It does not matter whether multiply or divide can raise an exception. The
fact that they could still be executing and not completed when some other
instruction raised an exception makes it impossible to implement precise
exceptions.

4. Although it is true that a multiply or divide could still be executing, it is
guaranteed to complete shortly, and when it does, any exception raised for
an instruction following a multiply or divide will then be precise. 

Be forewarned that Sections 6.9 and 6.10 are brief overviews of fascinating but
advanced topics. If you want to learn more details, you should consult our more

imprecise interrupt Also
called imprecise exception. 
Interrupts or exceptions in pipe-
lined computers that are not 
associated with the exact 
instruction that was the cause of 
the interrupt or exception.

precise interrupt Also called 
precise exception. An interrupt 
or exception that is alway asso-
ciated with the correct instruc-
tion in pipelined computers.

6.9 Advanced Pipelining: Extracting More 
Performance 6.9



6.9 Advanced Pipelining: Extracting More Performance 433

advanced book, Computer Architecture: A Quantitative Approach, third edition,
where the material covered in the next 18 pages is expanded to over 200 pages! 

Pipelining exploits the potential parallelism among instructions. This parallel-
ism is called instruction-level parallelism (ILP). There are two primary methods
for increasing the potential amount of instruction-level parallelism. The first is
increasing the depth of the pipeline to overlap more instructions. Using our laun-
dry analogy and assuming that the washer cycle were longer than the others, we
could divide our washer into three machines that perform the wash, rinse, and
spin steps of a traditional washer. We would then move from a four-stage to a six-
stage pipeline. To get the full speedup, we need to rebalance the remaining steps so
they are the same length, in processors or in laundry. The amount of parallelism
being exploited is higher, since there are more operations being overlapped. Per-
formance is potentially greater since the clock cycle can be shorter. 

Another approach is to replicate the internal components of the computer so
that it can launch multiple instructions in every pipeline stage. The general name
for this technique is multiple issue. A multiple-issue laundry would replace our
household washer and dryer with, say, three washers and three dryers. You would
also have to recruit more assistants to fold and put away three times as much laun-
dry in the same amount of time. The downside is the extra work to keep all the
machines busy and transferring the loads to the next pipeline stage.

Launching multiple instructions per stage allows the instruction execution rate
to exceed the clock rate or, stated alternatively, for the CPI to be less than 1. It is
sometimes useful to flip the metric, and use IPC, or instructions per clock cycle,
particularly as values become less than 1! Hence, a 6 GHz four-way multiple-issue
microprocessor can execute a peak rate of 24 billion instructions per second and
have a best case CPI of 0.25, or IPC of 4. Assuming a five-stage pipeline, such a
processor would have 20 instructions in execution at any given time. Today’s high-
end microprocessors attempt to issue from three to eight instructions in every
clock cycle. There are typically, however, many constraints on what types of
instructions may be executed simultaneously and what happens when depen-
dences arise.

There are two major ways to implement a multiple-issue processor, with the
major difference being the division of work between the compiler and the hard-
ware. Because the division of work dictates whether decisions are being made stat-
ically (that is, at compile time) or dynamically (that is, during execution), the
approaches are sometimes called static multiple issue and dynamic multiple
issue. As we will see, both approaches have other, more commonly used names,
which may be less precise or more restrictive. 

instruction-level 
parallelism The parallelism 
among instructions. 

multiple issue A scheme 
whereby multiple instructions 
are launched in 1 clock cycle. 

static multiple issue An
approach to implementing a 
multiple-issue processor where 
many decisions are made by the 
compiler before execution.

dynamic multiple issue An
approach to implementing a 
multiple-issue processor where 
many decisions are made during 
execution by the processor.



434 Chapter 6 Enhancing Performance with Pipelining

There are two primary and distinct responsibilities that must be dealt with in a
multiple-issue pipeline:

1. Packaging instructions into issue slots: How does the processor determine
how many instructions and which instructions can be issued in a given
clock cycle? In most static issue processors, this process is at least partially
handled by the compiler; in dynamic issue designs, it is normally dealt with
at runtime by the processor, although the compiler will often have already
tried to help improve the issue rate by placing the instructions in a benefi-
cial order. 

2. Dealing with data and control hazards: In static issue processors, some or
all of the consequences of data and control hazards are handled statically by
the compiler. In contrast, most dynamic issue processors attempt to allevi-
ate at least some classes of hazards using hardware techniques operating at
execution time.

Although we describe these as distinct approaches, in reality techniques from one
approach are often borrowed by the other, and neither approach can claim to be
perfectly pure.

The Concept of Speculation

One of the most important methods for finding and exploiting more ILP is specu-
lation. Speculation is an approach that allows the compiler or the processor to
“guess” about the properties of an instruction, so as to enable execution to begin
for other instructions that may depend on the speculated instruction. For exam-
ple, we might speculate on the outcome of a branch, so that instructions after the
branch could be executed earlier. Or, we might speculate that a store that precedes
a load does not refer to the same address, which would allow the load to be exe-
cuted before the store. The difficulty with speculation is that it may be wrong. So,
any speculation mechanism must include both a method to check if the guess was
right and a method to unroll or back out the effects of the instructions that were
executed speculatively. The implementation of this back-out capability adds com-
plexity to any processor supporting speculation. 

Speculation may be done in the compiler or by the hardware. For example, the
compiler can use speculation to reorder instructions, moving an instruction
across a branch or a load across a store. The processor hardware can perform the
same transformation at runtime using techniques we discuss later in this section. 

The recovery mechanisms used for incorrect speculation are rather different. In
the case of speculation in software, the compiler usually inserts additional instruc-
tions that check the accuracy of the speculation and provide a fix-up routine to

issue slots The positions from 
which instructions could issue 
in a given clock cycle; by analogy 
these correspond to positions at 
the starting blocks for a sprint.

speculation An approach 
whereby the compiler or proces-
sor guesses the outcome of an 
instruction to remove it as a 
dependence in executing other 
instructions.
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use when the speculation was incorrect. In hardware speculation, the processor
usually buffers the speculative results until it knows they are no longer speculative.
If the speculation was correct, the instructions are completed by allowing the con-
tents of the buffers to be written to the registers or memory. If the speculation was
incorrect, the hardware flushes the buffers and reexecutes the correct instruction
sequence. 

Speculation introduces one other possible problem: speculating on certain
instructions may introduce exceptions that were formerly not present. For exam-
ple, suppose a load instruction is moved in a speculative manner, but the address
it uses is not legal when the speculation is incorrect. The result would be that an
exception that should not have occurred will occur. The problem is complicated
by the fact that if the load instruction were not speculative, then the exception
must occur! In compiler-based speculation, such problems are avoided by adding
special speculation support that allows such exceptions to be ignored until it is
clear that they really should occur. In hardware-based speculation, exceptions are
simply buffered until it is clear that the instruction causing them is no longer
speculative and is ready to complete; at that point the exception is raised, and nor-
mal exception handling proceeds.

Since speculation can improve performance when done properly and decrease
performance when done carelessly, significant effort goes into deciding when it is
appropriate to speculate. Later in this section, we will examine both static and
dynamic techniques for speculation.

Static Multiple Issue

Static multiple-issue processors all use the compiler to assist with packaging
instructions and handling hazards. In a static issue processor, you can think of the
set of instructions that issue in a given clock cycle, which is called an issue packet,
as one large instruction with multiple operations. This view is more than an anal-
ogy. Since a static multiple-issue processor usually restricts what mix of instruc-
tions can be initiated in a given clock cycle, it is useful to think of the issue packet
as a single instruction allowing several operations in certain predefined fields.
This view led to the original name for this approach: Very Long Instruction Word
(VLIW). The Intel IA-64 architecture uses this approach, which it calls by its own
name: Explicitly Parallel Instruction Computer (EPIC). The Itanium and Itanium
2 processors, available in 2000 and 2002, respectively, are the first implementa-
tions of the IA-64 architecture. 

Most static issue processors also rely on the compiler to take on some respon-
sibility for handling data and control hazards. The compiler’s responsibilities
may include static branch prediction and code scheduling to reduce or prevent
all hazards.

issue packet The set of instruc-
tions that issues together in 1 
clock cycle; the packet may be 
determined statically by the 
compiler or dynamically by the 
processor.
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Let’s look at a simple static issue version of a MIPS processor, before we
describe the use of these techniques in more aggressive processors. After using this
simple example to review the comments, we discuss the highlights of the Intel IA-
64 architecture.

An Example: Static Multiple Issue with the MIPS ISA
To give a flavor of static multiple issue, we consider a simple two-issue MIPS pro-
cessor, where one of the instructions can be an integer ALU operation or branch,
and the other can be a load or store. Such a design is like that used in some
embedded MIPS processors. Issuing two instructions per cycle will require fetch-
ing and decoding 64 bits of instructions. In many static multiple-issue processors,
and essentially all VLIW processors, the layout of simultaneously issuing instruc-
tions is restricted to simplify the decoding and instruction issue. Hence, we will
require that the instructions be paired and aligned on a 64-bit boundary, with the
ALU or branch portion appearing first. Furthermore, if one instruction of the pair
cannot be used, we require that it be replaced with a no-op. Thus, the instructions
always issue in pairs, possibly with a nop in one slot. Figure 6.44 shows how the
instructions look as they go into the pipeline in pairs. 

Static multiple-issue processors vary in how they deal with potential data and
control hazards. In some designs, the compiler takes full responsibility for remov-
ing all hazards, scheduling the code and inserting no-ops so that the code executes
without any need for hazard detection or hardware-generated stalls. In others, the
hardware detects data hazards and generates stalls between two issue packets,
while requiring that the compiler avoid all dependences within an instruction
pair. Even so, a hazard generally forces the entire issue packet containing the
dependent instruction to stall. Whether the software must handle all hazards or

Instruction type Pipe stages

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

ALU or branch instruction IF ID EX MEM WB

Load or store instruction IF ID EX MEM WB

FIGURE 6.44  Static two-issue pipeline in operation. The ALU and data transfer instructions are
issued at the same time. Here we have assumed the same five-stage structure as used for the single-issue
pipeline. Although this is not strictly necessary, it does have some advantages. In particular, keeping the reg-
ister writes at the end of the pipeline simplifies the handling of exceptions and the maintenance of a precise
exception model, which become more difficult in multiple-issue processors. 
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only try to reduce the fraction of hazards between separate issue packets, the
appearance of having a large single instruction with multiple operations is rein-
forced. We will assume the second approach for this example. 

To issue an ALU and a data transfer operation in parallel, the first need for
additional hardware—beyond the usual hazard detection and stall logic—is extra
ports in the register file (see Figure 6.45). In 1 clock cycle we may need to read two
registers for the ALU operation and two more for a store, and also one write port
for an ALU operation and one write port for a load. Since the ALU is tied up for
the ALU operation, we also need a separate adder to calculate the effective address
for data transfers. Without these extra resources, our two-issue pipeline would be
hindered by structural hazards.

FIGURE 6.45 A static two-issue datapath. The additions needed for double issue are highlighted: another 32 bits from instruction memory,
two more read ports and one more write port on the register file, and another ALU. Assume the bottom ALU handles address calculations for data
transfers and the top ALU handles everything else.
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Clearly, this two-issue processor can improve performance by up to a factor of
2. Doing so, however, requires that twice as many instructions be overlapped in
execution, and this additional overlap increases the relative performance loss from
data and control hazards. For example, in our simple five-stage pipeline, loads
have a use latency of 1 clock cycle, which prevents one instruction from using the
result without stalling. In the two-issue, five-stage pipeline, the result of a load
instruction cannot be used on the next clock cycle. This means that the next two
instructions cannot use the load result without stalling. Furthermore, ALU
instructions that had no use latency in the simple five-stage pipeline, now have a
one-instruction use latency, since the results cannot be used in the paired load or
store. To effectively exploit the parallelism available in a multiple-issue processor,
more ambitious compiler or hardware scheduling techniques are needed, and
static multiple issue requires that the compiler takes on this role.

An important compiler technique to get more performance from loops is loop
unrolling, a technique where multiple copies of the loop body are made. After
unrolling, there is more ILP available by overlapping instructions from different
iterations. 

Simple Multiple-Issue Code Scheduling

How would this loop be scheduled on a static two-issue pipeline for MIPS?

Loop: lw     $t0, 0($s1)     # $t0=array element
addu   $t0,$t0,$s2     # add scalar in $s2
sw     $t0, 0($s1)     # store result
addi   $s1,$s1,–4      # decrement pointer 
bne    $s1,$zero,Loop  # branch $s1!=0

Reorder the instructions to avoid as many pipeline stalls as possible. Assume
branches are predicted, so that control hazards are handled by the hardware. 

The first three instructions have data dependences, and so do the last two.
Figure 6.46 shows the best schedule for these instructions. Notice that just
one pair of instructions has both issue slots used. It takes 4 clocks per loop it-
eration; at 4 clocks to execute 5 instructions, we get the disappointing CPI of
0.8 versus the best case of 0.5., or an IPC of 1.25 versus 2.0. Notice that in
computing CPI or IPC, we do not count any nops executed as useful instruc-
tions. Doing so would improve CPI, but not performance!

EXAMPLE

ANSWER

loop unrolling A technique to 
get more performance from 
loops that access arrays, in 
which multiple copies of the 
loop body are made and instruc-
tions from different iterations 
are scheduled together.
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ALU or branch instruction Data transfer instruction Clock cycle

Loop: lw $t0, 0($s1) 1

addi $s1,$s1,–4 2

addu $t0,$t0,$s2 3

bne $s1,$zero,Loop sw $t0, 4($s1) 4

FIGURE 6.46 The scheduled code as it would look on a two-issue MIPS pipeline. The
empty slots are nops. 

Loop Unrolling for Multiple-Issue Pipelines

See how well loop unrolling and scheduling work in the example above.
Assume that the loop index is a multiple of four, for simplicity.

To schedule the loop without any delays, it turns out that we need to make
four copies of the loop body. After unrolling and eliminating the unnecessary
loop overhead instructions, the loop will contain four copies each of lw, add,
and sw, plus one addi and one bne. Figure 6.47 shows the unrolled and
scheduled code.

During the unrolling process, the compiler introduced additional registers
($t1, $t2, $t3). The goal of this process, called register renaming, is to elim-
inate dependences that are not true data dependences, but could either lead to
potential hazards or prevent the compiler from flexibly scheduling the code.
Consider how the unrolled code would look using only $t0. There would be
repeated instances of lw $t0,0($$s1), addu $t0,$t0,$s2 followed by sw
t0,4($s1), but these sequences, despite using $t0, are actually completely
independent—no data values flow between one pair of these instructions and
the next pair. This is what is called an antidependence or name dependence,
which is an ordering forced purely by the reuse of a name, rather than a real
data dependence. 

Renaming the registers during the unrolling process allows the compiler to
subsequently move these independent instructions so as to better schedule the
code. The renaming process eliminates the name dependences, while preserv-
ing the true dependences.

Notice now that 12 of the 14 instructions in the loop execute as a pair. It
takes 8 clocks for four loop iterations, or 2 clocks per iteration, which yields a
CPI of 8/14 = 0.57. Loop unrolling and scheduling with dual issue gave us a
factor of two improvement, partly from reducing the loop control instructions
and partly from dual issue execution. The cost of this performance improve-
ment is using four temporary registers rather than one, as well as a significant
increase in code size. 

EXAMPLE

ANSWER

register renaming The renam-
ing of registers, by the compiler 
or hardware, to remove antide-
pendences.

antidependence Also called 
name dependence. An order-
ing forced by the reuse of a 
name, typically a register, rather 
then by a true dependence that 
carries a value between two 
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The Intel IA-64 Architecture
The IA-64 architecture is a register-register, RISC-style instruction set like the 64-
bit version of the MIPS architecture (called MIPS-64), but with several unique
features to support explicit, compiler-driven exploitation of ILP. Intel calls the
approach EPIC (Explicitly Parallel Instruction Computer). The major differences
between IA-64 and the MIPS architecture are the following:

1. IA-64 has many more registers than MIPS, including 128 integer and 128
floating-point registers, as well as 8 special registers for branches and 64 1-
bit condition registers. In addition, IA-64 supports register windows in a
fashion similar to the original Berkeley RISC and Sun SPARC architectures. 

2. IA-64 places instructions into bundles that have a fixed format and explicit
designation of dependences. 

3. IA-64 includes special instructions and capabilities for speculation and for
branch elimination, which increase the amount of ILP that can be
exploited. 

The IA-64 architecture is designed to achieve the major benefits of a VLIW–
implicit parallelism among operations in an instruction and fixed formatting of
the operation fields—while maintaining greater flexibility than a VLIW normally
allows. The IA-64 architecture uses two different concepts to achieve this flexibil-
ity: instruction groups and bundles. 

An instruction group is a sequence of consecutive instructions with no register
data dependences among them. All the instructions in a group could be executed
in parallel if sufficient hardware resources existed and if any dependences through
memory were preserved. An instruction group can be arbitrarily long, but the
compiler must explicitly indicate the boundary between one instruction group
and another. This boundary is indicated by placing a stop between two instruc-
tions that belong to different groups. 

ALU or branch instruction Data transfer instruction Clock cycle

Loop: addi $s1,$s1,–16 lw $t0, 0($s1) 1

lw $t1,12($s1) 2

addu $t0,$t0,$s2 lw $t2, 8($s1) 3

addu $t1,$t1,$s2 lw $t3, 4($s1) 4

addu $t2,$t2,$s2 sw $t0, 16($s1) 5

addu $t3,$t3,$s2 sw $t1,12($s1) 6

sw $t2, 8($s1) 7

bne $s1,$zero,Loop sw $t3, 4($s1) 8

FIGURE 6.47 The unrolled and scheduled code of Figure 6.46 as it would look on a static
two-issue MIPS pipeline. The empty slots are nops. Since the first instruction in the loop decrements
$s1 by 16, the addresses loaded are the original value of $s1, then that address minus 4, minus 8, and
minus 12.

instruction group In IA-64, a 
sequence of consecutive instruc-
tions with no register data 
dependences among them.

stop In IA-64, an explicit indi-
cator of a break between inde-
pendent and dependent 
instructions.
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IA-64 instructions are encoded in bundles, which are 128 bits wide. Each bun-
dle consists of a 5-bit template field and three instructions, each 41 bits in length.
To simplify the decoding and instruction issue process, the template field of a
bundle specifies which of five different execution units each instruction in the
bundle requires. The five different execution units are integer ALU, noninteger
ALU (includes shifters and multimedia operations), memory unit, floating-point
unit, and branch unit.

The 5-bit template field within each bundle describes both the presence of any
stops associated with the bundle and the execution unit type required by each
instruction within the bundle. The bundle formats can specify only a subset of all
possible combinations of instruction types and stops.

To enhance the amount of ILP that can be exploited, IA-64 provides extensive
support for predication and for speculation (see the Elaboration on page 442).
Predication is a technique that can be used to eliminate branches by making the
execution of an instruction dependent on a predicate, rather than dependent on a
branch. As we saw earlier, branches reduce the opportunity to exploit ILP by
restricting the movement of code. Loop unrolling works well to eliminate loop
branches, but a branch within a loop—arising, for example, from an if-then-else
statement—cannot be eliminated by loop unrolling. Predication, however, pro-
vides a method to eliminate the branch, allowing more flexible exploitation of
parallelism. 

For example, suppose we had a code sequence like

if (p) {statement 1} else {statement 2}

Using normal compilation methods, this segment would compile using two
branches: one after the condition branching to the else portion and one after
statement 1 branching to the next sequential statement. With predication, it could
be compiled as

(p) statement 1
(~p) statement 2

where the use of (condition) indicates that the statement is executed only if
condition is true, and otherwise becomes a no-op. Notice that predication can
be used as way to speculate, as well as a method to eliminate branches. 

The IA-64 architecture provides comprehensive support for predication: nearly
every instruction in the IA-64 architecture can be predicated by specifying a pred-
icate register, whose identity is placed in the lower 6 bits of an instruction field.
One consequence of full predication is that a conditional branch is simply a
branch with a guarding predicate!

IA-64 is the most sophisticated example of an instruction set with support for
compiler-based exploitation of ILP. Intel’s Itanium and Itanium 2 processors
implement this architecture. A brief summary of the characteristics of these pro-
cessors is given in Figure 6.48.

predication A technique to 
make instructions dependent on 
predicates rather than on 
branches.
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Elaboration: Speculation support in the IA-64 architecture consists of separate sup-
port for control speculation, which deals with deferring exceptions for speculated
instructions, and memory reference speculation, which supports speculation of load
instructions. Deferred exception handling is supported by adding speculative load
instructions, which, when an exception occurs, tag the result as poison. When a poi-
soned result is used by an instruction, the result is also poison. The software can then
check for a poisoned result when it knows that the execution is no longer speculative. 

In IA-64, we can also speculate on memory references by moving loads earlier than
stores on which they may depend. This is done with an advanced load instruction. An
advanced load executes normally, but uses a special table to track the address that the
processor loaded from. All subsequent stores check that table and generate a flag in
the entry if the store address matches the load address. A subsequent instruction
must be used to check the status of the entry after the load is no longer speculative. If
a store to the same address has intervened, the check instruction specifies a fix-up
routine that reexecutes the load and any other dependent instructions before continu-
ing execution; if no such store has occurred, the table entry is simply cleared, indicat-
ing that the load is no longer speculative. 

Dynamic Multiple-Issue Processors

Dynamic multiple-issue processors are also known as superscalar processors, or
simply superscalars. In the simplest superscalar processors, instructions issue in-
order, and the processor decides whether zero, one, or more instructions can issue
in a given clock cycle. Obviously, achieving good performance on such a processor
still requires the compiler to try to schedule instructions to move dependences
apart and thereby improve the instruction issue rate. Even with such compiler
scheduling, there is an important difference between this simple superscalar and a
VLIW processor: the code, whether scheduled or not, is guaranteed by the hard-
ware to execute correctly. Furthermore, compiled code will always run correctly

Processor
Maximum instr. 
issues / clock Functional units

Maximum
ops. per clock

Max. clock 
rate

Transistors 
(millions)

Power
(watts)

SPEC
int2000

SPEC
fp2000

Itanium 6 4 integer/media 

2 memory

3 branch

2 FP

9 0.8 GHz 25 130 379 701

Itanium 2 6 6 integer/media 

4 memory

3 branch

2 FP

11 1.5 Ghz 221 130 810 1427

FIGURE 6.48 A summary of the characteristics of the Itanium and Itanium 2, Intel’s first two implementations of the IA-64
architecture. In addition to higher clock rates and more functional units, the Itanium 2 includes an on-chip level 3 cache, versus an off-chip level 3
cache in the Itanium. 

poison A result generated 
when a speculative load yields 
an exception, or an instruction 
uses a poisoned operand. 

advanced load In IA-64, a 
speculative load instruction 
with support to check for aliases 
that could invalidate the load.

superscalar An advanced pipe-
lining technique that enables the 
processor to execute more than 
one instruction per clock cycle.



6.9 Advanced Pipelining: Extracting More Performance 443

independent of the issue rate or pipeline structure of the processor. In some VLIW
designs, this has not been the case, and recompilation was required when moving
across different processor models; in other static issue processors, code would run
correctly across different implementations, but often so poorly as to make compi-
lation effectively required. 

Many superscalars extend the basic framework of dynamic issue decisions to
include dynamic pipeline scheduling. Dynamic pipeline scheduling chooses
which instructions to execute in a given clock cycle while trying to avoid hazards
and stalls. Let’s start with a simple example of avoiding a data hazard. Consider
the following code sequence:

lw $t0, 20($s2)
addu $t1, $t0, $t2
sub $s4, $s4, $t3
slti $t5, $s4, 20

Even though the sub instruction is ready to execute, it must wait for the lw and
addu to complete first, which might take many clock cycles if memory is slow.
(Chapter 7 explains caches, the reason that memory accesses are sometimes very
slow.) Dynamic pipeline scheduling allows such hazards to be avoided either fully
or partially.

Dynamic Pipeline Scheduling
Dynamic pipeline scheduling chooses which instructions to execute next, possibly
reordering them to avoid stalls. In such processors, the pipeline is divided into
three major units: an instruction fetch and issue unit, multiple functional units
(10 or more in high-end designs in 2004), and a commit unit. Figure 6.49 shows
the model. The first unit fetches instructions, decodes them, and sends each
instruction to a corresponding functional unit for execution. Each functional unit
has buffers, called reservation stations, that hold the operands and the operation.
(In the next section, we will discuss an alternative to reservation stations used by
many recent processors.) As soon as the buffer contains all its operands and the
functional unit is ready to execute, the result is calculated. When the result is com-
pleted, it is sent to any reservation stations waiting for this particular result as well
as to the commit unit, which buffers the result until it is safe to put the result into
the register file or, for a store, into memory. The buffer in the commit unit, often
called the reorder buffer, is also used to supply operands, in much the same way
as forwarding logic does in a statically scheduled pipeline. Once a result is com-
mitted to the register file, it can be fetched directly from there, just as in a normal
pipeline. 

The combination of buffering operands in the reservation stations and results
in the reorder buffer provides a form of register renaming, just like that used by

dynamic pipeline 
scheduling Hardware support 
for reordering the order of 
instruction execution so as to 
avoid stalls. 

commit unit The unit in a 
dynamic or out-of-order 
execution pipeline that decides 
when it is safe to release the 
result of an operation to pro-
grammer-visible registers and 
memory.

reservation station A buffer 
within a functional unit that 
holds the operands and the 
operation.

reorder buffer The buffer that 
holds results in a dynamically 
scheduled processor until it is 
safe to store the results to mem-
ory or a register. 
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the compiler in our earlier loop unrolling example on page 439. To see how this
conceptually works, consider the following steps:

1. When an instruction issues, if either of its operands is in the register file or
the reorder buffer, it is copied to the reservation station immediately, where
it is buffered until all the operands and an execution unit are available. For
the issuing instruction, the register copy of the operand is no longer
required, and if a write to that register occurred, the value could be over-
written.

2. If an operand is not in the register file or reorder buffer, it must be waiting
to be produced by a functional unit. The name of the functional unit that
will produce the result is tracked. When that unit eventually produces the
result, it is copied directly into the waiting reservation station from the
functional unit bypassing the registers. 

These steps effectively use the reorder buffer and the reservation stations to imple-
ment register renaming.     

FIGURE 6.49 The three primary units of a dynamically scheduled pipeline. The final step of
updating the state is also called retirement or graduation. 
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Conceptually, you can think of a dynamically scheduled pipeline as analyzing
the dataflow structure of a program, as we saw when we discussed dataflow analy-
sis within a compiler in Chapter 2. The processor then executes the instructions in
some order that preserves the data flow order of the program. To make programs
behave as if they were running on a simple in-order pipeline, the instruction fetch
and decode unit is required to issue instructions in order, which allows depen-
dences to be tracked, and the commit unit is required to write results to registers
and memory in program execution order. This conservative mode is called in-
order completion. Hence, if an exception occurs, the computer can point to the
last instruction executed, and the only registers updated will be those written by
instructions before the instruction causing the exception. Although, the front end
(fetch and issue) and the back end (commit) of the pipeline run in order, the
functional units are free to initiate execution whenever the data they need is avail-
able. Today, all dynamically scheduled pipelines use in-order completion,
although this was not always true. 

Dynamic scheduling is often extended by including hardware-based specula-
tion, especially for branch outcomes. By predicting the direction of a branch, a
dynamically scheduled processor can continue to fetch and execute instructions
along the predicted path. Because the instructions are committed in order, we
know whether or not the branch was correctly predicted before any instructions
from the predicted path are committed. A speculative, dynamically scheduled
pipeline can also support speculation on load addresses, allowing load-store reor-
dering, and using the commit unit to avoid incorrect speculation. In the next sec-
tion we will look at the use of dynamic scheduling with speculation in the
Pentium 4 design.  

Elaboration: A commit unit controls updates to the register file and memory. Some
dynamically scheduled processors update the register file immediately during execution
using extra registers to implement the renaming function and preserving the older copy
of a register until the instruction updating the register is no longer speculative. Other
processors buffer the result, typically in a structure called a reorder buffer, and the
actual update to the register file occurs later as part of the commit. Stores to memory
must be buffered until commit time either in a store buffer (see Chapter 7) or in the
reorder buffer. The commit unit allows the store to write to memory from the buffer
when the buffer has a valid address and valid data, and when the store is no longer
dependent on predicted branches. 

Elaboration: Memory accesses benefit from nonblocking caches, which continue
servicing cache accesses during a cache miss (see Chapter 7). Out-of-order execution
processors need nonblocking caches to allow instructions to execute during a miss. 

in-order commit A commit in 
which the results of pipelined 
execution are written to the pro-
grammer-visible state in the 
same order that instructions are 
fetched.

out-of-order execution A sit-
uation in pipelined execution 
when an instruction blocked 
from executing does not cause 
the following instructions to 
wait.
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Hardware
Software
Interface

Given that compilers can also schedule code around data dependences, you might
ask, Why would a superscalar processor use dynamic scheduling? There are three
major reasons. First, not all stalls are predictable. In particular, cache misses (see
Chapter 7) cause unpredictable stalls. Dynamic scheduling allows the processor to
hide some of those stalls by continuing to execute instructions while waiting for
the stall to end.

Second, if the processor speculates on branch outcomes using dynamic branch
prediction, it cannot know the exact order of instructions at compile time, since it
depends on the predicted and actual behavior of branches. Incorporating
dynamic speculation to exploit more ILP without incorporating dynamic sched-
uling would significantly restrict the benefits of such speculation.
Third, as the pipeline latency and issue width change from one implementation to
another, the best way to compile a code sequence also changes. For example, how
to schedule a sequence of dependent instructions is affected by both issue width
and latency. The pipeline structure affects both the number of times a loop must
be unrolled to avoid stalls as well as the process of compiler-based register renam-
ing. Dynamic scheduling allows the hardware to hide most of these details. Thus,
users and software distributors do not need to worry about having multiple ver-
sions of a program for different implementations of the same instruction set. Sim-
ilarly, old legacy code will get much of the benefit of a new implementation
without the need for recompilation. 

Both pipelining and multiple-issue execution increase peak instruction
throughput and attempt to exploit ILP. Data and control dependences in
programs, however, offer an upper limit on sustained performance
because the processor must sometimes wait for a dependence to be
resolved. Software-centric approaches to exploiting ILP rely on the ability
of the compiler to find and reduce the effects of such dependences, while
hardware-centric approaches rely on extensions to the pipeline and issue
mechanisms. Speculation, performed by the compiler or the hardware,
can increase the amount of ILP that can be exploited, although care must
be taken since speculating incorrectly is likely to reduce performance.

The BIG
Picture
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Check
Yourself

State whether the following techniques or components are associated primarily
with a software- or hardware-based approach to exploiting ILP. In some cases, the
answer may be both.

1. Branch prediction

2. Multiple issue

3. VLIW

4. Superscalar

5. Dynamic scheduling

6. Out-of-order execution

7. Speculation

8. EPIC

9. Reorder buffer

10. Register renaming

11. Predication 

Modern, high-performance microprocessors are capable of issuing several
instructions per clock; unfortunately, sustaining that issue rate is very difficult.
For example, despite the existence of processors with four to six issues per clock,
very few applications can sustain more than two instructions per clock. There are
two primary reasons for this. 

First, within the pipeline, the major performance bottlenecks arise from
dependences that cannot be alleviated, thus reducing the parallelism among
instructions and the sustained issue rate. Although little can be done about true
data dependences, often the compiler or hardware does not know precisely
whether a dependence exists or not, and so must conservatively assume the
dependence exists. For example, code that makes use of pointers, particularly in
ways that create more aliasing, will lead to more implied potential dependences.
In contrast, the greater regularity of array accesses often allows a compiler to
deduce that no dependences exist. Similarly, branches that cannot be accurately
predicted whether at runtime or compile time will limit the ability to exploit ILP.
Often additional ILP is available, but the ability of the compiler or the hardware to
find ILP that may be widely separated (sometimes by the execution of thousands
of instructions) is limited. 

Second, losses in the memory system (the topic of Chapter 7) also limit the
ability to keep the pipeline full. Some memory system stalls can be hidden, but
limited amounts of ILP also limit the extent to which such stalls can be hidden. 

Understanding
Program
Performance
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In the last chapter, we discussed how the Pentium 4 fetched and translated IA-32
instructions into microoperations. The microoperations are then executed by a
sophisticated, dynamically scheduled, speculative pipeline capable of sustaining
an execution rate of three microoperations per clock cycle. This section focuses on
that microoperation pipeline. The Pentium 4 combines multiple issue with deep
pipelining so as to achieve both a low CPI and a high clock rate.

When we consider the design of sophisticated, dynamically scheduled proces-
sors, the design of the functional units, the cache and register file, instruction
issue, and overall pipeline control become intermingled, making it difficult to
separate out the datapath from the pipeline. Because of this, many engineers and
researchers have adopted the term microarchitecture to refer to the detailed
internal architecture of a processor. Figure 6.50 shows the microarchitecture of
the Pentium 4, focusing on the structures for executing the microoperations.

Another way to look at the Pentium 4 is to see the pipeline stages that a typical
instruction goes through. Figure 6.51 shows the pipeline structure and the typical
number of clock cycles spent in each; of course, the number of clock cycles varies
due to the nature of dynamic scheduling as well as the requirements of individual
microoperations. 

The Pentium 4, and the earlier Pentium III and Pentium Pro, all use the tech-
nique of decoding IA-32 instructions into microoperations and executing those
microoperations using a speculative pipeline with multiple functional units. In
fact, the basic microarchitecture is similar, and all these processors can complete
up to three microoperations per cycle. The Pentium 4 gains its performance
advantage over the Pentium III through several enhancements: 

1. A pipeline that is roughly twice as deep (approximately 20 cycles versus 10)
and can run almost twice as fast in the same technology

2. More functional units (7 versus 5)

3. Support for a larger number of outstanding operations (126 versus 40) 

4. The use of a trace cache (see Chapter 7) and a much better branch predictor
(4K entries versus 512)

5. Other enhancements to the memory system, which we discuss in Chapter 7

Elaboration: The Pentium 4 uses a scheme for resolving antidependences and incor-
rect speculation that uses a reorder buffer together with register renaming. Register
renaming explicitly renames the architectural registers in a processor (8 in the case of
IA-32) to a larger set of physical registers (128 in the Pentium 4). The Pentium 4 uses

6.10 Real Stuff: The Pentium 4 Pipeline 6.10

microarchitecture The orga-
nization of the processor, 
including the major functional 
units, their interconnection, and 
control.

architectural registers The
instruction set visible registers 
of a processor; for example, in 
MIPS, these are the 32 integer 
and 16 floating-point registers.
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FIGURE 6.50 The microarchitecture of the Intel Pentium 4. The extensive queues allow up to 126 microoperations to be outstanding at
any point in time, including 48 loads and 24 stores. There are actually seven functional units, since the FP unit includes a separate dedicated unit for
floating-point moves. The load and store units are actually separated into two parts, with the first part handling address calculation and the second
part responsible for the actual memory reference. The integer ALUs operate at twice the clock frequency, allowing two integer ALU operations to be
completed by each of the two integer units in a single clock cycle. As we described in Chapter 5, the Pentium 4 uses a special cache, called the trace
cache, to hold predecoded sequences of microoperations, corresponding to IA-32 instructions. The operation of a trace cache is explained in more
detail in Chapter 7. The FP unit also handles the MMX multimedia and SSE2 instructions. There is an extensive bypass network among the functional
units; since the pipeline is dynamic rather than static, bypassing is done by tagging results and tracking source operands, so as to allow a match when a
result is produced for an instruction in one of the queues that needs the result. Intel is expected to release new versions of the Pentium 4 in 2004, which
will probably have changes in the microarchitecture. 
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FIGURE 6.51 The Pentium 4 pipeline showing the pipeline flow for a typical instruction
and the number of clock cycles for the major steps in the pipeline. The major buffers where
instructions wait are also shown.
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register renaming to remove antidependences. Register renaming requires the processor
to maintain a map between the architectural registers and the physical registers, indicat-
ing which physical register is the most current copy of an architectural register. By keeping
track of the renamings that have occurred, register renaming offers another approach to
recovery in the event of incorrect speculation: simply undo the mappings that have
occurred since the first incorrectly speculated instruction. This will cause the state of the
processor to return to the last correctly executed instruction, keeping the correct mapping
between the architectural and physical registers.

Check
Yourself

Are the following statements true or false?

1. The Pentium 4 can issue more instructions per clock then the Pentium III.

2. The Pentium 4 multiple-issue pipeline directly executes IA-32 instructions.

3. The Pentium 4 uses dynamic scheduling but no speculation.

4. The Pentium 4 microarchitecture has many more registers than IA-32
requires.

5. The Pentium 4 pipeline has fewer stages than the Pentium III.

6. The trace cache in the Pentium 4 is exactly the same as an instruction cache.

Understanding
Program

Performance

The Pentium 4 combines a deep pipeline (averaging 20 or more pipe stages per
instruction) and aggressive multiple issue to achieve high performance. By keep-
ing the latencies for back-to-back operations low (0 for ALU operations and 2 for
loads), the impact of data dependences is reduced. What are the most serious
potential performance bottlenecks for programs running on this processor? The
following list includes some potential performance problems, the last three of
which can apply in some form to any high-performance pipelined processor.

■ The use of IA-32 instructions that do not map to three or fewer simple mi-
crooperations

■ Branches that are difficult to predict, causing misprediction stalls and restarts
when speculation fails

■ Poor instruction locality, which causes the trace cache not to function effec-
tively 

■ Long dependences—typically caused by long-running instructions or data
cache misses—which lead to stalls

Performance delays arising in accessing memory (see Chapter 7) that cause the
processor to stall 
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Fallacy: Pipelining is easy. 

Our books testify to the subtlety of correct pipeline execution. Our advanced
book had a pipeline bug in its first edition, despite its being reviewed by more
than 100 people and being class-tested at 18 universities. The bug was uncovered
only when someone tried to build the computer in that book. The fact that the
Verilog to describe a pipeline like that in the Pentium 4 will be thousands of lines
is an indication of the complexity. Beware!

Fallacy: Pipelining ideas can be implemented independent of technology. 

When the number of transistors on-chip and speed of transistors made a five-
stage pipeline the best solution, then the delayed branch (see the Elaboration on
page 423) was a simple solution to control hazards. With longer pipelines, super-
scalar execution, and dynamic branch prediction, it is now redundant. In the early
1990s, dynamic pipeline scheduling took too many resources and was not
required for high performance, but as transistor budgets continued to double and
logic became much faster than memory, then multiple functional units and
dynamic pipelining made more sense. Today, all high-end processors use multiple
issue, and most choose to implement aggressive speculation as well.

Pitfall: Failure to consider instruction set design can adversely impact pipelining.

Many of the difficulties of pipelining arise because of instruction set complica-
tions. Here are some examples:

■ Widely variable instruction lengths and running times can lead to imbal-
ance among pipeline stages and severely complicate hazard detection in a
design pipelined at the instruction set level. This problem was overcome,
initially in the DEC VAX 8500 in the late 1980s, using the micropipelined
scheme that the Pentium 4 employs today. Of course, the overhead of trans-
lation and maintaining correspondence between the microoperations and
the actual instructions remains. 

■ Sophisticated addressing modes can lead to different sorts of problems.
Addressing modes that update registers, such as update addressing (see
Chapter 3), complicate hazard detection. Other addressing modes that
require multiple memory accesses substantially complicate pipeline control
and make it difficult to keep the pipeline flowing smoothly. 

Perhaps the best example is the DEC Alpha and the DEC NVAX. In comparable
technology, the newer instruction set architecture of the Alpha allowed an imple-
mentation whose performance is more than twice as fast as NVAX. In another

6.11 Fallacies and Pitfalls 6.11
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example, Bhandarkar and Clark [1991] compared the MIPS M/2000 and the DEC
VAX 8700 by counting clock cycles of the SPEC benchmarks; they concluded that,
although the MIPS M/2000 executes more instructions, the VAX on average exe-
cutes 2.7 times as many clock cycles, so the MIPS is faster.

Pipelining improves the average execution time per instruction. Depending on
whether you start with a single-cycle or multiple-cycle datapath, this reduction
can be thought of as decreasing the clock cycle time or as decreasing the number
of clock cycles per instruction (CPI). We started with the simple single-cycle data-
path, so pipelining was presented as reducing the clock cycle time of the simple
datapath. Multiple issue, in comparison, clearly focuses on reducing CPI (or
increasing IPC). Figure 6.52 shows the effect on CPI and clock rate for each of the
microarchitectures from Chapters 5 and 6. Performance is increased by moving
up and to the right, since it is the product of IPC and clock rate that determines
performance for a given instruction set. 

Pipelining improves throughput, but not the inherent execution time, or
latency, of instructions; the latency is similar in length to the multicycle approach.
Unlike that approach, which uses the same hardware repeatedly during instruc-
tion execution, pipelining starts an instruction every clock cycle by having dedi-
cated hardware. Similarly, multiple issue adds additional datapath hardware to
allow multiple instructions to begin every clock cycle, but at an increase in effec-
tive latency. Figure 6.53 shows the datapaths from Figure 6.52 placed according to
the amount of sharing of hardware and instruction latency.

Pipelining and multiple issue both attempt to exploit instruction-level parallel-
ism. The presence of data and control dependences, which can become hazards,
are the primary limitations on how much parallelism can be exploited. Scheduling
and speculation, both in hardware and software, are the primary techniques used
to reduce the performance impact of dependences.  

The switch to longer pipelines, multiple instruction issue, and dynamic sched-
uling in the mid-1990s has helped sustain the 60% per year processor perfor-
mance increase that we have benefited from since the early 1980s. In the past, it
appeared that the choice was between the highest clock rate processors and the
most sophisticated superscalar processors. As we have seen, the Pentium 4 com-
bines both and achieves remarkable performance.

6.12 Concluding Remarks 6.12

Nine-tenths of wisdom con-
sists of being wise in time.

American proverb

instruction latency The
inherent execution time for an 
instruction.
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FIGURE 6.52 The performance consequences of simple (single-cycle) datapath and mul-
ticycle datapath from Chapter 5 and the pipelined execution model in Chapter 6. Remem-
ber that CPU performance is a function of IPC times clock rate, and hence moving to the upper right
increases performance. Although the instructions per clock cycle is slightly larger in the simple datapath,
the pipelined datapath is close, and it uses a clock rate as fast as the multicycle datapath.

FIGURE 6.53 The basic relationship between the datapaths in Figure 6.52. Notice that the
x-axis is use latency in instructions, which is what determines the ease of keeping the pipeline full. The pipe-
lined datapath is shown as multiple clock cycles for instruction latency because the execution time of an
instruction is not shorter; it’s the instruction throughput that is improved.
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With remarkable advances in processing, Amdahl’s law suggests that another part
of the system will become the bottleneck. That bottleneck is the topic of the next
chapter: the memory system.

An alternative to pushing uniprocessors to automatically exploit parallelism at
the instruction level is trying multiprocessors, which exploit parallelism at much
coarser levels. Parallel processing is the topic of  Chapter 9, which appears on the
CD.

This section, which appears on the CD, discusses the history of the first pipelined
processors, the earliest superscalars, the development of out-of-order and specula-
tive techniques, as well as important developments in the accompanying compiler
technology.

6.1 [5] <§6.1> If the time for an ALU operation can be shortened by 25% (com-
pared to the description in Figure 6.2 on page 373); 

a. Will it affect the speedup obtained from pipelining?  If yes, by how much?
Otherwise, why?  

b. What if the ALU operation now takes 25% more time?

6.2 [10] <§6.1> A computer architect needs to design the pipeline of a new micro-
processor.  She has an example workload program core with 106 instructions.  Each
instruction takes 100 ps to finish.

a. How long does it take to execute this program core on a nonpipelined proces-
sor?

b. The current state-of-the-art microprocessor has about 20 pipeline stages.
Assume it is perfectly pipelined. How much speedup will it achieve compared
to the nonpipelined processor?  

c. Real pipelining isn’t perfect, since implementing pipelining introduces some
overhead per pipeline stage. Will this overhead affect instruction latency,
instruction throughput, or both?

Historical Perspective and Further 
Reading 6.13

6.14 Exercises 6.14

6.13
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6.3 [5] <§6.1> Using a drawing similar to Figure 6.5 on page 377, show the for-
warding paths needed to execute the following four instructions:

add $3, $4, $6
sub $5, $3, $2
lw  $7, 100($5)
add $8, $7, $2

6.4 [10] <§6.1> Identify all of the data dependencies in the following code. Which
dependencies are data hazards that will be resolved via forwarding? Which depen-
dencies are data hazards that will cause a stall?

add $3, $4, $2
sub $5, $3, $1
lw  $6, 200($3)
add $7, $3, $6

6.5 [5] <§6.1>  For More Practice: Delayed Branches

6.6 [10] <§6.2> Using Figure 6.22 on page 400 as a guide, use colored pens or
markers to show which portions of the datapath are active and which are inactive
in each of the five stages of the sw instruction. We suggest that you use five pho-
tocopies of Figure 6.22 to answer this exercise. (We hereby grant you permission
to violate the Copyright Protection Act in doing the exercises in Chapters 5 and 6!)
Be sure to include a legend to explain your color scheme. 

6.7 [5] <§6.2> For More Practice: Understanding Pipelines by Drawing Them

6.8 [5] <§6.2>  For More Practice: Understanding Pipelines by Drawing Them

6.9 [15] <§6.2>  For More Practice: Understanding Pipelines by Drawing
Them

6.10 [5] <§6.2>  For More Practice: Pipeline Registers

6.11 [15] <§§4.8, 6.2>  For More Practice: Pipelining Floating Point

6.12 [15] <§6.3> Figure 6.37 on page 417 and Figure 6.35 on page 415 are two
styles of drawing pipelines.  To make sure you understand the relationship between
these two styles, draw the information in Figures 6.31 through 6.35 on pages 410
through 415 using the style of Figure 6.37 on page 417. Highlight the active por-
tions of the data paths in the figure.

6.13 [20] <§6.3> Figure 6.14.10 is similar to Figure 6.14.7 on page 6.14-9 in the
For More Practice section, but the instructions are unidentified. Determine as

much as you can about the five instructions in the five pipeline stages. If you can-
not fill in a field of an instruction, state why. For some fields it will be easier to
decode the machine instructions into assembly language, using Figure 3.18 on



456 Chapter 6 Enhancing Performance with Pipelining

page 205 and Figure A.10.2 on page A-50 as references. For other fields it will be eas-
ier to look at the values of the control signals, using Figures 6.26 through 6.28 on
pages 403 and 405 as references. You may need to carefully examine Figures 6.14.5
through 6.14.9 to understand how collections of control values are presented (i.e.,
the leftmost bit in one cycle will become the uppermost bit in another cycle). For
example, the EX control value for the subtract instruction, 1100, computed during
the ID stage of cycle 3 in Figure 6.14.6, becomes three separate values specifying
RegDst (1), ALUOp (10), and ALUSrc (0) in cycle 4.

6.14 [40] <§6.3> The following piece of code is executed using the pipeline shown
in Figure 6.30 on page 409:

lw  $5, 40($2)
add $6, $3, $2
or  $7, $2, $1
and $8, $4, $3
sub $9, $2, $1

At cycle 5, right before the instructions are executed, the processor state is as follows:

a. The PC has the value 100ten, the address of the sub_instruction.

b. Every register has the initial value 10ten plus the register number (e.g., register
$8 has the initial value 18ten).

c. Every memory word accessed as data has the initial value 1000ten plus the byte
address of the word (e.g., Memory[8] has the initial value 1008ten). 

Determine the value of every field in the four pipeline registers in cycle 5.

6.15 [20] <§6.3>  For More Practice: Labeling Pipeline Diagrams with Control

6.16 [20] <§6.4>  For More Practice: Illustrating Diagrams with Forwarding

6.17 [5] <§§6.4, 6.5> Consider executing the following code on the pipelined data-
path of Figure 6.36 on page 416:

add    $2, $3, $1
sub    $4, $3,  $5
add    $5,  $3, $7
add    $7,  $6,  $1
add    $8,  $2,  $6

At the end of the fifth cycle of execution, which registers are being read and which
register will be written?

6.18 [5] <§§6.4, 6.5> With regard to the program in Exercise 6.17, explain what the
forwarding unit is doing during the fifth cycle of execution. If any comparisons are
being made, mention them.
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6.19 [5] <§§6.4, 6.5> With regard to the program in Exercise 6.17, explain what the
hazard detection unit is doing during the fifth cycle of execution. If any comparisons
are being made, mention them.

6.20 [20] <§§6.4, 6.5>  For More Practice: Forwarding in Memory

6.21 [5] <§6.5> We have a program of 103 instructions in the format of "lw, add,
lw, add, . . ."  The add instruction depends (and only depends) on the lw instruction
right before it.  The lw instruction also depends (and only depends) on the add
instruction right before it.  If the program is executed on the pipelined datapath of
Figure 6.36 on page 416:

a. What would be the actual CPI?

b. Without forwarding, what would be the actual CPI?

6.22 [5] <§§6.4, 6.5> Consider executing the following code on the pipelined data-
path of Figure 6.36 on page 416:

lw   $4, 100($2)
sub  $6, $4, $3
add  $2, $3, $5

How many cycles will it take to execute this code? Draw a diagram like that of Figure
6.34 on page 414 that illustrates the dependencies that need to be resolved, and pro-
vide another diagram like that of Figure 6.35 on page 415 that illustrates how the
code will actually be executed (incorporating any stalls or forwarding) so as to
resolve the identified problems.

6.23 [15] <§6.5> List all the inputs and outputs of the forwarding unit in Figure
6.36 on page 416. Give the names, the number of bits, and brief usage for each input
and output.

6.24 [20] <§6.5>  For More Practice: Illustrating Diagrams with Forwarding and
Stalls

6.25 [20] <§6.5>  For More Practice: Impact on Forwarding of Moving It to ID
Stage

6.26 [15] <§§6.2–6.5>  For More Practice: Impact of Memory Addressing Mode
on Pipeline

6.27 [10] <§§6.2–6.5>  For More Practice: Impact of Arithmetic Operations
with Memory Operands on Pipeline

6.28 [30] <§6.5, Appendix C>  For More Practice: Forwarding Unit Hardware
Design
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6.29 [1 week] <§§6.4, 6.5> Using the simulator provided with this book, collect sta-
tistics on data hazards for a C program (supplied by either the instructor or with the
software). You will write a subroutine that is passed the instruction to be executed,
and this routine must model the five-stage pipeline in this chapter. Have your pro-
gram collect the following statistics:

■ Number of instructions executed.

■ Number of data hazards not resolved by forwarding and number resolved by
forwarding.

■ If the MIPS C compiler that you are using issues nop instructions to avoid
hazards, count the number of nop instructions as well.

Assuming that the memory accesses always take 1 clock cycle, calculate the average
number of clock cycles per instruction. Classify nop instructions as stalls inserted by
software, then subtract them from the number of instructions executed in the CPI
calculation.

6.30 [7] <§§6.4, 6.5> In the example on page 425, we saw that the performance
advantage of the multicycle design was limited by the longer time required to access
memory versus use the ALU. Suppose the memory access became 2 clock cycles long.
Find the relative performance of the single-cycle and multicycle designs. In the next
few exercises, we extend this to the pipelined design, which requires lots more work!

6.31 [10] <§6.6>  For More Practice: Coding with Conditional Moves

6.32 [10] <§6.6>  For More Practice: Performance Advantage of Conditional
Move

6.33 [20] <§§6.2–6.6> In the example on page 425, we saw that the performance
advantage of both the multicycle and the pipelined designs was limited by the longer
time required to access memory versus use the ALU. Suppose the memory access
became 2 clock cycles long. Draw the modified pipeline. List all the possible new for-
warding situations and all possible new hazards and their length. 

6.34 [20] <§§6.2–6.6> Redo the example on page 425 using the restructured pipe-
line of Exercise 6.33 to compare the single-cycle and multicycle. For branches,
assume the same prediction accuracy, but increase the penalty as appropriate. For
loads, assume that the subsequent instructions depend on the load with a probability
of 1/2, 1/4, 1/8, 1/16, and so on. That is, the instruction following a load by two has
a 25% probability of using the load result as one of its sources. Ignoring any other
data hazards, find the relative performance of the pipelined design to the single-cycle
design with the restructured pipeline.

6.35 [10] <§§6.4–6.6> As pointed out on page 418, moving the branch comparison
up to the ID stage introduces an opportunity for both forwarding and hazards that
cannot be resolved by forwarding. Give a set of code sequences that show the possible
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forwarding paths required and hazard cases that must be detected, considering only
one of the two operands. The number of cases should equal the maximum length of
the hazard if no forwarding existed. 

6.36 [15] <§6.6> We have a program core consisting of five conditional branches.
The program core will be executed thousands of times.  Below are the outcomes of
each branch for one execution of the program core (T for taken, N for not taken).

Branch 1: T-T-T
Branch 2: N-N-N-N
Branch 3: T-N-T-N-T-N
Branch 4: T-T-T-N-T
Branch 5: T-T-N-T-T-N-T

Assume the behavior of each branch remains the same for each program core execu-
tion.  For dynamic schemes, assume each branch has its own prediction buffer and
each buffer initialized to the same state before each execution.  List the predictions
for the following branch prediction schemes:

a. Always taken

b. Always not taken

c. 1-bit predictor, initialized to predict taken

d. 2-bit predictor, initialized to weakly predict taken

What are the prediction accuracies?

6.37 [10] <§§6.4–6.6> Sketch all the forwarding paths for the branch inputs and
show when they must be enabled (as we did on page 407).

6.38 [10] <§§6.4–6.6> Write the logic to detect any hazards on the branch sources,
as we did on page 410. 

6.39 [10] <§§6.4–6.6> The example on page 378 shows how to maximize perfor-
mance on our pipelined datapath with forwarding and stalls on a use following a
load. Rewrite the following code to minimize performance on this datapath—that is,
reorder the instructions so that this sequence takes the most clock cycles to execute
while still obtaining the same result.

lw    $2, 100($6)
lw    $3, 200($7)
add   $4, $2, $3
add   $6, $3, $5
sub   $8, $4, $6
lw    $7, 300($8)
beq   $7, $8, Loop
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6.40 [20] <§6.6> Consider the pipelined datapath in Figure 6.54 on page 461. Can
an attempt to flush and an attempt to stall occur simultaneously? If so, do they result
in conflicting actions and/or cooperating actions? If there are any cooperating
actions, how do they work together? If there are any conflicting actions, which should
take priority? Is there a simple change you can make to the datapath to ensure the
necessary priority? You may want to consider the following code sequence to help
you answer this question:

         beq $1, $2, TARGET # assume that the branch is taken
         lw  $3, 40($4)
         add $2, $3, $4
         sw  $2, 40($4)
TARGET:  or  $1, $1, $2

6.41 [15] <§§ 6.4, 6.7> The Verilog for implementing forwarding in Figure 6.7.2 on
page 6.7-4–6.7-5 did not consider forwarding of a result as the value to be stored by
a SW instruction. Add this to the Verilog code. 

6.42 [5] <§§6.5, 6.7> The Verilog for implementing stalls in Figure 6.7.3 on page
6.7-6–6.7-7 did not consider forwarding of a result to use in an address calculation.
Make this simple addition to the Verilog code. 

6.43 [15] <§§6.6, 6.7> The Verilog code for implementing branch hazard detection
and stalls in Figure 6.7.3 on page 6.7-6–6.7-7 does not detect the possibility of data
hazards for the two source registers of a BEQ instruction. Extend the Verilog in Figure
6.7.3 on page 6.7-6–6.7-7 to handle all data hazards for branch operands. Write both
the forwarding and stall logic needed for completing branches during ID. 

6.44 [10] <§§6.6, 6.7> Rewrite theVerilog code in 6.7.3 on page 6.7-6–6.7-7 to
implement a delayed branch strategy.

6.45 [20] <§§6.6, 6.7> Rewrite the verilog code in Figure 6.7.3 on page 6.7-6–6.7-7
to implement a branch target buffer. Assume the buffer is implemented with a mod-
ule with the following definition:

module PredictPC (currentPC,nextPC,miss,update,destination);
   input currentPC,
      update, // true if previous prediction was unavailable or incorrect
      destination; / used with update to correct a prediction
   output nextPC, // returns the next PC if prediction is accurate
      miss; // true means no prediction in buffer
endmodule;

Make sure you accomodate all three possibilities: a correct prediction, a miss in the
buffer (that is, miss = true), and an incorrect prediction. In the last two cases, you
must also update the prediction. 
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6.46 [1 month] <§§5.4, 6.3–6.8> If you have access to a simulation system such
as Verilog or ViewLogic, first design the single-cycle datapath and control from
Chapter 5. Then evolve this design into a pipelined organization, as we did in this
chapter. Be sure to run MIPS programs at each step to ensure that your refined
design continues to operate correctly.

6.47 [10] <§6.9> The following code has been unrolled once but not yet sched-
uled. Assume the loop index is a multiple of two (i.e., $10 is a multiple of eight):

Loop: lw   $2,  0($10)
sub  $4,  $2, $3
sw   $4,  0($10)
lw   $5,  4($10)
sub  $6,  $5, $3
sw   $6,  4($10)
addi $10, $10, 8
bne  $10, $30, Loop

Schedule this code for fast execution on the standard MIPS pipeline (assume that
it supports addi instruction). Assume initially $10 is 0 and $30 is 400 and that
branches are resolved in the MEM stage. How does the scheduled code compare
against the original unscheduled code?

6.48 [20] <§6.9> This exercise is similar to Exercise 6.47, except this time the
code should be unrolled twice (creating three copies of the code). However, it is
not known that the loop index is a multiple of three, and thus you will need to
invent a means of ensuring that the code still executes properly. (Hint: Consider
adding some code to the beginning or end of the loop that takes care of the cases
not handled by the loop.)

6.49 [20] <§6.9> Using the code in Exercise 6.47, unroll the code four times and
schedule it for the static multiple-issue version of the MIPS processor described on
pages 436–439. You may assume that the loop executes for a multiple of four times. 

6.50 [10] <§§6.1–6.9> As technology leads to smaller feature sizes, the wires
become relatively slower (as compared to the logic). As logic becomes faster with
the shrinking feature size and clock rates increase, wire delays consume more clock
cycles.  That is why the Pentium 4 has several pipeline stages dedicated to transfer-
ring data along wires from one part of the pipeline to another.  What are the draw-
backs to having to add pipe stages for wire delays?

6.51 [30] <§6.10> New processors are introduced more quickly than new ver-
sions of textbooks. To keep your textbook current, investigate some of the latest
developments in  this area and write a one-page elaboration to insert at the end of
Section 6.10. Use the World-Wide Web to explore the characteristics of the lastest
processors from Intel or AMD as a starting point.
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Answers to
Check Yourself

§6.1, page 384: 1. Stall on the LW result. 2. Bypass the ADD result. 3. No stall or
bypass required.
§6.2, page 399: Statements 2 and 5 are correct; the rest are incorrect.
§6.6, page 426: 1. Predict not taken. 2. Predict taken. 3. Dynamic prediction. 
§6.7,  page 6.7-3: Statements 1 and 3 are both true. 
§6.7,  page 6.7-7: Only statement #3 is completely accurate.
§6.8, page 432: Only #4 is totally accurate. #2 is partially accurate.
§6.9, page 447: Speculation: both; reorder buffer: hardware; register renaming:
both; out-of-order execution: hardware; predication: software; branch prediction:
both; VLIW: software; superscalar: hardware; EPIC: both, since there is substantial
hardware support; multiple issue: both; dynamic scheduling: hardware. 
§6.10, page 450: All the statements are false.
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Many believe that Internet news services

influenced the outcome of the 2002 Korean

presidential election. First, they encouraged

more young people to vote. Second, the win-

ning candidate advocated  politics  that were

Percentage of households with broadband 
connections by country in 2002. 

Source: The Yankee Group, Boston.
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closer to those popular on the Internet news

services. Together they  overcame the disad-

vantage that most major media organizations

endorsed his opponent.

Google News is another example of nontra-

ditional access to news that goes beyond the

mass media of one country. It searches inter-

national news services for topics, and then

summarizes and displays them by popularity.

Rather than leaving the decision of what arti-

cles should be on the front page to local news-

paper editors, the worldwide media decides.

In addition, by providing links to stories from

many countries, the reader gets an interna-

tional perspective rather than a local one. It

also is updated many times a day unlike a daily

newspaper. The figure below compares the

New York Times front page to the Google News

Web site on the same day.

The widespread impact of these technolo-

gies reminds us that computer engineers have

responsibilities to their communities. We

must be aware of societal values concerning

privacy, security, free speech, and so on to

ensure that new technological innovations

enhance those values rather than inadvertently

compromising them.

To learn more see these references on 
the  library

� “Seriously wired,” The Economist, April 17, 2003.

� OhMyNews, www.ohmynews.com

� Google News, www.news.google.com

New York Times versus Google News on october 3, 2003 at 6 PM PT.  The newspaper front page headlines must balance 

big stories with national news, local news, and sports. Google News has many stories per headline from around the world, with links the reader 

can follow. Google stories vary by time of day and hence are more recent.

New York Times Front Page Google News

Judge Rules Out a Death Penalty for 9/11
     Suspect

Rebuke for Justice Dept.
Poll Shows Drop in Confidence on Bush
     Skill in Handling Crises
     Country on Wrong Track, Says Solid
     Majority
Revised Admission for High Schools
     City Says Students Will Get First Preference
No Illicit Arms Found in Iraq, U.S. Inspector
     Tells Congress
U.S. Practice How to Down Hijacked Jets
Coetzee, Writer of Apartheid as Bleak Mirror,
     Wins Nobel
Sexual Accusations Lead to an Apology
     by Schwarzenegger
Interim Chief Accepts Stock Exchange
     Shift
Yankees Even with Twins
Agency Warns of Fake Drugs
Limbaugh Fallback Position

Top Stories
More than 1000 rally behind Schwarzenegger
AP - 5 minutes ago
     Maria Shriver defends husband CNN
     Can accusations hurt Arnold’s campaign?
     KESQ
                                             and 1252 related
Bush: Hussein ‘A Danger to the World’ ABC
     news - 5 hours ago
     Bush Stands By Decision Voice of America
     Hunt for weapons yields no evidence The
Canberra Times
                                             and 598 related

World Stories
Defiant UN chief announces rival blueprint for
     Iraq
The Times (UK) - 2 hours ago
     France, Russia Assail US Draft on Iraq
     Reuters
                                             and 782 related
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Large and Fast:
Exploiting
Memory Hierarchy

Ideally one would desire an indefinitely large memory 
capacity such that any particular . . . word would be 
immediately available. . . . We are . . .  forced to 
recognize the possibility of constructing a hierarchy of 
memories, each of which has greater capacity than the 
preceding but which is less quickly accessible.

A. W. Burks, H. H. Goldstine, and J. von Neumann
Preliminary Discussion of the Logical Design of an Electronic Computing Instrument, 1946
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From the earliest days of computing, programmers have wanted unlimited
amounts of fast memory. The topics we will look at in this chapter aid program-
mers by creating the illusion of unlimited fast memory. Before we look at how the
illusion is actually created, let’s consider a simple analogy that illustrates the key
principles and mechanisms that we use.

Suppose you were a student writing a term paper on important historical
developments in computer hardware. You are sitting at a desk in a library with a
collection of books that you have pulled from the shelves and are examining. You
find that several of the important computers that you need to write about are
described in the books you have, but there is nothing about the EDSAC. There-
fore, you go back to the shelves and look for an additional book. You find a book
on early British computers that covers EDSAC. Once you have a good selection of
books on the desk in front of you, there is a good probability that many of the top-
ics you need can be found in them, and you may spend most of your time just
using the books on the desk without going back to the shelves. Having several
books on the desk in front of you saves time compared to having only one book
there and constantly having to go back to the shelves to return it and take out
another. 

The same principle allows us to create the illusion of a large memory that we
can access as fast as a very small memory. Just as you did not need to access all the
books in the library at once with equal probability, a program does not access all
of its code or data at once with equal probability. Otherwise, it would be impossi-
ble to make most memory accesses fast and still have large memory in computers,
just as it would be impossible for you to fit all the library books on your desk and
still find what you wanted quickly. 

This principle of locality underlies both the way in which you did your work in
the library and the way that programs operate. The principle of locality states that
programs access a relatively small portion of their address space at any instant of
time, just as you accessed a very small portion of the library’s collection. There are
two different types of locality:

■ Temporal locality (locality in time): If an item is referenced, it will tend to
be referenced again soon. If you recently brought a book to your desk to
look at, you will probably need to look at it again soon.

■ Spatial locality (locality in space): If an item is referenced, items whose
addresses are close by will tend to be referenced soon. For example, when

7.1 Introduction 7.1

temporal locality The princi-
ple stating that if a data location 
is referenced then it will tend to 
be referenced again soon.

spatial locality The locality 
principle stating that if a data 
location is referenced, data loca-
tions with nearby addresses will 
tend to be referenced soon.
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you brought out the book on early English computers to find out about
EDSAC, you also noticed that there was another book shelved next to it
about early mechanical computers, so you also brought back that book too
and, later on, found something useful in that book. Books on the same topic
are shelved together in the library to increase spatial locality. We’ll see how
spatial locality is used in memory hierarchies a little later in this chapter.

Just as accesses to books on the desk naturally exhibit locality, locality in pro-
grams arises from simple and natural program structures. For example, most pro-
grams contain loops, so instructions and data are likely to be accessed repeatedly,
showing high amounts of temporal locality. Since instructions are normally
accessed sequentially, programs show high spatial locality. Accesses to data also
exhibit a natural spatial locality. For example, accesses to elements of an array or a
record will naturally have high degrees of spatial locality. 

We take advantage of the principle of locality by implementing the memory of
a computer as a memory hierarchy. A memory hierarchy consists of multiple lev-
els of memory with different speeds and sizes. The faster memories are more
expensive per bit than the slower memories and thus smaller. 

Today, there are three primary technologies used in building memory hierar-
chies. Main memory is implemented from DRAM (dynamic random access
memory), while levels closer to the processor (caches) use SRAM (static random
access memory). DRAM is less costly per bit than SRAM, although it is substan-
tially slower. The price difference arises because DRAM uses significantly less
area per bit of memory, and DRAMs thus have larger capacity for the same
amount of silicon; the speed difference arises from several factors described in
Section B.8 of Appendix B. The third technology, used to implement the largest
and slowest level in the hierarchy, is magnetic disk. The access time and price
per bit vary widely among these technologies, as the table below shows, using
typical values for 2004:

Because of these differences in cost and access time, it is advantageous to build
memory as a hierarchy of levels. Figure 7.1 shows the faster memory is close to the
processor and the slower, less expensive memory is below it. The goal is to present
the user with as much memory as is available in the cheapest technology, while
providing access at the speed offered by the fastest memory. 

Memory technology Typical access time $ per GB in 2004

SRAM 0.5–5 ns $4000–$10,000

DRAM 50–70 ns $100–$200

Magnetic disk 5,000,000–20,000,000 ns $0.50–$2

memory hierarchy A struc-
ture that uses multiple levels of 
memories; as the distance from 
the CPU increases, the size of 
the memories and the access 
time both increase.
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The memory system is organized as a hierarchy: a level closer to the processor
is generally a subset of any level further away, and all the data is stored at the low-
est level. By analogy, the books on your desk form a subset of the library you are
working in, which is in turn a subset of all the libraries on campus. Furthermore,
as we move away from the processor, the levels take progressively longer to access,
just as we might encounter in a hierarchy of campus libraries.

A memory hierarchy can consist of multiple levels, but data is copied between
only two adjacent levels at a time, so we can focus our attention on just two levels.
The upper level—the one closer to the processor—is smaller and faster (since it
uses more expensive technology) than the lower level. Figure 7.2 shows that the
minimum unit of information that can be either present or not present in the
two-level hierarchy is called a block or a line; in our library analogy, a block of
information is one book. 

If the data requested by the processor appears in some block in the upper level,
this is called a hit (analogous to your finding the information in one of the books
on your desk). If the data is not found in the upper level, the request is called a
miss. The lower level in the hierarchy is then accessed to retrieve the block con-
taining the requested data. (Continuing our analogy, you go from your desk to the
shelves to find the desired book.) The hit rate, or hit ratio, is the fraction of mem-
ory accesses found in the upper level; it is often used as a measure of the perfor-

FIGURE 7.1 The basic structure of a memory hierarchy. By implementing the memory system
as a hierarchy, the user has the illusion of a memory that is as large as the largest level of the hierarchy, but
can be accessed as if it were all built from the fastest memory. 

Speed

Fastest

Slowest

Smallest

Biggest

Size Cost ($/bit)

Current

Technology

Highest

Lowest

SRAM

DRAM

Magnetic Disk

CPU

Memory

Memory

Memory

block The minimum unit of 
information that can be either 
present or not present in the 
two-level hierarchy.

hit rate The fraction of mem-
ory accesses found in a cache.
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mance of the memory hierarchy. The miss rate (1 – hit rate) is the fraction of
memory accesses not found in the upper level.

Since performance is the major reason for having a memory hierarchy, the time
to service hits and misses is important. Hit time is the time to access the upper
level of the memory hierarchy, which includes the time needed to determine
whether the access is a hit or a miss (that is, the time needed to look through the
books on the desk). The miss penalty is the time to replace a block in the upper
level with the corresponding block from the lower level, plus the time to deliver
this block to the processor (or, the time to get another book from the shelves and
place it on the desk). Because the upper level is smaller and built using faster
memory parts, the hit time will be much smaller than the time to access the next
level in the hierarchy, which is the major component of the miss penalty. (The
time to examine the books on the desk is much smaller than the time to get up
and get a new book from the shelves.)

As we will see in this chapter, the concepts used to build memory systems
affect many other aspects of a computer, including how the operating system
manages memory and I/O, how compilers generate code, and even how appli-
cations use the computer. Of course, because all programs spend much of
their time accessing memory, the memory system is necessarily a major factor
in determining performance. The reliance on memory hierarchies to achieve
performance has meant that programmers, who used to be able to think of
memory as a flat, random access storage device, now need to understand

FIGURE 7.2 Every pair of levels in the memory hierarchy can be thought of as having an
upper and lower level. Within each level, the unit of information that is present or not is called a block.
Usually we transfer an entire block when we copy something between levels.

Processor

Data are transferred

miss rate The fraction of 
memory accesses not found in a 
level of the memory hierarchy.

hit time The time required to 
access a level of the memory 
hierarchy, including the time 
needed to determine whether 
the access is a hit or a miss.

miss penalty The time 
required to fetch a block into a 
level of the memory hierarchy 
from the lower level, including 
the time to access the block, 
transmit it from one level to the 
other, and insert it in the level 
that experienced the miss.
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memory hierarchies to get good performance. We show how important this
understanding is with two examples. 

Since memory systems are so critical to performance, computer designers have
devoted a lot of attention to these systems and developed sophisticated mecha-
nisms for improving the performance of the memory system. In this chapter, we
will see the major conceptual ideas, although many simplifications and abstrac-
tions have been used to keep the material manageable in length and complexity.
We could easily have written hundreds of pages on memory systems, as dozens of
recent doctoral theses have demonstrated.

Check
Yourself

Which of the following statements are generally true?

1. Caches take advantage of temporal locality.

2. On a read, the value returned depends on which blocks are in the cache.

3. Most of the cost of the memory hierarchy is at the highest level.  

Programs exhibit both temporal locality, the tendency to reuse recently
accessed data items, and spatial locality, the tendency to reference data
items that are close to other recently accessed items. Memory hierarchies
take advantage of temporal locality by keeping more recently accessed
data items closer to the processor. Memory hierarchies take advantage of
spatial locality by moving blocks consisting of multiple contiguous words
in memory to upper levels of the hierarchy. 

Figure 7.3 shows that a memory hierarchy uses smaller and faster
memory technologies close to the processor. Thus, accesses that hit in the
highest level of the hierarchy can be processed quickly. Accesses that miss
go to lower levels of the hierarchy, which are larger but slower. If the hit
rate is high enough, the memory hierarchy has an effective access time
close to that of the highest (and fastest) level and a size equal to that of
the lowest (and largest) level. 

In most systems, the memory is a true hierarchy, meaning that data
cannot be present in level i unless it is also present in level i + 1.

The BIG
Picture
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In our library example, the desk acted as a cache—a safe place to store things
(books) that we needed to examine. Cache was the name chosen to represent the
level of the memory hierarchy between the processor and main memory in the
first commercial computer to have this extra level. Today, although this remains
the dominant use of the word cache, the term is also used to refer to any storage
managed to take advantage of locality of access. Caches first appeared in research
computers in the early 1960s and in production computers later in that same
decade; every general-purpose computer built today, from servers to low-power
embedded processors, includes caches. 

In this section, we begin by looking at a very simple cache in which the processor
requests are each one word and the blocks also consist of a single word. (Readers
already familiar with cache basics may want to skip to Section 7.3 on page 492.)

FIGURE 7.3 This diagram shows the structure of a memory hierarchy: as the distance
from the processor increases, so does the size. This structure with the appropriate operating
mechanisms allows the processor to have an access time that is determined primarily by level 1 of the hier-
archy and yet have a memory as large as level n. Maintaining this illusion is the subject of this chapter.
Although the local disk is normally the bottom of the hierarchy, some systems use tape or a file server over a
local area network as the next levels of the hierarchy.

7.2 The Basics of Caches 7.2

CPU

Level 1

Level 2

Level n

Increasing distance

from the CPU in

access time
Levels in the

memory hierarchy

Size of the memory at each level

Cache: a safe place for hid-
ing or storing things.

Webster’s New World Diction-
ary of the American Language, 
Third College Edition (1988)
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Figure 7.4 shows such a simple cache, before and after requesting a data item that is
not initially in the cache. Before the request, the cache contains a collection of recent
references X1, X2, . . . , Xn – 1, and the processor requests a word Xn that is not in the
cache. This request results in a miss, and the word Xn is brought from memory into
cache. 

In looking at the scenario in Figure 7.4, there are two questions to
answer: How do we know if a data item is in the cache? Moreover, if it is, how do
we find it? The answers to these two questions are related. If each word can go in
exactly one place in the cache, then it is straightforward to find the word if it is in
the cache. The simplest way to assign a location in the cache for each word in
memory is to assign the cache location based on the address of the word in mem-
ory. This cache structure is called direct mapped, since each memory location is
mapped directly to exactly one location in the cache. The typical mapping
between addresses and cache locations for a direct-mapped cache is usually sim-
ple. For example, almost all direct-mapped caches use the mapping

(Block address) modulo (Number of cache blocks in the cache)

This mapping is attractive because if the number of entries in the cache is a power
of two, then modulo can be computed simply by using the low-order log2 (cache
size in blocks) bits of the address; hence the cache may be accessed directly with
the low-order bits. For example, Figure 7.5 shows how the memory addresses

FIGURE 7.4 The cache just before and just after a reference to a word Xn that is not
initially in the cache. This reference causes a miss that forces the cache to fetch Xn from memory and
insert it into the cache. 

X4

X1

Xn – 2

Xn – 1

X2

X3

a. Before the reference to Xn

X4

X1

Xn – 2

Xn – 1

X2

X3

b. After the reference to Xn

Xn

direct-mapped cache A cache 
structure in which each memory 
location is mapped to exactly 
one location in the cache.
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between 1ten (00001two) and 29ten (11101two) map to locations 1ten (001two) and
5ten (101two) in a direct-mapped cache of eight words. 

Because each cache location can contain the contents of a number of different
memory locations, how do we know whether the data in the cache corresponds to
a requested word? That is, how do we know whether a requested word is in the
cache or not? We answer this question by adding a set of tags to the cache. The
tags contain the address information required to identify whether a word in the
cache corresponds to the requested word. The tag needs only to contain the upper
portion of the address, corresponding to the bits that are not used as an index into
the cache. For example, in Figure 7.5 we need only have the upper 2 of the 5
address bits in the tag, since the lower 3-bit index field of the address selects the
block. We exclude the index bits because they are redundant, since by definition
the index field of every address must have the same value. 

We also need a way to recognize that a cache block does not have valid infor-
mation. For instance, when a processor starts up, the cache does not have good

FIGURE 7.5 A direct-mapped cache with eight entries showing the addresses of memory
words between 0 and 31 that map to the same cache locations. Because there are eight words in
the cache, an address X maps to the cache word X modulo 8. That is, the low-order log2(8) = 3 bits are used as
the cache index. Thus, addresses 00001two, 01001two, 10001two, and 11001two all map to entry 001two of the
cache, while addresses 00101two, 01101two, 10101two, and 11101two all map to entry 101two of the cache.

Cache

Memory

00001 10001

01
0

10
0

10
1

11
1

11
0

00
0

00
1

01
1

00101 01001 01101 10101 11001 11101

tag A field in a table used for a 
memory hierarchy that contains 
the address information required 
to identify whether the associated 
block in the hierarchy corre-
sponds to a requested word.
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data, and the tag fields will be meaningless. Even after executing many instruc-
tions, some of the cache entries may still be empty, as in Figure 7.4. Thus, we need
to know that the tag should be ignored for such entries. The most common
method is to add a valid bit to indicate whether an entry contains a valid address.
If the bit is not set, there cannot be a match for this block. 

For the rest of this section, we will focus on explaining how reads work in a
cache and how the cache control works for reads. In general, handling reads is a
little simpler than handling writes, since reads do not have to change the contents
of the cache. After seeing the basics of how reads work and how cache misses can
be handled, we’ll examine the cache designs for real computers and detail how
these caches handle writes. 

Accessing a Cache

Figure 7.6 shows the contents of an eight-word direct-mapped cache as it
responds to a series of requests from the processor. Since there are eight blocks in
the cache, the low-order 3 bits of an address give the block number. Here is the
action for each reference:

When the word at address 18 (10010two) is brought into cache block 2
(010two), the word at address 26 (11010two), which was in cache block 2
(010two), must be replaced by the newly requested data. This behavior allows a
cache to take advantage of temporal locality: recently accessed words replace
less recently referenced words. This situation is directly analogous to needing a
book from the shelves and having no more space on your desk—some book
already on your desk must be returned to the shelves. In a direct-mapped cache,
there is only one place to put the newly requested item and hence only one
choice of what to replace. 

Decimal address
of reference

Binary address
of reference

Hit or miss
in cache

Assigned cache block
(where found or placed)

22 10110two miss (7.6b)  (10110two mod 8) = 110two

26 11010two miss (7.6c)  (11010two mod 8) = 010two

22 10110two hit (10110two mod 8) = 110two

26 11010two hit (11010two mod 8) = 010two

16 10000two miss (7.6d) (10000two mod 8) = 000two

03 00011two miss (7.6e)  (00011two mod 8) = 011two

16 10000two hit (10000two mod 8) = 000two

18 10010two miss (7.6f)  (10010two mod 8) = 010two

valid bit A field in the tables of a 
memory hierarchy that indicates 
that the associated block in the 
hierarchy contains valid data.
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Index V Tag Data Index V Tag Data

000 N 000 N

001 N 001 N

010 N 010 N

011 N 011 N

100 N 100 N

101 N 101 N

110 N 110 Y 10two Memory(10110two)

111 N 111 N

a. The initial state of the cache after power-on b. After handling a miss of address (10110two)

Index V Tag Dlata Index V Tag Data

000 N 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 11two Memory (11010two)

011 N 011 N

100 N 100 N

101 N 101 N

110 Y 10two Memorlly (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

c. After handling a miss of address (11010two) d. After handling a miss of address (10000two)

Index V Tag Data Index V Tag Data

000 Y 10two Memory (10000two) 000 Y 10two Memory (10000two)

001 N 001 N

010 Y 11two Memory (11010two) 010 Y 10two Memory (10010two)

011 Y 00two Memory (00011two) 011 Y 00two Memory (00011two)

100 N 100 N

101 N 101 N

110 Y 10two Memory (10110two) 110 Y 10two Memory (10110two)

111 N 111 N

e. After handling a miss of address (00011two) f. After handling a miss of address (10010two)

FIGURE 7.6 The cache contents are shown after each reference request that misses, with the index and tag fields shown in
binary. The cache is initially empty, with all valid bits (V entry in cache) turned off (N). The processor requests the following addresses: 10110two
(miss), 11010two (miss), 10110two (hit), 11010two (hit), 10000two (miss), 00011two (miss), 10000two (hit), and 10010two (miss). The figures show the
cache contents after each miss in the sequence has been handled. When address 10010two (18) is referenced, the entry for address 11010two (26) must
be replaced, and a reference to 11010two will cause a subsequent miss. The tag field will contain only the upper portion of the address. The full address
of a word contained in cache block i with tag field j for this cache is j ¥ 8 + i, or equivalently the concatenation of the tag field j and the index i. For
example, in cache f above, index 010 has tag 10 and corresponds to address 10010. 
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We know where to look in the cache for each possible address: the low-order
bits of an address can be used to find the unique cache entry to which the address
could map. Figure 7.7 shows how a referenced address is divided into 

■ a cache index, which is used to select the block

■ a tag field, which is used to compare with the value of the tag field of the
cache

FIGURE 7.7 For this cache, the lower portion of the address is used to select a cache
entry consisting of a data word and a tag. The tag from the cache is compared against the upper
portion of the address to determine whether the entry in the cache corresponds to the requested address.
Because the cache has 210 (or 1024) words and a block size of 1 word, 10 bits are used to index the cache,
leaving 32 – 10 – 2 = 20 bits to be compared against the tag. If the tag and upper 20 bits of the address are
equal and the valid bit is on, then the request hits in the cache, and the word is supplied to the processor.
Otherwise, a miss occurs. 

Address (showing bit positions)

Data

Hit

Data

Tag

Valid Tag

3220

Index
0
1
2

1023
1022
1021

=

Index

20 10

Byte
offset

31 30 13 12 11 2   1 0
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The index of a cache block, together with the tag contents of that block, uniquely
specifies the memory address of the word contained in the cache block. Because
the index field is used as an address to access the cache and because an n-bit field
has 2n values, the total number of entries in a direct-mapped cache must be a
power of two. In the MIPS architecture, since words are aligned to multiples of 4
bytes, the least significant 2 bits of every address specify a byte within a word and
hence are ignored when selecting the word in the block. 

The total number of bits needed for a cache is a function of the cache size and
the address size because the cache includes both the storage for the data and the
tags. The size of the block above was one word, but normally it is several. Assuming
the 32-bit byte address, a direct-mapped cache of size 2n blocks with 2m-word
(2m+2-byte) blocks will require a tag field whose size is 32 - (n + m + 2)  bits
because n bits are used for the index, m bits are used for the word within the block,
and 2 bits are used for the byte part of the address. The total number of bits in a
direct-mapped cache is 2n ¥ (block size + tag size + valid field size). Since the block
size is 2m words (2m+5 bits) and the address size is 32 bits, the number of bits in
such a cache is 2n ¥ (m ¥ 32 + (32 - n - m - 2) + 1) = 2n ¥ (m ¥ 32 + 31 - n - m).
However, the naming convention is to excludes the size of the tag and valid field
and to count only the size of the data. 

Bits in a Cache

How many total bits are required for a direct-mapped cache with 16 KB of
data and 4-word blocks, assuming a 32-bit address?

We know that 16 KB is 4K words, which is 212 words, and, with a block size of
4 words (22), 210 blocks. Each block has 4 ¥ 32 or 128 bits of data plus a tag,
which is 32 – 10 – 2 – 2 bits, plus a valid bit. Thus, the total cache size is

 Kbits

or 18.4 KB for a 16 KB cache. For this cache, the total number of bits in the
cache is about 1.15 times as many as needed just for the storage of the data.

EXAMPLE

ANSWER

210 128 32 10– 2– 2–( )+ 1+( )¥ 210 147¥ 147= =
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Larger blocks exploit spatial locality to lower miss rates. As Figure 7.8 shows,
increasing the block size usually decreases the miss rate. The miss rate may go up
eventually if the block size becomes a significant fraction of the cache size because
the number of blocks that can be held in the cache will become small, and there
will be a great deal of competition for those blocks. As a result, a block will be
bumped out of the cache before many of its words are accessed. Stated alterna-
tively, spatial locality among the words in a block decreases with a very large
block; consequently, the benefits in the miss rate become smaller. 

Mapping an Address to a Multiword Cache Block

Consider a cache with 64 blocks and a block size of 16 bytes. What block
number does byte address 1200 map to?

We saw the formula on page 474. The block is given by 

(Block address) modulo (Number of cache blocks) 

where the address of the block is

Notice that this block address is the block containing all addresses between

and

Thus, with 16 bytes per block, byte address 1200 is block address

which maps to cache block number (75 modulo 64) = 11. In fact, this block
maps all addresses between 1200 and 1215.

EXAMPLE

ANSWER

Byte address
Bytes per block
------------------------------------

Byte address
Bytes per block
------------------------------------ Bytes per block¥

Byte address
Bytes per block
------------------------------------ Bytes per block Bytes per block 1–( )+¥

1200
16

----------- 75=
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A more serious problem associated with just increasing the block size is that the
cost of a miss increases. The miss penalty is determined by the time required to
fetch the block from the next lower level of the hierarchy and load it into the
cache. The time to fetch the block has two parts: the latency to the first word and
the transfer time for the rest of the block. Clearly, unless we change the memory
system, the transfer time—and hence the miss penalty—will increase as the block
size grows. Furthermore, the improvement in the miss rate starts to decrease as
the blocks become larger. The result is that the increase in the miss penalty over-
whelms the decrease in the miss rate for large blocks, and cache performance thus
decreases. Of course, if we design the memory to transfer larger blocks more effi-
ciently, we can increase the block size and obtain further improvements in cache
performance. We discuss this topic in the next section.

Elaboration: The major disadvantage of increasing the block size is that the cache
miss penalty increases. Although it is hard to do anything about the latency component
of the miss penalty, we may be able to hide some of the transfer time so that the miss
penalty is effectively smaller. The simplest method for doing this, called early restart, is
simply to resume execution as soon as the requested word of the block is returned,
rather than wait for the entire block. Many processors use this technique for instruction

FIGURE 7.8 Miss rate versus block size. Note that miss rate actually goes up if the block size is too
large relative to the cache size. Each line represents a cache of different size. (This figure is independent of
associativity, discussed soon.) Unfortunately, SPEC2000 traces would take too long if block size were
included, so these data are based on SPEC92.
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access, where it works best. Instruction accesses are largely sequential, so if the mem-
ory system can deliver a word every clock cycle, the processor may be able to restart
operation when the requested word is returned, with the memory system delivering new
instruction words just in time. This technique is usually less effective for data caches
because it is likely that the words will be requested from the block in a less predictable
way, and the probability that the processor will need another word from a different
cache block before the transfer completes is high. If the processor cannot access the
data cache because a transfer is ongoing, then it must stall.

An even more sophisticated scheme is to organize the memory so that the
requested word is transferred from the memory to the cache first. The remainder of the
block is then transferred, starting with the address after the requested word and wrap-
ping around to the beginning of the block. This technique, called requested word first, or
critical word first, can be slightly faster than early restart, but it is limited by the same
properties that limit early restart. 

Handling Cache Misses

Before we look at the cache of a real system, let’s see how the control unit deals
with cache misses. The control unit must detect a miss and process the miss by
fetching the requested data from memory (or, as we shall see, a lower-level cache).
If the cache reports a hit, the computer continues using the data as if nothing had
happened. Consequently, we can use the same basic control that we developed in
Chapter 5 and enhanced to accommodate pipelining in Chapter 6. The memories
in the datapath in Chapters 5 and 6 are simply replaced by caches. 

Modifying the control of a processor to handle a hit is trivial; misses, however,
require some extra work. The cache miss handling is done with the processor con-
trol unit and with a separate controller that initiates the memory access and refills
the cache. The processing of a cache miss creates a stall, similar to the pipeline stalls
discussed in Chapter 6, as opposed to an interrupt, which would require saving the
state of all registers. For a cache miss, we can stall the entire processor, essentially
freezing the contents of the temporary and programmer-visible registers, while we
wait for memory. In contrast, pipeline stalls, discussed in Chapter 6, are more com-
plex because we must continue executing some instructions while we stall others. 

Let’s look a little more closely at how instruction misses are handled for either
the multicycle or pipelined datapath; the same approach can be easily extended to
handle data misses. If an instruction access results in a miss, then the content of
the Instruction register is invalid. To get the proper instruction into the cache, we
must be able to instruct the lower level in the memory hierarchy to perform a
read. Since the program counter is incremented in the first clock cycle of execu-
tion in both the pipelined and multicycle processors, the address of the instruc-
tion that generates an instruction cache miss is equal to the value of the program
counter minus 4. Once we have the address, we need to instruct the main memory

cache miss A request for data 
from the cache that cannot be 
filled because the data is not 
present in the cache.
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to perform a read. We wait for the memory to respond (since the access will take
multiple cycles), and then write the words into the cache. 

We can now define the steps to be taken on an instruction cache miss:

1. Send the original PC value (current PC – 4) to the memory.

2. Instruct main memory to perform a read and wait for the memory to com-
plete its access.

3. Write the cache entry, putting the data from memory in the data portion of
the entry, writing the upper bits of the address (from the ALU) into the tag
field, and turning the valid bit on.

4. Restart the instruction execution at the first step, which will refetch the
instruction, this time finding it in the cache.

The control of the cache on a data access is essentially identical: on a miss, we
simply stall the processor until the memory responds with the data.  

Handling Writes

Writes work somewhat differently. Suppose on a store instruction, we wrote the
data into only the data cache (without changing main memory); then, after the
write into the cache, memory would have a different value from that in the cache.
In such a case, the cache and memory are said to be inconsistent. The simplest way
to keep the main memory and the cache consistent is to always write the data into
both the memory and the cache. This scheme is called write-through.

The other key aspect of writes is what occurs on a write miss. We first fetch the
words of the block from memory. After the block is fetched and placed into the
cache, we can overwrite the word that caused the miss into the cache block. We
also write the word to main memory using the full address.

Although this design handles writes very simply, it would not provide very good
performance. With a write-through scheme, every write causes the data to be written
to main memory. These writes will take a long time, likely at least 100 processor clock
cycles, and could slow down the processor considerably. For the SPEC2000 integer
benchmarks, for example, 10% of the instructions are stores. If the CPI without
cache misses was 1.0, spending 100 extra cycles on every write would lead to a CPI of
1.0 + 100 ¥ 10% = 11, reducing performance by more than a factor of 10.

One solution to this problem is to use a write buffer. A write buffer stores the
data while it is waiting to be written to memory. After writing the data into the
cache and into the write buffer, the processor can continue execution. When a
write to main memory completes, the entry in the write buffer is freed. If the write
buffer is full when the processor reaches a write, the processor must stall until
there is an empty position in the write buffer. Of course, if the rate at which the

write-through A scheme in 
which writes always update both 
the cache and the memory, 
ensuring that data is always con-
sistent between the two. 

write buffer A queue that holds 
data while the data are waiting to 
be written to memory. 
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memory can complete writes is less than the rate at which the processor is gener-
ating writes, no amount of buffering can help because writes are being generated
faster than the memory system can accept them. 

The rate at which writes are generated may also be less than the rate at which
the memory can accept them, and yet stalls may still occur. This can happen when
the writes occur in bursts. To reduce the occurrence of such stalls, processors usu-
ally increase the depth of the write buffer beyond a single entry.

The alternative to a write-through scheme is a scheme called write-back. In a
write-back scheme, when a write occurs, the new value is written only to the block
in the cache. The modified block is written to the lower level of the hierarchy
when it is replaced. Write-back schemes can improve performance, especially
when processors can generate writes as fast or faster than the writes can be han-
dled by main memory; a write-back scheme is, however, more complex to imple-
ment than write-through.

In the rest of this section, we describe caches from real processors, and we
examine how they handle both reads and writes. In Section 7.5, we will describe
the handling of writes in more detail.

Elaboration: Writes introduce several complications into caches that are not present
for reads. Here we discuss two of them: the policy on write misses and efficient imple-
mentation of writes in write-back caches. 

Consider a miss in a write-through cache. The strategy followed in most write-
through cache designs, called fetch-on-miss, fetch-on-write, or sometimes allocate-on-
miss, allocates a cache block to the address that missed and fetches the rest of the
block into the cache before writing the data and continuing execution. Alternatively, we
could either allocate the block in the cache but not fetch the data (called no-fetch-on-
write), or even not allocate the block (called no-allocate-on-write). Another name for
these strategies that do not place the written data into the cache is write-around, since
the data is written around the cache to get to memory. The motivation for these
schemes is the observation that sometimes programs write entire blocks of data
before reading them. In such cases, the fetch associated with the initial write miss may
be unnecessary. There are a number of subtle issues involved in implementing these
schemes in multiword blocks, including complicating the handling of write hits by requir-
ing mechanisms similar to those used for write-back caches. 

Actually implementing stores efficiently in a cache that uses a write-back strategy is
more complex than in a write-through cache. In a write-back cache, we must write the
block back to memory if the data in the cache is dirty and we have a cache miss. If we
simply overwrote the block on a store instruction before we knew whether the store had
hit in the cache (as we could for a write-through cache), we would destroy the contents
of the block, which is not backed up in memory. A write-through cache can write the
data into the cache and read the tag; if the tag mismatches, then a miss occurs.
Because the cache is write-through, the overwriting of the block in the cache is not cat-
astrophic since memory has the correct value.

write-back A scheme that han-
dles writes by updating values 
only to the block in the cache, 
then writing the modified block 
to the lower level of the hierar-
chy when the block is replaced.
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In a write-back cache, because we cannot overwrite the block, stores either require
two cycles (a cycle to check for a hit followed by a cycle to actually perform the write) or
require an extra buffer, called a store buffer, to hold that data—effectively allowing the
store to take only one cycle by pipelining it. When a store buffer is used, the processor
does the cache lookup and places the data in the store buffer during the normal cache
access cycle. Assuming a cache hit, the new data is written from the store buffer into
the cache on the next unused cache access cycle. 

By comparison, in a write-through cache, writes can always be done in one cycle.
There are some extra complications with multiword blocks, however, since we cannot
simply overwrite the tag when we write the data. Instead, we read the tag and write the
data portion of the selected block. If the tag matches the address of the block being
written, the processor can continue normally, since the correct block has been updated.
If the tag does not match, the processor generates a write miss to fetch the rest of the
block corresponding to that address. Because it is always safe to overwrite the data,
write hits still take one cycle.

Many write-back caches also include write buffers that are used to reduce the miss
penalty when a miss replaces a dirty block. In such a case, the dirty block is moved to
a write-back buffer associated with the cache while the requested block is read from
memory. The write-back buffer is later written back to memory. Assuming another miss
does not occur immediately, this technique halves the miss penalty when a dirty block
must be replaced.

An Example Cache: The Intrinsity FastMATH processor

The Intrinsity FastMATH is a fast embedded microprocessor that uses the MIPS
architecture and a simple cache implementation. Near the end of the chapter, we
will examine the more complex cache design of the  Intel Pentium 4, but we start
with this simple, yet real, example for pedagogical reasons. Figure 7.9 shows the
organization of the Intrinsity FastMATH data cache.

This processor has 12-stage pipeline, similar to that discussed in Chapter 6.
When operating at peak speed, the processor can request both an instruction
word and a data word on every clock. To satisfy the demands of the pipeline with-
out stalling, separate instruction and data caches are used. Each cache is 16 KB, or
4K words, with 16-word blocks. 

Read requests for the cache are straightforward. Because there are separate data
and instruction caches, separate control signals will be needed to read and write
each cache. (Remember that we need to update the instruction cache when a miss
occurs.) Thus, the steps for a read request to either cache are as follows:

1. Send the address to the appropriate cache. The address comes either from
the PC (for an instruction) or from the ALU (for data).

2. If the cache signals hit, the requested word is available on the data lines.
Since there are 16 words in the desired block, we need to select the right
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one. A block index field is used to control the multiplexor (shown at the
bottom of the figure), which selects the requested word from the 16 words
in the indexed block.

3. If the cache signals miss, we send the address to the main memory. When
the memory returns with the data, we write it into the cache and then read
it to fulfill the request.

For writes, the Intrinsity FastMATH offers both write-through and write-back,
leaving it up to the operating system to decide which strategy to use for an appli-
cation. It has a one-entry write buffer.

FIGURE 7.9 The 16 KB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block. The tag field is 18 bits
wide and the index field is 8 bits wide, while a 4-bit field (bits 5–2) is used to index the block and select the word from the block using a 16-to-1 multi-
plexor. In practice, to eliminate the multiplexor, caches use a separate large RAM for the data and a smaller RAM for the tags, with the block offset supply-
ing the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16 times as many words as blocks in the cache.
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What cache miss rates are attained with a cache structure like that used by the
Intrinsity FastMATH? Figure 7.10 shows the miss rates for the instruction and
data caches for the SPEC2000 integer benchmarks. The combined miss rate is the
effective miss rate per reference for each program after accounting for the differ-
ing frequency of instruction and data accesses.

Although miss rate is an important characteristic of cache designs, the ultimate
measure will be the effect of the memory system on program execution time; we’ll
see how miss rate and execution time are related shortly. 

Elaboration: A combined cache with a total size equal to the sum of the two split
caches will usually have a better hit rate. This higher rate occurs because the combined
cache does not rigidly divide the number of entries that may be used by instructions
from those that may be used by data. Nonetheless, many processors use a split
instruction and data cache to increase cache bandwidth.

Here are miss rates for caches the size of those found in the Intrinsity FastMATH
processor, and for a combined cache whose size is equal to the total of the two caches:

■ Total cache size: 32 KB

■ Split cache effective miss rate: 3.24%

■ Combined cache miss rate: 3.18%

The miss rate of the split cache is only slightly worse. 
The advantage of doubling the cache bandwidth, by supporting both an instruction

and data access simultaneously, easily overcomes the disadvantage of a slightly
increased miss rate. This observation is another reminder that we cannot use miss rate
as the sole measure of cache performance, as Section 7.3 shows.

Designing the Memory System to Support Caches

Cache misses are satisfied from main memory, which is constructed from
DRAMs. In Section 7.1, we saw that DRAMs are designed with the primary
emphasis on density rather than access time. Although it is difficult to reduce the
latency to fetch the first word from memory, we can reduce the miss penalty if we
increase the bandwidth from the memory to the cache. This reduction allows

Instruction miss rate Data miss rate Effective combined miss rate

0.4% 11.4% 3.2%

FIGURE 7.10 Approximate instruction and data miss rates for the Intrinsity FastMATH
processor for SPEC2000 benchmarks. The combined miss rate is the effective miss rate seen for the
combination of the 16 KB instruction cache and 16 KB data cache. It is obtained by weighting the instruc-
tion and data individual miss rates by the frequency of instruction and data references. 

split cache A scheme in which 
a level of the memory hierarchy 
is composed of two independent 
caches that operate in parallel 
with each other with one 
handling instructions and one 
handling data.
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larger block sizes to be used while still maintaining a low miss penalty, similar to
that for a smaller block. 

The processor is typically connected to memory over a bus. The clock rate of
the bus is usually much slower than the processor, by as much as a factor of 10.
The speed of this bus affects the miss penalty.

To understand the impact of different organizations of memory, let’s define a
set of hypothetical memory access times. Assume

■ 1 memory bus clock cycle to send the address

■ 15 memory bus clock cycles for each DRAM access initiated

■ 1 memory bus clock cycle to send a word of data

If we have a cache block of four words and a one-word-wide bank of DRAMs,
the miss penalty would be 1 + 4 ¥ 15 + 4 ¥ 1 = 65  memory bus clock cycles. Thus,
the number of bytes transferred per bus clock cycle for a single miss would be

Figure 7.11 shows three options for designing the memory system. The first
option follows what we have been assuming: memory is one word wide, and all
accesses are made sequentially. The second option increases the bandwidth to
memory by widening the memory and the buses between the processor and mem-
ory; this allows parallel access to all the words of the block. The third option
increases the bandwidth by widening the memory but not the interconnection
bus. Thus, we still pay a cost to transmit each word, but we can avoid paying the
cost of the access latency more than once. Let’s look at how much these other two
options improve the 65-cycle miss penalty that we would see for the first option
(Figure 7.11a). 

Increasing the width of the memory and the bus will increase the memory
bandwidth proportionally, decreasing both the access time and transfer time por-
tions of the miss penalty. With a main memory width of two words, the miss pen-
alty drops from 65 memory bus clock cycles to 1 + 2 ¥ 15 + 2 ¥ 1 = 33  memory
bus clock cycles. With a four-word-wide memory, the miss penalty is just 17
memory bus clock cycles. The bandwidth for a single miss is then 0.48 (almost
twice as high) bytes per bus clock cycle for a memory that is two words wide, and
0.94 bytes per bus clock cycle when the memory is four words wide (almost four
times higher). The major costs of this enhancement are the wider bus and the
potential increase in cache access time due to the multiplexor and control logic
between the processor and cache. 

Instead of making the entire path between the memory and cache wider, the
memory chips can be organized in banks to read or write multiple words in one

4 4¥
65

------------ 0.25=
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access time rather than reading or writing a single word each time. Each bank
could be one word wide so that the width of the bus and the cache need not
change, but sending an address to several banks permits them all to read simulta-
neously. This scheme, which is called interleaving, retains the advantage of incur-
ring the full memory latency only once. For example, with four banks, the time to
get a four-word block would consist of 1 cycle to transmit the address and read
request to the banks, 15 cycles for all four banks to access memory, and 4 cycles to
send the four words back to the cache. This yields a miss penalty of 1 + 1 ¥ 15 + 4
¥ 1 = 20 memory bus clock cycles. This is an effective bandwidth per miss of 0.80
bytes per clock, or about three times the bandwidth for the one-word-wide mem-

FIGURE 7.11 The primary method of achieving higher memory bandwidth is to increase the physical or logical width of the
memory system. In this figure, memory bandwidth is improved two ways. The simplest design, (a), uses a memory where all components are one
word wide; (b) shows a wider memory, bus, and cache; while (c) shows a narrow bus and cache with an interleaved memory. In (b), the logic between
the cache and processor consists of a multiplexor used on reads and control logic to update the appropriate words of the cache on writes.
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ory and bus. Banks are also valuable on writes. Each bank can write indepen-
dently, quadrupling the write bandwidth and leading to fewer stalls in a write-
through cache. As we will see, an alternative strategy for writes makes interleaving
even more attractive. 

Elaboration: Memory chips are organized to produce a number of output bits, usu-
ally 4 to 32, with 8 or 16 being the most popular in 2004. We describe the organization
of a RAM as d ¥ w, where d is the number of addressable locations (the depth) and w is
the output (or width of each location). One path to improving the rate at which we trans-
fer data from the memory to the caches is to take advantage of the structure of
DRAMs. DRAMs are logically organized as rectangular arrays, and access time is
divided into row access and column access. DRAMs buffer a row of bits inside the
DRAM for column access. They also come with optional timing signals that allow
repeated accesses to the buffer without a row access time. This capability, originally
called page mode, has gone through a series of enhancements. In page mode, the
buffer acts like an SRAM; by changing column address, random bits can be accessed in
the buffer until the next row access. This capability changes the access time signifi-
cantly, since the access time to bits in the row is much lower. Figure 7.12 shows how
the density, cost, and access time of DRAMS have changed over the years.

The newest development is DDR SDRAMs (double data rate synchronous DRAMs).
SDRAMs provide for a burst access to data from a series of sequential locations in the
DRAM. An SDRAM is supplied with a starting address and a burst length. The data in
the burst is transferred under control of a clock signal, which in 2004 can run at up to

Year introduced Chip size $ per MB
Total access time to
a new row/column

Column access
time to existing row

1980 0 64 Kbit $1500 250 ns 150 ns

1983 0256 Kbit $$500 185 ns 100 ns

1985 1 Mbit $$200 135 ns 040 ns

1989 4 Mbit $$50 110 ns 040 ns

1992 16 Mbit $$15 090 ns 030 ns

1996 64 Mbit $$10 060 ns 12 ns

1998 128 Mbit $4  60 ns  10 ns

2000 256 Mbit $1  55 ns   7 ns

2002 512 Mbit $$0.25  50 ns   5 ns

2004 1024 Mbit $0.10  45 ns   3 ns

FIGURE 7.12 DRAM size increased by multiples of four approximately once every three
years until 1996, and thereafter doubling approximately every two years. The improve-
ments in access time have been slower but continuous, and cost almost tracks density improvements,
although cost is often affected by other issues, such as availability and demand. The cost per megabyte is not
adjusted for inflation. 
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300 MHz. The two key advantages of SDRAMs are the use of a clock that eliminates
the need to synchronize and the elimination of the need to supply successive
addresses in the burst. The DDR part of the name means data transfers on both the
leading and falling edge of the clock, thereby getting twice as much bandwidth as you
might expect based on the clock rate and the data width. To deliver such high band-
width, the internal DRAM is organized as interleaved memory banks.

The advantage of these optimizations is that they use the circuitry already largely on
the DRAMs, adding little cost to the system while achieving a significant improvement
in bandwidth. The internal architecture of DRAMs and how these optimizations are
implemented are described in Section B.8 of  Appendix B.

Summary

We began the previous section by examining the simplest of caches: a direct-mapped
cache with a one-word block. In such a cache, both hits and misses are simple, since a
word can go in exactly one location and there is a separate tag for every word. To keep
the cache and memory consistent, a write-through scheme can be used, so that every
write into the cache also causes memory to be updated. The alternative to write-
through is a write-back scheme that copies a block back to memory when it is
replaced; we’ll discuss this scheme further in upcoming sections.

To take advantage of spatial locality, a cache must have a block size larger than
one word. The use of a larger block decreases the miss rate and improves the effi-
ciency of the cache by reducing the amount of tag storage relative to the amount
of data storage in the cache. Although a larger block size decreases the miss rate, it
can also increase the miss penalty. If the miss penalty increased linearly with the
block size, larger blocks could easily lead to lower performance. To avoid this, the
bandwidth of main memory is increased to transfer cache blocks more efficiently.
The two common methods for doing this are making the memory wider and
interleaving. In both cases, we reduce the time to fetch the block by minimizing
the number of times we must start a new memory access to fetch a block, and,
with a wider bus, we can also decrease the time needed to send the block from the
memory to the cache. 

Check
Yourself

The speed of the memory system affects the designer’s decision on the size of the
cache block. Which of the following cache designer guidelines are generally valid?

1. The shorter the memory latency, the smaller the cache block.

2. The shorter the memory latency, the larger the cache block.

3. The higher the memory bandwidth, the smaller the cache block.

4. The higher the memory bandwidth, the larger the cache block.
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In this section, we begin by looking at how to measure and analyze cache perfor-
mance; we then explore two different techniques for improving cache perfor-
mance. One focuses on reducing the miss rate by reducing the probability that
two different memory blocks will contend for the same cache location. The sec-
ond technique reduces the miss penalty by adding an additional level to the hier-
archy. This technique, called multilevel caching, first appeared in high-end
computers selling for over $100,000 in 1990; since then it has become common on
desktop computers selling for less than $1000!

CPU time can be divided into the clock cycles that the CPU spends executing
the program and the clock cycles that the CPU spends waiting for the memory
system. Normally, we assume that the costs of cache accesses that are hits are part
of the normal CPU execution cycles. Thus,

CPU time = (CPU execution clock cycles + Memory-stall clock cycles) 
¥ Clock cycle time

The memory-stall clock cycles come primarily from cache misses, and we make
that assumption here. We also restrict the discussion to a simplified model of the
memory system. In real processors, the stalls generated by reads and writes can be
quite complex, and accurate performance prediction usually requires very
detailed simulations of the processor and memory system.

Memory-stall clock cycles can be defined as the sum of the stall cycles coming
from reads plus those coming from writes:

The read-stall cycles can be defined in terms of the number of read accesses per
program, the miss penalty in clock cycles for a read, and the read miss rate:

Writes are more complicated. For a write-through scheme, we have two sources of
stalls: write misses, which usually require that we fetch the block before continu-
ing the write (see the Elaboration on page 484 for more details on dealing with
writes), and write buffer stalls, which occur when the write buffer is full when a
write occurs. Thus, the cycles stalled for writes equals the sum of these two:

7.3 Measuring and Improving Cache 
Performance 7.3

Memory-stall clock cycles Read-stall cycles Write-stall cycles+=

Read-stall cycles Reads
Program
--------------------- Read miss rate Read miss penalty¥¥=
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Because the write buffer stalls depend on the timing of writes, and not just the
frequency, it is not possible to give a simple equation to compute such stalls. For-
tunately, in systems with a reasonable write buffer depth (e.g., four or more
words) and a memory capable of accepting writes at a rate that significantly
exceeds the average write frequency in programs (e.g., by a factor of two), the
write buffer stalls will be small, and we can safely ignore them. If a system did not
meet these criteria, it would not be well designed; instead, the designer should have
used either a deeper write buffer or a write-back organization.

Write-back schemes also have potential additional stalls arising from the need
to write a cache block back to memory when the block is replaced. We will discuss
this more in Section 7.5.

In most write-through cache organizations, the read and write miss penalties
are the same (the time to fetch the block from memory). If we assume that the
write buffer stalls are negligible, we can combine the reads and writes by using a
single miss rate and the miss penalty:

We can also factor this as

Let’s consider a simple example to help us understand the impact of cache perfor-
mance on processor performance.

Calculating Cache Performance

Assume an instruction cache miss rate for a program is 2% and a data cache
miss rate is 4%. If a processor has a CPI of 2 without any memory stalls and
the miss penalty is 100 cycles for all misses, determine how much faster a pro-
cessor would run with a perfect cache that never missed. Use the instruction
frequencies for SPECint2000 from Chapter 3, Figure 3.26, on page 228.

Write-stall cycles Writes
Program
--------------------- Write miss rate Write miss penalty¥¥Ë ¯

Ê ˆ=

Write buffer stalls+

Memory-stall clock cycles Memory accesses
Program

----------------------------------------- Miss rate Miss penalty¥¥=

Memory-stall clock cycles Instructions
Program

----------------------------- Misses
Instruction
--------------------------- Miss penalty¥¥=

EXAMPLE
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What happens if the processor is made faster, but the memory system is not?
The amount of time spent on memory stalls will take up an increasing fraction of
the execution time; Amdahl’s law, which we examined in Chapter 4, reminds us of
this fact. A few simple examples show how serious this problem can be. Suppose
we speed up the computer in the previous example by reducing its CPI from 2 to 1
without changing the clock rate, which might be done with an improved pipeline.
The system with cache misses would then have a CPI of 1 + 3.44 = 4.44, and the
system with the perfect cache would be

 times faster

The amount of execution time spent on memory stalls would have risen from

to

The number of memory miss cycles for instructions in terms of the Instruc-
tion count (I) is

The frequency of all loads and stores in SPECint2000 is 36%. Therefore, we can
find the number of memory miss cycles for data references:

The total number of memory-stall cycles is 2.00 I + 1.44 I = 3.44 I. This is
more than 3 cycles of memory stall per instruction. Accordingly, the CPI with
memory stalls is 2 + 3.44 = 5.44. Since there is no change in instruction count
or clock rate, the ratio of the CPU execution times is

The performance with the perfect cache is better by .

ANSWER

Instruction miss cycles I 2% 100¥¥ 2.00 I¥= =

Data miss cycles I 36% 4% 100¥¥¥ 1.44 I¥= =

CPU time with stalls
CPU time with perfect cache
--------------------------------------------------------------------

I CPIstall¥ Clock cycle¥
I CPIperfect¥ Clock cycle¥
---------------------------------------------------------------=

CPIstall

CPIperfect

--------------------- 5.44
2

----------==

5.44
2

---------- 2.72=

4.44
1

---------- 4.44=

3.44
5.44
---------- 63%=
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Similarly, increasing clock rate without changing the memory system also
increases the performance lost due to cache misses, as the next example shows.

Cache Performance with Increased Clock Rate

Suppose we increase the performance of the computer in the previous exam-
ple by doubling its clock rate. Since the main memory speed is unlikely to
change, assume that the absolute time to handle a cache miss does not
change. How much faster will the computer be with the faster clock, assum-
ing the same miss rate as the previous example?

Measured in the faster clock cycles, the new miss penalty will be twice as
many clock cycles, or 200 clock cycles. Hence:

Thus, the faster computer with cache misses will have a CPI of 2 + 6.88 =
8.88, compared to a CPI with cache misses of 5.44 for the slower computer. 

Using the formula for CPU time from the previous example, we can compute
the relative performance as

Thus, the computer with the faster clock is about 1.2 times faster rather than
2 times faster, which it would have been if we ignored cache misses.

3.44
4.44
---------- 77%=

EXAMPLE

ANSWER

Total miss cycles per instruction 2% 200¥( ) 36% 4% 200¥( )¥+ 6.88= =

Performance with fast clock
Performance with slow clock
--------------------------------------------------------------------- Execution time with slow clock

Execution time with fast clock
--------------------------------------------------------------------------=

IC CPIslow clock Clock cycle¥¥

IC CPIfast clock
Clock cycle

2
---------------------------¥¥

------------------------------------------------------------------------=

5.44

8.88 1
2
--¥

------------------= 1.23=
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As these examples illustrate, relative cache penalties increase as a processor
becomes faster. Furthermore, if a processor improves both clock rate and CPI, it
suffers a double hit:

1. The lower the CPI, the more pronounced the impact of stall cycles. 

2. The main memory system is unlikely to improve as fast as processor cycle
time, primarily because the performance of the underlying DRAM is not
getting much faster. When calculating CPI, the cache miss penalty is mea-
sured in processor clock cycles needed for a miss. Therefore, if the main
memories of two processors have the same absolute access times, a higher
processor clock rate leads to a larger miss penalty.

Thus, the importance of cache performance for processors with low CPI and
high clock rates is greater, and consequently the danger of neglecting cache
behavior in assessing the performance of such processors is greater. As we will
see in Section 7.6, the use of fast, pipelined processors in desktop PCs and
workstations has led to the use of sophisticated cache systems even in comput-
ers selling for less than a $1000. 

The previous examples and equations assume that the hit time is not a fac-
tor in determining cache performance. Clearly, if the hit time increases, the
total time to access a word from the memory system will increase, possibly
causing an increase in the processor cycle time. Although we will see addi-
tional examples of what can increase hit time shortly, one example is increas-
ing the cache size. A larger cache could clearly have a longer access time, just
as if your desk in the library was very large (say, 3 square meters), it would
take longer to locate a book on the desk. With pipelines deeper than five
stages, an increase in hit time likely adds another stage to the pipeline, since it
may take multiple cycles for a cache hit. Although it is more complex to calcu-
late the performance impact of a deeper pipeline, at some point the increase in
hit time for a larger cache could dominate the improvement in hit rate, lead-
ing to a decrease in processor performance. 

The next subsection discusses alternative cache organizations that decrease
miss rate but may sometimes increase hit time; additional examples appear in Fal-
lacies and Pitfalls (Section 7.7).

Reducing Cache Misses by More Flexible Placement
of Blocks

So far, when we place a block in the cache, we have used a simple placement
scheme: A block can go in exactly one place in the cache. As mentioned earlier, it
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is called direct mapped because there is a direct mapping from any block address in
memory to a single location in the upper level of the hierarchy. There is actually a
whole range of schemes for placing blocks. At one extreme is direct mapped,
where a block can be placed in exactly one location. 

At the other extreme is a scheme where a block can be placed in any location in
the cache. Such a scheme is called fully associative because a block in memory
may be associated with any entry in the cache. To find a given block in a fully asso-
ciative cache, all the entries in the cache must be searched because a block can be
placed in any one. To make the search practical, it is done in parallel with a com-
parator associated with each cache entry. These comparators significantly increase
the hardware cost, effectively making fully associative placement practical only for
caches with small numbers of blocks. 

The middle range of designs between direct mapped and fully associative is
called set associative. In a set-associative cache, there are a fixed number of
locations (at least two) where each block can be placed; a set-associative cache
with n locations for a block is called an n-way set-associative cache. An n-way
set-associative cache consists of a number of sets, each of which consists of n
blocks. Each block in the memory maps to a unique set in the cache given by the
index field, and a block can be placed in any element of that set. Thus, a set-
associative placement combines direct-mapped placement and fully associative
placement: a block is directly mapped into a set, and then all the blocks in the
set are searched for a match. 

Remember that in a direct-mapped cache, the position of a memory block is
given by

(Block number) modulo (Number of cache blocks)

In a set-associative cache, the set containing a memory block is given by

(Block number) modulo (Number of sets in the cache)     

Since the block may be placed in any element of the set, all the tags of all the ele-
ments of the set must be searched. In a fully associative cache, the block can go
anywhere and all tags of all the blocks in the cache must be searched. For example,
Figure 7.13 shows where block 12 may be placed in a cache with eight blocks total,
according to the block placement policy for direct-mapped, two-way set-associa-
tive, and fully associative caches. 

We can think of every block placement strategy as a variation on set asso-
ciativity. Figure 7.14 shows the possible associativity structures for an eight-block
cache. A direct-mapped cache is simply a one-way set-associative cache: each

fully associative cache A
cache structure in which a block 
can be placed in any location in 
the cache.

set-associative cache A cache 
that has a fixed number of loca-
tions (at least two) where each 
block can be placed.
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cache entry holds one block and each set has one element. A fully associative
cache with m entries is simply an m-way set-associative cache; it has one set with
m blocks, and an entry can reside in any block within that set.

The advantage of increasing the degree of associativity is that it usually
decreases the miss rate, as the next example shows. The main disadvantage, which
we discuss in more detail shortly, is an increase in the hit time.

FIGURE 7.13 The location of a memory block whose address is 12 in a cache with 8 blocks varies for direct-mapped, set-
associative, and fully associative placement. In direct-mapped placement, there is only one cache block where memory block 12 can be
found, and that block is given by (12 modulo 8) = 4. In a two-way set-associative cache, there would be four sets, and memory block 12 must be in set
(12 mod 4) = 0; the memory block could be in either element of the set. In a fully associative placement, the memory block for block address 12 can
appear in any of the eight cache blocks.

Direct mapped

2 4 5 760 1 3Block #

Data

Tag

Search

1

2

Set associative

20 1 3Set #

Data

Tag

Search

1

2

Fully associative

Data

Tag

Search

1

2
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FIGURE 7.14 An eight-block cache configured as direct mapped, two-way set associa-
tive, four-way set associative, and fully associative. The total size of the cache in blocks is equal
to the number of sets times the associativity. Thus, for a fixed cache size, increasing the associativity
decreases the number of sets, while increasing the number of elements per set. With eight blocks, an eight-
way set-associative cache is the same as a fully associative cache.

Misses and Associativity in Caches

Assume there are three small caches, each consisting of four one-word blocks.
One cache is fully associative, a second is two-way set associative, and the
third is direct mapped. Find the number of misses for each cache organiza-
tion given the following sequence of block addresses: 0, 8, 0, 6, 8.

Eight-way set associative (fully associative)

Tag Tag Data DataTagTag Data Data Tag Tag Data DataTagTag Data Data

Tag Tag Data DataTagTag Data DataSet

0

1

Four-way set associative

TagTag Data DataSet

0

1

2

3

Two-way set associative

Tag DataBlock

0

1

2

3

4

5

6

7

One-way set associative

(direct mapped)

EXAMPLE
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The direct-mapped case is easiest. First, let’s determine to which cache block
each block address maps:

Now we can fill in the cache contents after each reference, using a blank entry
to mean that the block is invalid, colored text to show a new entry added to
the cache for the associate reference, and a plain text to show an old entry in
the cache:

The direct-mapped cache generates five misses for the five accesses.

The set-associative cache has two sets (with indices 0 and 1) with two ele-
ments per set. Let's first determine to which set each block address maps:

Because we have a choice of which entry in a set to replace on a miss, we need
a replacement rule. Set-associative caches usually replace the least recently
used block within a set; that is, the block that was used furthest in the past is
replaced. (We will discuss replacement rules in more detail shortly.) Using
this replacement rule, the contents of the set-associative cache after each ref-
erence looks like this:

ANSWER

Block address Cache block

0 (0 modulo 4) = 0

6 (6 modulo 4) = 2

8 (8 modulo 4) = 0

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

0 1 2 3

0 miss Memory[0]

8 miss Memory[8]

0 miss Memory[0]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Block address Cache set

0 (0 modulo 2) = 0

6 (6 modulo 2) = 0

8 (8 modulo 2) = 0
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How much of a reduction in the miss rate is achieved by associativity? Figure 7.15
shows the improvement for the SPEC2000 benchmarks for a 64 KB data cache with
a 16-word block, and associativity ranging from direct mapped to eight-way. Going
from one-way to two-way associativity decreases the miss rate by about 15%, but
there is little further improvement in going to higher associativity.

Notice that when block 6 is referenced, it replaces block 8, since block 8 has
been less recently referenced than block 0. The two-way set-associative cache
has four misses, one less than the direct-mapped cache. 

The fully associative cache has four cache blocks (in a single set); any memo-
ry block can be stored in any cache block. The fully associative cache has the
best performance, with only three misses:

For this series of references, three misses is the best we can do because three
unique block addresses are accessed. Notice that if we had eight blocks in the
cache, there would be no replacements in the two-way set-associative cache
(check this for yourself), and it would have the same number of misses as the
fully associative cache. Similarly, if we had 16 blocks, all three caches would
have the same number of misses. This change in miss rate shows us that cache
size and associativity are not independent in determining cache performance.

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Set 0 Set 0 Set 1 Set 1

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[6]

8 miss Memory[8] Memory[6]

Address of memory
block accessed

Hit
or miss

Contents of cache blocks after reference

Block 0 Block 1 Block 2 Block 3

0 miss Memory[0]

8 miss Memory[0] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[0] Memory[8] Memory[6]

8 hit Memory[0] Memory[8] Memory[6]
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Locating a Block in the Cache

Now, let’s consider the task of finding a block in a cache that is set associative. Just
as in a direct-mapped cache, each block in a set-associative cache includes an
address tag that gives the block address. The tag of every cache block within the
appropriate set is checked to see if it matches the block address from the proces-
sor. Figure 7.16 shows how the address is decomposed. The index value is used to
select the set containing the address of interest, and the tags of all the blocks in the
set must be searched. Because speed is of the essence, all the tags in the selected set
are searched in parallel. As in a fully associative cache, a sequential search would
make the hit time of a set-associative cache too slow. 

If the total cache size is kept the same, increasing the associativity increases
the number of blocks per set, which is the number of simultaneous compares
needed to perform the search in parallel: each increase by a factor of two in
associativity doubles the number of blocks per set and halves the number of
sets. Accordingly, each factor-of-two increase in associativity decreases the size
of the index by 1 bit and increases the size of the tag by 1 bit. In a fully associa-
tive cache, there is effectively only one set, and all the blocks must be checked in
parallel. Thus, there is no index, and the entire address, excluding the block off-
set, is compared against the tag of every block. In other words, we search the
entire cache without any indexing.

In a direct-mapped cache, such as in Figure 7.7 on page 478, only a single com-
parator is needed, because the entry can be in only one block, and we access the
cache simply by indexing. Figure 7.17 shows that in a four-way set-associative
cache, four comparators are needed, together with a 4-to-1 multiplexor to choose

Associativity Data miss rate

1 10.3%

2 8.6%

4 8.3%

8 8.1%

FIGURE 7.15 The data cache miss rates for an organization like the Intrinsity FastMATH
processor for SPEC2000 benchmarks with associativity varying from one-way to eight-
way. These results for 10 SPEC2000 programs are from Hennessy and Patterson [2003].

FIGURE 7.16 The three portions of an address in a set-associative or direct-mapped
cache. The index is used to select the set, then the tag is used to choose the block by comparison with the
blocks in the selected set. The block offset is the address of the desired data within the block.

Block OffsetTag Index



7.3 Measuring and Improving Cache Performance 503

among the four potential members of the selected set. The cache access consists of
indexing the appropriate set and then searching the tags of the set. The costs of an
associative cache are the extra comparators and any delay imposed by having to
do the compare and select from among the elements of the set.

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware. 

FIGURE 7.17 The implementation of a four-way set-associative cache requires four comparators and a 4-to-1 multiplexor.
The comparators determine which element of the selected set (if any) matches the tag. The output of the comparators is used to select the data from
one of the four blocks of the indexed set, using a multiplexor with a decoded select signal. In some implementations, the Output enable signals on the
data portions of the cache RAMs can be used to select the entry in the set that drives the output. The Output enable signal comes from the compara-
tors, causing the element that matches to drive the data outputs. This organization eliminates the need for the multiplexor. 

Address

Data

Tag

V Tag

=

Index

22 8

31 30 12 11 10 9 8 3 2 1 0

4-to-1 multiplexor

Index
0
1
2
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DataV Tag

=
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=
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Choosing Which Block to Replace

When a miss occurs in a direct-mapped cache, the requested block can go in
exactly one position, and the block occupying that position must be replaced. In
an associative cache, we have a choice of where to place the requested block, and
hence a choice of which block to replace. In a fully associative cache, all blocks are
candidates for replacement. In a set-associative cache, we must choose among the
blocks in the selected set. 

The most commonly used scheme is least recently used (LRU), which we used
in the previous example. In an LRU scheme. The block replaced is the one that has
been unused for the longest time. LRU replacement is implemented by keeping
track of when each element in a set was used relative to the other elements in the
set. For a two-way set-associative cache, tracking when the two elements were
used can be implemented by keeping a single bit in each set and setting the bit to
indicate an element whenever that element is referenced. As associativity
increases, implementing LRU gets harder; in Section 7.5, we will see an alternative
scheme for replacement.

Size of Tags versus Set Associativity

Increasing associativity requires more comparators, and more tag bits per cache
block. Assuming a cache of 4K blocks, a four-word block size, and a 32-bit ad-
dress, find the total number of sets and the total number of tag bits for caches that
are direct mapped, two-way and four-way set associative, and fully associative.

Since there are 16 (=24) bytes per block, a 32-bit address yields 32 – 4 = 28
bits to be used for index and tag. The direct-mapped cache has the same
number of sets as blocks, and hence 12 bits of index, since log2(4K) = 12;
hence, the total number of tag bits is (28 – 12) ¥ 4K = 16 ¥ 4K = 64 Kbits. 

Each degree of associativity decreases the number of sets by a factor of two and
thus decreases the number of bits used to index the cache by one and increases the
number of bits in the tag by one. Thus, for a two-way set-associative cache, there
are 2K sets, and the total number of tag bits is (28 –11) ¥ 2 ¥  2K= 34 ¥ 2K = 68 Kbits.
For a four-way set-associative cache, the total number of sets is 1K, and the total
number of tag bits is (28 – 10) ¥ 4 ¥ 1K = 72 ¥ 1K = 72 Kbits.

For a fully associative cache, there is only one set with 4K blocks, and the tag
is 28 bits, leading to a total of 28 ¥ 4K ¥ 1 = 112K tag bits. 

EXAMPLE

ANSWER

least recently used (LRU) A
replacement scheme in which 
the block replaced is the one 
that has been unused for the 
longest time.
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Reducing the Miss Penalty Using Multilevel Caches

All modern computers make use of caches. In most cases, these caches are imple-
mented on the same die as the microprocessor that forms the processor. To fur-
ther close the gap between the fast clock rates of modern processors and the
relatively long time required to access DRAMs, many microprocessors support an
additional level of caching. This second-level cache, which can be on the same
chip or off-chip in a separate set of SRAMs, is accessed whenever a miss occurs in
the primary cache. If the second-level cache contains the desired data, the miss
penalty for the first-level cache will be the access time of the second-level cache,
which will be much less than the access time of main memory. If neither the pri-
mary nor secondary cache contains the data, a main memory access is required,
and a larger miss penalty is incurred. 

How significant is the performance improvement from the use of a secondary
cache? The next example shows us.

Performance of Multilevel Caches

Suppose we have a processor with a base CPI of 1.0, assuming all references
hit in the primary cache, and a clock rate of 5 GHz. Assume a main memory
access time of 100 ns, including all the miss handling. Suppose the miss rate
per instruction at the primary cache is 2%. How much faster will the proces-
sor be if we add a secondary cache that has a 5 ns access time for either a hit
or a miss and is large enough to reduce the miss rate to main memory to
0.5%?

The miss penalty to main memory is

EXAMPLE

ANSWER
100 ns

0.2 ns
clock cycle
------------------------

---------------------------------- 500 clock cycles=
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The effective CPI with one level of caching is given by

For the processor with one level of caching,

Total CPI = 1.0 + Memory-stall cycles per instruction = 1.0 + 2% ¥ 500 = 11.0

With two levels of cache, a miss in the primary (or first-level) cache can be
satisfied either by the secondary cache or by main memory. The miss penalty
for an access to the second-level cache is

If the miss is satisfied in the secondary cache, then this is the entire miss penal-
ty. If the miss needs to go to main memory, then the total miss penalty is the
sum of the secondary cache access time and the main memory access time.

Thus, for a two-level cache, total CPI is the sum of the stall cycles from both
levels of cache and the base CPI: 

Total CPI = 1 + Primary stalls per instruction
+ Secondary stalls per instruction 
= 1 + 2% ¥ 25 + 0.5% ¥ 500 = 1 + 0.5 + 2.5 = 4.0

Thus, the processor with the secondary cache is faster by

Alternatively, we could have computed the stall cycles by summing the stall cycles
of those references that hit in the secondary cache ((2% – 0.5%) ¥ 25 = 0.4) and
those references that go to main memory, which must include the cost to access
the secondary cache as well as the main memory access time (0.5% ¥ (25 + 500) =
2.6). The sum, 1.0 + 0.4 + 2.6, is again 4.0.

Total CPI Base CPI + Memory-stall cycles per instruction=

5 ns

0.2 ns
clock cycle
-------------------

--------------------------- 25 clock cycles=

11.0
4.0

---------- 2.8=
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The design considerations for a primary and secondary cache are significantly
different because the presence of the other cache changes the best choice versus a
single-level cache. In particular, a two-level cache structure allows the primary
cache to focus on minimizing hit time to yield a shorter clock cycle, while allow-
ing the secondary cache to focus on miss rate to reduce the penalty of long mem-
ory access times. 

The interaction of the two caches permits such a focus. The miss penalty of the
primary cache is significantly reduced by the presence of the secondary cache,
allowing the primary to be smaller and have a higher miss rate. For the secondary
cache, access time becomes less important with the presence of the primary cache,
since the access time of the secondary cache affects the miss penalty of the pri-
mary cache, rather than directly affecting the primary cache hit time or the pro-
cessor cycle time. 

The effect of these changes on the two caches can be seen by comparing each
cache to the optimal design for a single level of cache. In comparison to a single-
level cache, the primary cache of a multilevel cache is often smaller. Furthermore,
the primary cache often uses a smaller block size, to go with the smaller cache size
and reduced miss penalty. In comparison, the secondary cache will often be larger
than in a single-level cache, since the access time of the secondary cache is less
critical. With a larger total size, the secondary cache often will use a larger block
size than appropriate with a single-level cache        

multilevel cache A memory 
hierarchy with multiple levels of 
caches, rather than just a cache 
and main memory.

In Chapter 2, we saw that Quicksort had an algorithmic advantage over Bubble
Sort that could not be overcome by language or compiler optimization. Figure
7.18(a) shows instructions executed by item searched for Radix Sort versus Quick-
sort. Indeed, for large arrays, Radix Sort has an algorithmic advantage over quick-
sort in terms of number of operations. Figure 7.18(b) shows time per key instead
of instructions executed. We see that the lines start on the same trajectory as Fig-
ure 7.18(a), but then the Radix Sort line diverges as the data to sort increases.
What is going on? Figure 7.18(c) answers by looking at the cache misses per item
sorted: Quicksort consistently has many fewer misses per item to be sorted.

Alas, standard algorithmic analysis ignores the impact of the memory hierar-
chy. As faster clock rates and Moore’s law allow architects to squeeze all of the per-
formance out of a stream of instructions, using the memory hierarchy well is
critical to high performance. As we said in the introduction, understanding the
behavior of the memory hierarchy is critical to understanding the performance of
programs on today’s computers.

Understanding
Program
Performance
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FIGURE 7.18 Comparing Quicksort and Radix Sort by (a) instructions executed per item
sorted, (b) time per item sorted, and (c) cache misses per item sorted. This data is from a
paper by LaMarca and Ladner [1996]. Although the numbers would change for newer computers, the
idea still holds. Due to such results, new versions of Radix Sort have been invented that take memory hierar-
chy into account, to regain its algorithmic advantages (see Section 7.7). The basic idea of cache optimiza-
tions is to use all the data in a block repeatedly before it is replaced on a miss.

Radix sort

Quicksort

Size (K items to sort)

In
st

ru
ct

io
n

s 
/ i

te
m

0
4 8 16 32

200

400

600

800

1000

1200

64 128 256 512 1024 2048 4096

Radix sort

Quicksort

Size (K items to sort)

C
lo

ck
 c

yc
le

s 
/ i

te
m

0
4 8 16 32

400

800

1200

1600

2000

64 128 256 512 1024 2048 4096

Radix sort

Quicksort

Size (K items to sort)

C
ac

h
e 

m
is

se
s 

/ i
te

m

0
4 8 16 32

1

2

3

4

5

64 128 256 512 1024 2048 4096



7.3 Measuring and Improving Cache Performance 509

Elaboration: Multilevel caches create several complications. First, there are now
several different types of misses and corresponding miss rates. In the example on
page 499, we saw the primary cache miss rate and the global miss rate—the fraction
of references that missed in all cache levels. There is also a miss rate for the second-
ary cache, which is the ratio of all misses in the secondary cache divided by the num-
ber of accesses. This miss rate is called the local miss rate of the secondary cache.
Because the primary cache filters accesses, especially those with good spatial and
temporal locality, the local miss rate of the secondary cache is much higher than the
global miss rate. For the example on page 499, we can compute the local miss rate of
the secondary cache as: 0.5%/2% = 25%! Luckily, the global miss rate dictates how
often we must access the main memory.

Additional complications arise because the caches may have different block sizes to
match the larger or smaller total size. Likewise, the associativity of the cache may
change. On-chip caches are often built with associativity of four or higher, while off-chip
caches rarely have associativity of greater than two. On chip L1 caches tend to have
lower associativity than one chip L2 caches since fast hit time is more important for L1
caches. These changes in block size and associativity introduce complications in the
modeling of the caches, which typically mean that all levels need to be simulated
together to understand the behavior.

Elaboration: With out-of-order processors, performance is more complex, since they
execute instructions during the miss penalty. Instead of instruction miss rate and data
miss rates, we use misses per instruction, and this formula:

There is no general way to calculate overlapped miss latency, so evaluations of
memory hierarchies for out-of-order processors inevitably require simulation of the pro-
cessor and memory hierarchy. Only by seeing the execution of the processor during
each miss can we see if the processor stalls waiting for data or simply finds other work
to do. A guideline is that the processor often hides the miss penalty for an L1 cache
miss that hits in the L2 cache, but it rarely hides a miss to the L2 cache.

Elaboration: The performance challenge for algorithms is that the memory hierarchy
varies between different implementations of the same architecture in cache size, asso-
ciativity, block size, and number of caches. To copy with such variability, some recent
numerical libraries parameterize their algorithms and then search the parameter space
at runtime to find the best combination for a particular computer.

global miss rate The fraction 
of references that miss in all lev-
els of a multilevel cache. 

local miss rate The fraction of 
references to one level of a cache 
that miss; used in multilevel 
hierarchies.

Memory stall cycles
Instruction

------------------------------------------------------------------------------ Misses
Instruction
----------------------------------------- Total miss latency Overlapped miss latency–( )¥=
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Check
Yourself

Which of the following is generally true about a design with multiple levels of
caches?

1. First-level caches are more concerned about hit time, and second-level
caches are more concerned about miss rate.

2. First-level caches are more concerned about miss rate, and second-level
caches are more concerned about hit time.

Summary

In this section, we focused on three topics: cache performance, using associativity
to reduce miss rates, and the use of multilevel cache hierarchies to reduce miss
penalties. 

Since the total number of cycles spent on a program is the sum of the processor
cycles and the memory-stall cycles, the memory system can have a significant effect
on program execution time. In fact, as processors get faster (by lowering CPI or by
increasing the clock rate or both), the relative effect of the memory-stall cycles
increases, making good memory systems critical to achieving high performance.
The number of memory-stall cycles depends on both the miss rate and the miss
penalty. The challenge, as we will see in Section 7.5, is to reduce one of these factors
without significantly affecting other critical factors in the memory hierarchy.

To reduce the miss rate, we examined the use of associative placement schemes.
Such schemes can reduce the miss rate of a cache by allowing more flexible place-
ment of blocks within the cache. Fully associative schemes allow blocks to be
placed anywhere, but also require that every block in the cache be searched to sat-
isfy a request. This search is usually implemented by having a comparator per
cache block and searching the tags in parallel. The cost of the comparators makes
large fully associative caches impractical. Set-associative caches are a practical alter-
native, since we need only search among the elements of a unique set that is cho-
sen by indexing. Set-associative caches have higher miss rates but are faster to
access. The amount of associativity that yields the best performance depends on
both the technology and the details of the implementation.

Finally, we looked at multilevel caches as a technique to reduce the miss pen-
alty by allowing a larger secondary cache to handle misses to the primary cache.
Second-level caches have become commonplace as designers find that limited
silicon and the goals of high clock rates prevent primary caches from becoming
large. The secondary cache, which is often 10 or more times larger than the pri-
mary cache, handles many accesses that miss in the primary cache. In such
cases, the miss penalty is that of the access time to the secondary cache (typically
< 10 processor cycles) versus the access time to memory (typically > 100 proces-
sor cycles). As with associativity, the design trade-offs between the size of the
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secondary cache and its access time depend on a number of aspects of the
implementation. 

In the previous section, we saw how caches provided fast access to recently used
portions of a program’s code and data. Similarly, the main memory can act as a
“cache” for the secondary storage, usually implemented with magnetic disks. This
technique is called virtual memory. Historically, there were two major motiva-
tions for virtual memory: to allow efficient and safe sharing of memory among
multiple programs, and to remove the programming burdens of a small, limited
amount of main memory. Four decades after its invention, it’s the former reason
that reigns today.

Consider a collection of programs running at once on a computer. The total
memory required by all the programs may be much larger than the amount of
main memory available on the computer, but only a fraction of this memory is
actively being used at any point in time. Main memory need contain only the
active portions of the many programs, just as a cache contains only the active por-
tion of one program. Thus, the principle of locality enables virtual memory as
well as caches, and virtual memory allows us to efficiently share the processor as
well as the main memory. Of course, to allow multiple programs to share the same
memory, we must be able to protect the programs from each other, ensuring that
a program can only read and write the portions of main memory that have been
assigned to it. 

We cannot know which programs will share the memory with other pro-
grams when we compile them. In fact, the programs sharing the memory
change dynamically while the programs are running. Because of this dynamic
interaction, we would like to compile each program into its own address space—
separate range of memory locations accessible only to this program. Virtual
memory implements the translation of a program’s address space to physical
addresses. This translation process enforces protection of a program’s address
space from other programs. 

The second motivation for virtual memory is to allow a single user program to
exceed the size of primary memory. Formerly, if a program became too large for
memory, it was up to the programmer to make it fit. Programmers divided pro-
grams into pieces and then identified the pieces that were mutually exclusive.
These overlays were loaded or unloaded under user program control during exe-
cution, with the programmer ensuring that the program never tried to access an
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. . . a system has been 
devised to make the core 
drum combination appear to 
the programmer as a single 
level store, the requisite 
transfers taking place auto-
matically. 

Kilburn et al., “One-level stor-
age system,” 1962

virtual memory A technique 
that uses main memory as a 
“cache” for secondary storage.

physical address An address 
in main memory.

protection A set of mecha-
nisms for ensuring that multiple 
processes sharing the processor, 
memory, or I/O devices cannot 
interfere, intentionally or unin-
tentionally, with one another by 
reading or writing each other’s 
data. These mechanisms also 
isolate the operating system 
from a user process.
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overlay that was not loaded and that the overlays loaded never exceeded the total
size of the memory. Overlays were traditionally organized as modules, each con-
taining both code and data. Calls between procedures in different modules would
lead to overlaying of one module with another.

As you can well imagine, this responsibility was a substantial burden on pro-
grammers. Virtual memory, which was invented to relieve programmers of this
difficulty, automatically manages the two levels of the memory hierarchy repre-
sented by main memory (sometimes called physical memory to distinguish it from
virtual memory) and secondary storage. 

Although the concepts at work in virtual memory and in caches are the
same, their differing historical roots have led to the use of different termin-
ology. A virtual memory block is called a page, and a virtual memory miss is
called a page fault. With virtual memory, the processor produces a virtual
address, which is translated by a combination of hardware and software to a
physical address, which in turn can be used to access main memory.
Figure 7.19 shows the virtually addressed memory with pages mapped to main
memory. This process is called address mapping or address translation. Today,
the two memory hierarchy levels controlled by virtual memory are DRAMs

FIGURE 7.19 In virtual memory, blocks of memory (called pages) are mapped from one
set of addresses (called virtual addresses) to another set (called physical addresses).
The processor generates virtual addresses while the memory is accessed using physical addresses. Both the
virtual memory and the physical memory are broken into pages, so that a virtual page is really mapped to a
physical page. Of course, it is also possible for a virtual page to be absent from main memory and not be
mapped to a physical address, residing instead on disk. Physical pages can be shared by having two virtual
addresses point to the same physical address. This capability is used to allow two different programs to share
data or code.

page fault An event that occurs 
when an accessed page is not 
present in main memory.

virtual address An address 
that corresponds to a location in 
virtual space and is translated by 
address mapping to a physical 
address when memory is 
accessed.

address translation Also
called address mapping. The 
process by which a virtual 
address is mapped to an address 
used to access memory.

Virtual addresses Physical addresses
Address translation

Disk addresses
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and magnetic disks (see Chapter 1, pages 5, 13 and 23). If we return to our
library analogy, we can think of a virtual address as the title of a book and a
physical address as the location of that book in the library, such as might be
given by the Library of Congress call number.

Virtual memory also simplifies loading the program for execution by provid-
ing relocation. Relocation maps the virtual addresses used by a program to dif-
ferent physical addresses before the addresses are used to access memory. This
relocation allows us to load the program anywhere in main memory. Further-
more, all virtual memory systems in use today relocate the program as a set of
fixed-size blocks (pages), thereby eliminating the need to find a contiguous
block of memory to allocate to a program; instead, the operating system need
only find a sufficient number of pages in main memory. Formerly, relocation
problems required special hardware and special support in the operating sys-
tem; today, virtual memory also provides this function.

In virtual memory, the address is broken into a virtual page number and a page
offset. Figure 7.20 shows the translation of the virtual page number to a physical
page number. The physical page number constitutes the upper portion of the
physical address, while the page offset, which is not changed, constitutes the lower

FIGURE 7.20  Mapping from a virtual to a physical address. The page size is 212 = 4 KB. The
number of physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Thus,
main memory can have at most 1 GB, while the virtual address space is 4 GB.

Virtual page number Page offset

31 30 29 28 27 3 2 1 015 14 13 12 11 10 9 8

Physical page number Page offset

29 28 27 3 2 1 015 14 13 12 11 10 9 8

Virtual address

Physical address

Translation
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portion. The number of bits in the page-offset field determines the page size. The
number of pages addressable with the virtual address need not match the number
of pages addressable with the physical address. Having a larger number of virtual
pages than physical pages is the basis for the illusion of an essentially unbounded
amount of virtual memory. 

Many design choices in virtual memory systems are motivated by the high cost
of a miss, which in virtual memory is traditionally called a page fault. A page fault
will take millions of clock cycles to process. (The table on page 469 shows that
main memory is about 100,000 times faster than disk.) This enormous miss pen-
alty, dominated by the time to get the first word for typical page sizes, leads to sev-
eral key decisions in designing virtual memory systems:

■ Pages should be large enough to try to amortize the high access time. Sizes
from 4 KB to 16 KB are typical today. New desktop and server systems are
being developed to support 32 KB and 64 KB pages, but new embedded sys-
tems are going in the other direction, to 1 KB pages.

■ Organizations that reduce the page fault rate are attractive. The primary tech-
nique used here is to allow fully associative placement of pages in memory.

■ Page faults can be handled in software because the overhead will be small
compared to the disk access time. In addition, software can afford to use
clever algorithms for choosing how to place pages because even small reduc-
tions in the miss rate will pay for the cost of such algorithms. 

■ Write-through will not work for virtual memory, since writes take too long.
Instead, virtual memory systems use write-back. 

The next few subsections address these factors in virtual memory design.

Elaboration: Although we normally think of virtual addresses as much larger than
physical addresses, the opposite can occur when the processor address size is small rel-
ative to the state of the memory technology. No single program can benefit, but a collec-
tion of programs running at the same time can benefit from not having to be swapped to
memory or by running on parallel processors. Given that Moore’s law applies to DRAM,
32-bit processors are already problematic for servers and soon for desktops. 

Elaboration: The discussion of virtual memory in this book focuses on paging, which
uses fixed-size blocks. There is also a variable-size block scheme called segmentation.
In segmentation, an address consists of two parts: a segment number and a segment
offset. The segment register is mapped to a physical address, and the offset is added
to find the actual physical address. Because the segment can vary in size, a bounds
check is also needed to make sure that the offset is within the segment. The major use

segmentation A variable-size 
address mapping scheme in 
which an address consists of two 
parts: a segment number, which 
is mapped to a physical address, 
and a segment offset.
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of segmentation is to support more powerful methods of protection and sharing in an
address space. Most operating system textbooks contain extensive discussions of seg-
mentation compared to paging and of the use of segmentation to logically share the
address space. The major disadvantage of segmentation is that it splits the address
space into logically separate pieces that must be manipulated as a two-part
address: the segment number and the offset. Paging, in contrast, makes the boundary
between page number and offset invisible to programmers and compilers. 

Segments have also been used as a method to extend the address space without
changing the word size of the computer. Such attempts have been unsuccessful
because of the awkwardness and performance penalties inherent in a two-part address
of which programmers and compilers must be aware.

Many architectures divide the address space into large fixed-size blocks that sim-
plify protection between the operating system and user programs and increase the effi-
ciency of implementing paging. Although these divisions are often called “segments,”
this mechanism is much simpler than variable block size segmentation and is not visi-
ble to user programs; we discuss it in more detail shortly. 

Placing a Page and Finding It Again

Because of the incredibly high penalty for a page fault, designers reduce page fault
frequency by optimizing page placement. If we allow a virtual page to be mapped
to any physical page, the operating system can then choose to replace any page it
wants when a page fault occurs. For example, the operating system can use a
sophisticated algorithm and complex data structures, which track page usage, to
try to choose a page that will not be needed for a long time. The ability to use a
clever and flexible replacement scheme reduces the page fault rate and simplifies
the use of fully associative placement of pages. 

As mentioned in Section 7.3, the difficulty in using fully associative place-
ment is in locating an entry, since it can be anywhere in the upper level of the
hierarchy. A full search is impractical. In virtual memory systems, we locate
pages by using a table that indexes the memory; this structure is called a page
table and resides in memory. A page table is indexed with the page number
from the virtual address to discover the corresponding physical page number.
Each program has its own page table, which maps the virtual address space of
that program to main memory. In our library analogy, the page table corre-
sponds to a mapping between book titles and library locations. Just as the card
catalog may contain entries for books in another library on campus rather than
the local branch library, we will see that the page table may contain entries for
pages not present in memory. To indicate the location of the page table in mem-
ory, the hardware includes a register that points to the start of the page table; we
call this the page table register. Assume for now that the page table is in a fixed
and contiguous area of memory. 

page table The table contain-
ing the virtual to physical 
address translations in a virtual 
memory system. The table, 
which is stored in memory, is 
typically indexed by the virtual 
page number; each entry in the 
table contains the physical page 
number for that virtual page if 
the page is currently in memory.
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Figure 7.21 uses the page table register, the virtual address, and the indicated
page table to show how the hardware can form a physical address. A valid bit is
used in each page table entry, just as we did in a cache. If the bit is off, the page is
not present in main memory and a page fault occurs. If the bit is on, the page is
in memory and the entry contains the physical page number.

Because the page table contains a mapping for every possible virtual page, no
tags are required. In cache terminology, the index that is used to access the page
table consists of the full block address, which is the virtual page number. 

Page Faults

If the valid bit for a virtual page is off, a page fault occurs. The operating system
must be given control. This transfer is done with the exception mechanism, which
we discuss later in this section. Once the operating system gets control, it must
find the page in the next level of the hierarchy (usually magnetic disk) and decide
where to place the requested page in main memory. 

The virtual address alone does not immediately tell us where the page is on
disk. Returning to our library analogy, we cannot find the location of a library
book on the shelves just by knowing its title. Instead, we go to the catalog and look
up the book, obtaining an address for the location on the shelves, such as the
Library of Congress call number. Likewise, in a virtual memory system, we must
keep track of the location on disk of each page in virtual address space. 

Hardware
Software
Interface

The page table, together with the program counter and the registers, specifies the
state of a program. If we want to allow another program to use the processor, we
must save this state. Later, after restoring this state, the program can continue
execution. We often refer to this state as a process. The process is considered active
when it is in possession of the processor; otherwise, it is considered inactive. The
operating system can make a process active by loading the process’s state, includ-
ing the program counter, which will initiate execution at the value of the saved
program counter. 

The process’s address space, and hence all the data it can access in memory, is
defined by its page table, which resides in memory. Rather than save the entire
page table, the operating system simply loads the page table register to point to
the page table of the process it wants to make active. Each process has its own page
table, since different processes use the same virtual addresses. The operating sys-
tem is responsible for allocating the physical memory and updating the page
tables, so that the virtual address spaces of different processes do not collide. As
we will see shortly, the use of separate page tables also provides protection of one
process from another. 
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Because we do not know ahead of time when a page in memory will be chosen
to be replaced, the operating system usually creates the space on disk for all the
pages of a process when it creates the process. This disk space is called the swap
space. At that time, it also creates a data structure to record where each virtual
page is stored on disk. This data structure may be part of the page table or may be
an auxiliary data structure indexed in the same way as the page table. Figure 7.22

FIGURE 7.21 The page table is indexed with the virtual page number to obtain the corresponding portion of the physical
address. The starting address of the page table is given by the page table pointer. In this figure, the page size is 212 bytes, or 4 KB. The virtual address
space is 232 bytes, or 4 GB, and the physical address space is 230 bytes, which allows main memory of up to 1 GB. The number of entries in the page
table is 220, or 1 million entries. The valid bit for each entry indicates whether the mapping is legal. If it is off, then the page is not present in memory.
Although the page table entry shown here need only be 19 bits wide, it would typically be rounded up to 32 bits for ease of indexing. The extra bits
would be used to store additional information that needs to be kept on a per-page basis, such as protection.

Virtual page number Page offset

3 1  3 0  2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  1 1  1 0  9  8

Physical page number Page offset

2 9  2 8  2 7 3  2  1  01 5  1 4  1 3  1 2  1 1  1 0  9  8

Virtual address

Physical address

Page table register

Physical page numberValid

Page table

If 0 then page is not
present in memory

20 12

18

swap space The space on the
disk reserved for the full virtual 
memory space of a process.
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shows the organization when a single table holds either the physical page number
or the disk address. 

The operating system also creates a data structure that tracks which processes
and which virtual addresses use each physical page. When a page fault occurs, if all
the pages in main memory are in use, the operating system must choose a page to
replace. Because we want to minimize the number of page faults, most operating
systems try to choose a page that they hypothesize will not be needed in the near
future. Using the past to predict the future, operating systems follow the least
recently used (LRU) replacement scheme, which we mentioned in Section 7.3.
The operating system searches for the least recently used page, making the
assumption that a page that has not been used in a long time is less likely to be
needed than a more recently accessed page. The replaced pages are written to swap
space on the disk. In case you are wondering, the operating system is just another

FIGURE 7.22 The page table maps each page in virtual memory to either a page in
main memory or a page stored on disk, which is the next level in the hierarchy. The vir-
tual page number is used to index the page table. If the valid bit is on, the page table supplies the physical
page number (i.e., the starting address of the page in memory) corresponding to the virtual page. If the
valid bit is off, the page currently resides only on disk, at a specified disk address. In many systems, the
table of physical page addresses and disk page addresses, while logically one table, is stored in two sepa-
rate data structures. Dual tables are justified in part because we must keep the disk addresses of all the
pages, even if they are currently in main memory. Remember that the pages in main memory and the
pages on disk are identical in size.

Page table
Physical page or

disk address
Physical memory

Virtual page
number

Disk storage

1
1
1
1
0
1
1

1
1

1

0

0

Valid
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process, and these tables controlling memory are in memory; the details of this
seeming contradiction will be explained shortly. 

For example, suppose the page references (in order) were 10, 12, 9, 7, 11, 10,
and then we referenced page 8, which was not present in memory. The LRU page
is 12; in LRU replacement, we would replace page 12 in main memory with page
8. If the next reference also generated a page fault, we would replace page 9, since
it would then be the LRU among the pages present in memory.    

Elaboration: With a 32-bit virtual address, 4 KB pages, and 4 bytes per page table
entry, we can compute the total page table size:

That is, we would need to use 4 MB of memory for each program in execution at any
time. On a computer with tens to hundreds of active programs and a fixed-size page
table, most or all of the memory would be tied up in page tables! 

A range of techniques is used to reduce the amount of storage required for the page
table. The five techniques below aim at reducing the total maximum storage required as
well as minimizing the main memory dedicated to page tables:

1. The simplest technique is to keep a limit register that restricts the size of the page
table for a given process. If the virtual page number becomes larger than the con-
tents of the limit register, entries must be added to the page table. This technique

Implementing a completely accurate LRU scheme is too expensive, since it
requires updating a data structure on every memory reference. Instead, most
operating systems approximate LRU by keeping track of which pages have and
which pages have not been recently used. To help the operating system estimate
the LRU pages, some computers provide a use bit or reference bit, which is set
whenever a page is accessed. The operating system periodically clears the refer-
ence bits and later records them so it can determine which pages were touched
during a particular time period. With this usage information, the operating sys-
tem can select a page that is among the least recently referenced (detected by hav-
ing its reference bit off). If this bit is not provided by the hardware, the operating
system must find another way to estimate which pages have been accessed.

Hardware
Software
Interface

reference bit Also called use
bit. A field that is set whenever a 
page is accessed and that is used 
to implement LRU or other 
replacement schemes.

Number of page table entries 232

212
--------------- 220= =

Size of page table 220 page table entries 22 bytes
page table entry
-----------------------------------------------------------------------------¥ 4 MB= =
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allows the page table to grow as a process consumes more space. Thus, the page
table will only be large if the process is using many pages of virtual address space.
This technique requires that the address space expand in only one direction.

2. Allowing growth in only one direction is not sufficient, since most languages re-
quire two areas whose size is expandable: one area holds the stack and the other
area holds the heap. Because of this duality, it is convenient to divide the page
table and let it grow from the highest address down, as well as from the lowest
address up. This means that there will be two separate page tables and two sep-
arate limits. The use of two page tables breaks the address space into two seg-
ments. The high-order bit of an address usually determines which segment and
thus which page table to use for that address. Since the segment is specified by
the high-order address bit, each segment can be as large as one-half of the ad-
dress space. A limit register for each segment specifies the current size of the seg-
ment, which grows in units of pages. This type of segmentation is used by many
architectures, including MIPS. Unlike the type of segmentation discussed in the
Elaboration on page 514, this form of segmentation is invisible to the application
program, although not to the operating system. The major disadvantage of this
scheme is that it does not work well when the address space is used in a sparse
fashion rather than as a contiguous set of virtual addresses. 

3. Another approach to reducing the page table size is to apply a hashing function to
the virtual address so that the page table data structure need be only the size of
the number of physical pages in main memory. Such a structure is called an invert-
ed page table. Of course, the lookup process is slightly more complex with an in-
verted page table because we can no longer just index the page table.

4. Multiple levels of page tables can also be used to reduce the total amount of page
table storage. The first level maps large fixed-size blocks of virtual address space,
perhaps 64 to 256 pages in total. These large blocks are sometimes called seg-
ments, and this first-level mapping table is sometimes called a segment table,
though the segments are invisible to the user. Each entry in the segment table in-
dicates whether any pages in that segment are allocated and, if so, points to a
page table for that segment. Address translation happens by first looking in the
segment table, using the highest-order bits of the address. If the segment address
is valid, the next set of high-order bits is used to index the page table indicated by
the segment table entry. This scheme allows the address space to be used in a
sparse fashion (multiple noncontiguous segments can be active) without having to
allocate the entire page table. Such schemes are particularly useful with very large
address spaces and in software systems that require noncontiguous allocation.
The primary disadvantage of this two-level mapping is the more complex process
for address translation. 

5. To reduce the actual main memory tied up in page tables, most modern systems
also allow the page tables to be paged. Although this sounds tricky, it works by
using the same basic ideas of virtual memory and simply allowing the page tables
to reside in the virtual address space. In addition, there are some small but critical
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problems, such as a never-ending series of page faults, which must be avoided.
How these problems are overcome is both very detailed and typically highly pro-
cessor specific. In brief, these problems are avoided by placing all the page tables
in the address space of the operating system and placing at least some of the
page tables for the system in a portion of main memory that is physically ad-
dressed and is always present and thus never on disk. 

What about Writes?

The difference between the access time to the cache and main memory is tens to
hundreds of cycles, and write-through schemes can be used, although we need a
write buffer to hide the latency of the write from the processor. In a virtual mem-
ory system, writes to the next level of the hierarchy (disk) take millions of proces-
sor clock cycles; therefore, building a write buffer to allow the system to write
through to disk would be completely impractical. Instead, virtual memory sys-
tems must use write-back, performing the individual writes into the page in
memory and copying the page back to disk when it is replaced in the memory.
This copying back to the lower level in the hierarchy is the source of the other
name for this technique of handling writes, namely, copy back.

Making Address Translation Fast: The TLB

Since the page tables are stored in main memory, every memory access by a program
can take at least twice as long: one memory access to obtain the physical address and
a second access to get the data. The key to improving access performance is to rely on
locality of reference to the page table. When a translation for a virtual page number is
used, it will probably be needed again in the near future because the references to the
words on that page have both temporal and spatial locality. 

A write-back scheme has another major advantage in a virtual memory system.
Because the disk transfer time is small compared with its access time, copying
back an entire page is much more efficient than writing individual words back to
the disk. A write-back operation, although more efficient than transferring indi-
vidual words, is still costly. Thus, we would like to know whether a page needs to
be copied back when we choose to replace it. To track whether a page has been
written since it was read into the memory, a dirty bit is added to the page table.
The dirty bit is set when any word in a page is written. If the operating system
chooses to replace the page, the dirty bit indicates whether the page needs to be
written out before its location in memory can be given to another page.

Hardware
Software
Interface
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Accordingly, modern processors include a special cache that keeps track of
recently used translations. This special address translation cache is traditionally
referred to as a translation-lookaside buffer (TLB), although it would be more
accurate to call it a translation cache. The TLB corresponds to that little piece of
paper we typically use to record the location of a set of books we look up in the
card catalog; rather than continually searching the entire catalog, we record the
location of several books and use the scrap of paper as a cache of Library of Con-
gress call numbers.

Figure 7.23 shows that each tag entry in the TLB holds a portion of the virtual
page number, and each data entry of the TLB holds a physical page number. Because
we will no longer access the page table on every reference, instead accessing the TLB,
the TLB will need to include other bits, such as the dirty and the reference bit. 

translation-lookaside buffer 
(TLB) A cache that keeps track 
of recently used address map-
pings to avoid an access to the 
page table.

FIGURE 7.23 The TLB acts as a cache on the page table for the entries that map to physical pages only. The TLB contains a sub-
set of the virtual-to-physical page mappings that are in the page table. The TLB mappings are shown in color. Because the TLB is a cache, it must have
a tag field. If there is no matching entry in the TLB for a page, the page table must be examined. The page table either supplies a physical page number
for the page (which can then be used to build a TLB entry) or indicates that the page resides on disk, in which case a page fault occurs. Since the page
table has an entry for every virtual page, no tag field is needed; in other words, it is not a cache,
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On every reference, we look up the virtual page number in the TLB. If we get a
hit, the physical page number is used to form the address, and the corresponding
reference bit is turned on. If the processor is performing a write, the dirty bit is
also turned on. If a miss in the TLB occurs, we must determine whether it is a
page fault or merely a TLB miss. If the page exists in memory, then the TLB miss
indicates only that the translation is missing. In such cases, the processor can
handle the TLB miss by loading the translation from the page table into the TLB
and then trying the reference again. If the page is not present in memory, then
the TLB miss indicates a true page fault. In this case, the processor invokes the
operating system using an exception. Because the TLB has many fewer entries
than the number of pages in main memory, TLB misses will be much more fre-
quent than true page faults. 

TLB misses can be handled either in hardware or in software. In practice, with
care there can be little performance difference between the two approaches
because the basic operations are the same in either case.

After a TLB miss occurs and the missing translation has been retrieved from
the page table, we will need to select a TLB entry to replace. Because the reference
and dirty bits are contained in the TLB entry, we need to copy these bits back to
the page table entry when we replace an entry. These bits are the only portion of
the TLB entry that can be changed. Using write-back––that is, copying these
entries back at miss time rather than when they are written––is very efficient,
since we expect the TLB miss rate to be small. Some systems use other techniques
to approximate the reference and dirty bits, eliminating the need to write into the
TLB except to load a new table entry on a miss.

Some typical values for a TLB might be

 

■ TLB size: 16–512 entries

 

■ Block size: 1–2 page table entries (typically 4–8 bytes each)

 
■ Hit time: 0.5–1 clock cycle

 

■ Miss penalty: 10–100 clock cycles
 

■ Miss rate: 0.01%–1%

Designers have used a wide variety of associativities in TLBs. Some systems use
small, fully associative TLBs because a fully associative mapping has a lower miss
rate; furthermore, since the TLB is small, the cost of a fully associative mapping is
not too high. Other systems use large TLBs, often with small associativity. With a
fully associative mapping, choosing the entry to replace becomes tricky since
implementing a hardware LRU scheme is too expensive. Furthermore, since TLB
misses are much more frequent than page faults and thus must be handled more
cheaply, we cannot afford an expensive software algorithm, as we can for page
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faults. As a result, many systems provide some support for randomly choosing an
entry to replace. We’ll examine replacement schemes in a little more detail in
Section 7.5.

The Intrinsity FastMATH TLB
To see these ideas in a real processor, let’s take a closer look at the TLB of the
Intrinsity FastMATH. The memory system uses 4 KB pages and a 32-bit address
space; thus, the virtual page number is 20 bits long, as in the top of Figure 7.24.
The physical address is the same size as the virtual address. The TLB contains 16
entries, is fully associative, and is shared between the instruction and data refer-
ences. Each entry is 64 bits wide and contains a 20-bit tag (which is the virtual
page number for that TLB entry), the corresponding physical page number (also
20 bits), a valid bit, a dirty bit, and other bookkeeping bits. 

Figure 7.24 shows the TLB and one of the caches, while Figure 7.25 shows the
steps in processing a read or write request. When a TLB miss occurs, the MIPS
hardware saves the page number of the reference in a special register and generates
an exception. The exception invokes the operating system, which handles the miss
in software. To find the physical address for the missing page, the TLB miss rou-
tine indexes the page table using the page number of the virtual address and the
page table register, which indicates the starting address of the active process page
table. Using a special set of system instructions that can update the TLB, the oper-
ating system places the physical address from the page table into the TLB. A TLB
miss takes about 13 clock cycles, assuming the code and the page table entry are in
the instruction cache and data cache, respectively. (We will see the MIPS TLB
code on page 534) A true page fault occurs if the page table entry does not have a
valid physical address. The hardware maintains an index that indicates the recom-
mended entry to replace; the recommended entry is chosen randomly. 

There is an extra complication for write requests: namely, the write access bit in
the TLB must be checked. This bit prevents the program from writing into pages
for which it has only read access. If the program attempts a write and the write
access bit is off, an exception is generated. The write access bit forms part of the
protection mechanism, which we discuss shortly.

Integrating Virtual Memory, TLBs, and Caches

Our virtual memory and cache systems work together as a hierarchy, so that data
cannot be in the cache unless it is present in main memory. The operating system
plays an important role in maintaining this hierarchy by flushing the contents of
any page from the cache, when it decides to migrate that page to disk. At the same
time, the OS modifies the page tables and TLB, so that an attempt to access any
data on the page will generate a page fault.

Under the best of circumstances, a virtual address is translated by the TLB and
sent to the cache where the appropriate data is found, retrieved, and sent back to
the processor. In the worst case, a reference can miss in all three components of
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FIGURE 7.24 The TLB and cache implement the process of going from a virtual address to a data item in the Intrinsity Fast-
MATH. This figure shows the organization of the TLB and the data cache assuming a 4 KB page size. This diagram focuses on a read; Figure 7.25
describes how to handle writes. Note that unlike Figure 7.9 on page 486, the tag and data RAMs are split. By addressing the long but narrow data RAM
with the cache index concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While the cache is direct
mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every TLB tag be compared against the virtual page number,
since the entry of interest can be anywhere in the TLB. If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical
page number together with bits from the page offset form the index that is used to access the cache. (The Intrinsity actually has a 16 KB page size; the
Elaboration on page 528 explains how it works.)

=

=

20

Virtual page number Page offset

31   30   29 3   2   1   014   13   12   11   10   9

Virtual address

TagValid Dirty

TLB

Physical page number

TagValid

TLB hit

Cache hit

Data

Data

Byte
offset

=
=
=
=
=

Physical page number Page offset

Physical address tag Cache index

12

20

Block
offset

Physical address

18

32

8 4 2

12
8

Cache



526 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

FIGURE 7.25 Processing a read or a write through in the Intrinsity FastMATH TLB and cache. If the TLB generates a hit, the cache
can be accessed with the resulting physical address. For a read, the cache generates a hit or miss and supplies the data or causes a stall while the data is
brought from memory. If the operation is a write, a portion of the cache entry is overwritten for a hit and the data is sent to the write buffer if we
assume write-through. A write miss is just like a read miss except that the block is modified after it is read from memory. Write-back requires writes to
set a dirty bit for the cache block, and a write buffer is loaded with the whole block only on a read miss or write miss if the block to be replaced is dirty.
Notice that a TLB hit and a cache hit are independent events, but a cache hit can only occur after a TLB hit occurs, which means that the data must be
present in memory. The relationship between TLB misses and cache misses is examined further in the following example and the exercises at the end
of this chapter.
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the memory hierarchy: the TLB, the page table, and the cache. The following
example illustrates these interactions in more detail..

Elaboration: Figure 7.26 assumes that all memory addresses are translated to
physical addresses before the cache is accessed. In this organization, the cache is
physically indexed and physically tagged (both the cache index and tag are physical,
rather than virtual, addresses). In such a system, the amount of time to access mem-
ory, assuming a cache hit, must accommodate both a TLB access and a cache access;
of course, these accesses can be pipelined.

Alternatively, the processor can index the cache with an address that is completely
or partially virtual. This is called a virtually addressed cache, and it uses tags that are
virtual addresses; hence, such a cache is virtually indexed and virtually tagged. In such
caches, the address translation hardware (TLB) is unused during the normal cache
access, since the cache is accessed with a virtual address that has not been trans-
lated to a physical address. This takes the TLB out of the critical path, reducing cache

Overall Operation of a Memory Hierarchy

In a memory hierarchy like that of Figure 7.24 that includes a TLB and a
cache organized as shown, a memory reference can encounter three different
types of misses: a TLB miss, a page fault, and a cache miss. Consider all the
combinations of these three events with one or more occurring (seven possi-
bilities). For each possibility, state whether this event can actually occur and
under what circumstances.

Figure 7.26 shows the possible circumstances and whether they can arise in
practice or not.

TLB
Page 
table Cache Possible? If so, under what circumstance?

hit hit miss Possible, although the page table is never really checked if TLB hits.

miss hit hit TLB misses, but entry found in page table; after retry, data is found in cache.

miss hit miss TLB misses, but entry found in page table; after retry, data misses in cache.

miss miss miss TLB misses and is followed by a page fault; after retry, data must miss in cache.

hit miss miss Impossible: cannot have a translation in TLB if page is not present in memory.

hit miss hit Impossible: cannot have a translation in TLB if page is not present in memory.

miss miss hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 7.26 The possible combinations of events in the TLB, virtual memory system,
and cache. Three of these combinations are impossible, and one is possible (TLB hit, virtual memory hit,
cache miss) but never detected. 

EXAMPLE

ANSWER

virtually addressed cache A
cache that is accessed with a vir-
tual address rather than a physi-
cal address.
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latency. When a cache miss occurs, however, the processor needs to translate the
address to a physical address so that it can fetch the cache block from main memory. 

When the cache is accessed with a virtual address and pages are shared between
programs (which may access them with different virtual addresses), there is the possi-
bility of aliasing. Aliasing occurs when the same object has two names—in this case,
two virtual addresses for the same page. This ambiguity creates a problem because a
word on such a page may be cached in two different locations, each corresponding to
different virtual addresses. This ambiguity would allow one program to write the data
without the other program being aware that the data had changed. Completely virtually
addressed caches either introduce design limitations on the cache and TLB to reduce
aliases or require the operating system, and possibly the user, to take steps to ensure
that aliases do not occur. 

Figure 7.24 assumed a 4 KB page size, but it’s really 16 KB. The Intrinsity FastMATH
uses such a memory system organization. The cache and TLB are still accessed in par-
allel, so the upper 2 bits of the cache index must be virtual. Hence, up to four cache
entries could be aliased to the same physical memory address. As the L2 cache on the
chip includes all entries in the L1 caches, on a L1 miss it checks the other three possi-
ble cache locations in the L2 cache for aliases. If it finds one, it flushes it from the
caches to prevent aliases from occurring.

A common compromise between these two design points is caches that are virtually
indexed (sometimes using just the page offset portion of the address, which is really a
physical address since it is untranslated), but use physical tags. These designs, which
are virtually indexed but physically tagged, attempt to achieve the performance advan-
tages of virtually indexed caches with the architecturally simpler advantages of a physi-
cally addressed cache. For example, there is no alias problem in this case. The L1 data
cache of the Pentium 4 is an example as would the Intrinsity if the page size was 4 KB.
To pull off this trick, there must be careful coordination between the minimum page
size, the cache size, and associativity.

Elaboration: The FastMATH TLB is a bit more complicated than in Figure 7.24. MIPS
includes two physical page mappings per virtual page number, thereby mapping an even-
odd pair of virtual page numbers into two physical page numbers. Hence, the tag is 1 bit
narrower since each entry corresponds to two pages. The least significant bit of the vir-
tual page number selects between the two physical pages. There are separate book-
keeping bits for each physical page. This optimization doubles the amount of memory
mapped per TLB entry. As the Elaboration on page 530 explains, the tag field actually
includes an 8-bit address space ID field to reduce the cost of context switches. To sup-
port the variable page sizes mentioned on page 537, there is also a 32-bit mask field
that determines the dividing line between the virtual page address and the page offset.

Implementing Protection with Virtual Memory 

One of the most important functions for virtual memory is to allow sharing of a
single main memory by multiple processes, while providing memory protection
among these processes and the operating system. The protection mechanism must

aliasing A situation in which 
the same object is accessed by 
two addresses; can occur in vir-
tual memory when there are two 
virtual addresses for the same 
physical page. 

physically addressed cache A
cache that is addressed by a 
physical address.
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ensure that although multiple processes are sharing the same main memory, one
renegade process cannot write into the address space of another user process or
into the operating system either intentionally or unintentionally. For example, if
the program that maintains student grades were running on a computer at the
same time as the programs of the students in the first programming course, we
wouldn’t want the errant program of a beginner to write over someone’s grades.
The write access bit in the TLB can protect a page from being written. Without
this level of protection, computer viruses would be even more widespread.

We also want to prevent a process from reading the data of another process.
For example, we wouldn’t want a student program to read the grades while they
were in the processor’s memory. Once we begin sharing main memory, we must
provide the ability for a process to protect its data from both reading and writ-
ing by another process; otherwise, sharing the main memory will be a mixed
blessing!

To enable the operating system to implement protection in the virtual memory sys-
tem, the hardware must provide at least the three basic capabilities summarized below.

1. Support at least two modes that indicate whether the running process is a
user process or an operating system process, variously called a supervisor
process, a kernel process, or an executive process.

2. Provide a portion of the processor state that a user process can read but not
write. This includes the user/supervisor mode bit, which dictates whether
the processor is in user or supervisor mode, the page table pointer, and the
TLB. To write these elements the operating system uses special instructions
that are only available in supervisor mode. 

3. Provide mechanisms whereby the processor can go from user mode to
supervisor mode, and vice versa. The first direction is typically accom-
plished by a system call exception, implemented as a special instruction
(syscall in the MIPS instruction set) that transfers control to a dedicated
location in supervisor code space. As with any other exception, the program
counter from the point of the system call is saved in the exception PC (EPC),
and the processor is placed in supervisor mode. To return to user mode
from the exception, use the return from exception (ERET) instruction, which
resets to user mode and jumps to the address in EPC.

By using these mechanisms and storing the page tables in the operating sys-
tem’s address space, the operating system can change the page tables while pre-
venting a user process from changing them, ensuring that a user process can
access only the storage provided to it by the operating system.

Hardware
Software
Interface
kernel mode Also called 
supervisor mode. A mode 
indicating that a running pro-
cess is an operating system 
process.

system call A special instruc-
tion that transfers control from 
user mode to a dedicated loca-
tion in supervisor code space, 
invoking the exception mecha-
nism in the process. 
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Remember that each process has its own virtual address space. Thus, if the
operating system keeps the page tables organized so that the independent virtual
pages map to disjoint physical pages, one process will not be able to access
another’s data. Of course, this also requires that a user process be unable to change
the page table mapping. The operating system can assure safety if it prevents the
user process from modifying its own page tables. Yet, the operating system must
be able to modify the page tables. Placing the page tables in the protected address
space of the operating system satisfies both requirements.

When processes want to share information in a limited way, the operating sys-
tem must assist them, since accessing the information of another process requires
changing the page table of the accessing process. The write access bit can be used
to restrict the sharing to just read sharing, and, like the rest of the page table, this
bit can be changed only by the operating system. To allow another process, say P1,
to read a page owned by process P2, P2 would ask the operating system to create a
page table entry for a virtual page in P1’s address space that points to the same
physical page that P2 wants to share. The operating system could use the write
protection bit to prevent P1 from writing the data, if that was P2’s wish. Any bits
that determine the access rights for a page must be included in both the page table
and the TLB because the page table is accessed only on a TLB miss.

Elaboration: When the operating system decides to change from running process P1
to running process P2 (called a context switch or process switch), it must ensure that P2
cannot get access to the page tables of P1 because that would compromise protection. If
there is no TLB, it suffices to change the page table register to point to P2’s page table
(rather than to P1’s); with a TLB, we must clear the TLB entries that belong to P1—both to
protect the data of P1 and to force the TLB to load the entries for P2. If the process
switch rate were high, this could be quite inefficient. For example, P2 might load only a
few TLB entries before the operating system switched back to P1. Unfortunately, P1
would then find that all its TLB entries were gone and would have to pay TLB misses to
reload them. This problem arises because the virtual addresses used by P1 and P2 are
the same, and we must clear out the TLB to avoid confusing these addresses. 

A common alternative is to extend the virtual address space by adding a process
identifier or task identifier. The Intrinsity FastMATH has an 8-bit address space ID (ASID)
field for this purpose. This small field identifies the currently running process; it is kept
in a register loaded by the operating system when it switches processes. The process
identifier is concatenated to the tag portion of the TLB, so that a TLB hit occurs only if
both the page number and the process identifier match. This combination eliminates
the need to clear the TLB, except on rare occasions. 

Similar problems can occur for a cache, since on a process switch the cache will
contain data from the running process. These problems arise in different ways for phys-
ically addressed and virtually addressed caches, and a variety of different solutions,
such as process identifiers, are used to ensure that a process gets its own data. 

context switch A changing of 
the internal state of the proces-
sor to allow a different process 
to use the processor that 
includes saving the state needed 
to return to the currently exe-
cuting process.
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Handling TLB Misses and Page Faults

Although the translation of virtual to physical addresses with a TLB is straightfor-
ward when we get a TLB hit, handling TLB misses and page faults are more com-
plex. A TLB miss occurs when no entry in the TLB matches a virtual address. A
TLB miss can indicate one of two possibilities:

1. The page is present in memory, and we need only create the missing TLB entry. 

2. The page is not present in memory, and we need to transfer control to the
operating system to deal with a page fault. 

How do we know which of these two circumstances has occurred? When we pro-
cess the TLB miss, we will look for a page table entry to bring into the TLB. If the
matching page table entry has a valid bit that is turned off, then the corresponding
page is not in memory and we have a page fault, rather than just a TLB miss. If the
valid bit is on, we can simply retrieve the desired entry. 

A TLB miss can be handled in software or hardware because it will require only
a short sequence of operations to copy a valid page table entry from memory into
the TLB. MIPS traditionally handles a TLB miss in software. It brings in the page
table entry from memory and then reexecutes the instruction that caused the TLB
miss. Upon reexecuting it will get a TLB hit. If the page table entry indicates the
page is not in memory, this time it will get a page fault exception.

Handling a TLB miss or a page fault requires using the exception mechanism to
interrupt the active process, transferring control to the operating system, and later
resuming execution of the interrupted process. A page fault will be recognized
sometime during the clock cycle used to access memory. To restart the instruction
after the page fault is handled, the program counter of the instruction that caused
the page fault must be saved. Just as in Chapters 5 and 6, the exception program
counter (EPC) is used to hold this value. 

In addition, a TLB miss or page fault exception must be asserted by the end of
the same clock cycle that the memory access occurs, so that the next clock cycle
will begin exception processing rather than continue normal instruction execu-
tion. If the page fault was not recognized in this clock cycle, a load instruction
could overwrite a register, and this could be disastrous when we try to restart the
instruction. For example, consider the instruction lw $1,0($1): the computer
must be able to prevent the write pipeline stage from occurring; otherwise, it
could not properly restart the instruction, since the contents of $1 would have
been destroyed. A similar complication arises on stores. We must prevent the
write into memory from actually completing when there is a page fault; this is
usually done by deasserting the write control line to the memory.
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Once the operating system knows the virtual address that caused the page fault,
it must complete three steps:

1. Look up the page table entry using the virtual address and find the location
of the referenced page on disk.

2. Choose a physical page to replace; if the chosen page is dirty, it must be writ-
ten out to disk before we can bring a new virtual page into this physical page.

3. Start a read to bring the referenced page from disk into the chosen physical
page. 

Register CP0 register number Description

EPC 14 Where to restart after exception

Cause 13 Cause of exception

BadVAddr 8 Address that caused exception

Index 0 Location in TLB to be read or written

Random 1 Pseudorandom location in TLB

EntryLo 2 Physical page address and flags

EntryHi 10 Virtual page address

Context 4 Page table address and page number

FIGURE 7.27 MIPS control registers. These are considered to be in coprocessor 0, and hence are
read using mfc0 and written using mtc0.

Hardware
Software
Interface

Between the time we begin executing the exception handler in the operating sys-
tem and the time that the operating system has saved all the state of the process,
the operating system is particularly vulnerable. For example, if another excep-
tion occurred when we were processing the first exception in the operating sys-
tem, the control unit would overwrite the exception program counter, making it
impossible to return to the instruction that caused the page fault! We can avoid
this disaster by providing the ability to disable and enable exceptions. When an
exception first occurs, the processor sets a bit that disables all other exceptions;
this could happen at the same time the processor sets the supervisor mode bit.
The operating system will then save just enough state to allow it to recover if
another exception occurs—namely, the exception program counter and Cause
register. EPC and Cause are two of the special control registers that help with
exceptions, TLB misses, and page faults; Figure 7.27 shows the rest. The operating
system can then reenable exceptions. These steps make sure that exceptions will
not cause the processor to lose any state and thereby be unable to restart execution
of the interrupting instruction.

exception enable Also called 
interrupt enable. A signal or 
action that controls whether the 
process responds to an excep-
tion or not; necessary for pre-
venting the occurrence of 
exceptions during intervals 
before the processor has safely 
saved the state needed to restart.
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Of course, this last step will take millions of processor clock cycles (so will the sec-
ond if the replaced page is dirty); accordingly, the operating system will usually
select another process to execute in the processor until the disk access completes.
Because the operating system has saved the state of the process, it can freely give
control of the processor to another process. 

When the read of the page from disk is complete, the operating system can
restore the state of the process that originally caused the page fault and execute the
instruction that returns from the exception. This instruction will reset the proces-
sor from kernel to user mode, as well as restore the program counter. The user
process then reexecutes the instruction that faulted, accesses the requested page
successfully, and continues execution.

Page fault exceptions for data accesses are difficult to implement properly in a
processor because of a combination of three characteristics:

1. They occur in the middle of instructions, unlike instruction page faults.

2. The instruction cannot be completed before handling the exception.

3. After handling the exception, the instruction must be restarted as if nothing
had occurred. 

Making instructions restartable, so that the exception can be handled and the
instruction later continued, is relatively easy in an architecture like the MIPS.
Because each instruction writes only one data item and this write occurs at the
end of the instruction cycle, we can simply prevent the instruction from complet-
ing (by not writing) and restart the instruction at the beginning. 

For processors with much more complex instructions that may touch many
memory locations and write many data items, making instructions restartable is
much harder. Processing one instruction may generate a number of page faults
in the middle of the instruction. For example, some processors have block move
instructions that touch thousands of data words. In such processors, instruc-
tions often cannot be restarted from the beginning, as we do for MIPS instruc-
tions. Instead, the instruction must be interrupted and later continued
midstream in its execution. Resuming an instruction in the middle of its execu-
tion usually requires saving some special state, processing the exception, and
restoring that special state. Making this work properly requires careful and
detailed coordination between the exception-handling code in the operating
system and the hardware.

Let’s look in more detail at MIPS. When a TLB miss occurs, the MIPS hardware
saves the page number of the reference in a special register called BadVAddr and
generates an exception.

The exception invokes the operating system, which handles the miss in software.
Control is transferred to address 8000 0000hex, the location of the TLB miss han-
dler. To find the physical address for the missing page, the TLB miss routine indexes

restartable instruction An
instruction that can resume exe-
cution after an exception is 
resolved without the exception’s 
affecting the result of the 
instruction.

handler Name of a software 
routine invoked to “handle” an 
exception or interrupt.
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the page table using the page number of the virtual address and the page table regis-
ter, which indicates the starting address of the active process page table. To make this
indexing fast, MIPS hardware places everything you need in the special Context
register: the upper 12 bits have the address of the base of the page table and the next
18 bits have the virtual address of the missing page. Each page table entry is one
word, so the last 2 bits are 0. Thus, the first two instructions copy the Context regis-
ter into the kernel temporary register $k1 and then load the page table entry from
that address into $k1. Recall that $k0 and $k1 are reserved for the operating system
to use without saving; a major reason for this convention is to make the TLB miss
handler fast. Below is the MIPS code for a typical TLB miss handler:

TLBmiss:
mfc0 $k1,Context # copy address of PTE into temp $k1
lw $k1, 0($k1) # put PTE into temp $k1
mtc0 $k1,EntryLo # put PTE into special register EntryLo
tlbwr # put EntryLo into TLB entry at Random
eret # return from TLB miss exception

As shown above, MIPS has a special set of system instructions to update the
TLB. The instruction tlbwr copies from control register EntryLo into the TLB
entry selected by the control register Random. Random implements random
replacement, so it is basically a free-running counter. A TLB miss takes about a
dozen clock cycles. 

Note that the TLB miss handler does not check to see if the page table entry is
valid. Because the exception for TLB entry missing is much more frequent than a
page fault, the operating system loads the TLB from the page table without exam-
ining the entry and restarts the instruction. If the entry is invalid, another and dif-
ferent exception occurs, and the operating system recognizes the page fault. This
method makes the frequent case of a TLB miss fast, at a slight performance pen-
alty for the infrequent case of a page fault.

Once the process that generated the page fault has been interrupted, it transfers
control to 8000 0180hex, a different address than TLB miss handler. This is the
general address for exception; TLB miss has a special entry point to lower the pen-
alty for a TLB miss. The operating system uses the exception Cause register to
diagnose the cause of the exception. Because the exception is a page fault, the
operating system knows that extensive processing will be required. Thus, unlike a
TLB miss, it saves the entire state of the active process. This state includes all the
general-purpose and floating-point registers, the page table address register, the
EPC, and the exception Cause register. Since exception handlers do not usually
use the floating-point registers, the general entry point does not save them, leav-
ing that to the few handlers that need them.

Figure 7.28 sketches the MIPS code of an exception handler. Note that we save
and restore the state in MIPS code, taking care when we enable and disable excep-
tions, but we invoke C code to handle the particular exception.
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The virtual address that caused the fault depends on whether the fault was an
instruction or data fault. The address of the instruction that generated the fault is in
the EPC. If it was an instruction page fault, the EPC contains the virtual address of the
faulting page; otherwise, the faulting virtual address can be computed by examining
the instruction (whose address is in the EPC) to find the base register and offset field. 

Save state

Save GPR addi $k1,$sp, -XCPSIZE # save space on stack for state
sw $sp, XCT_SP($k1) # save $sp on stack
sw $v0, XCT_V0($k1) # save $v0 on stack
... # save $v1, $ai, $si, $ti, ...on stack
sw $ra, XCT_RA($k1) # save $ra on stack

Save Hi, Lo mfhi $v0 # copy Hi
mflo $v1 # copy Lo
sw $v0, XCT_HI($k1) # save Hi value on stack
sw $v1, XCT_LI($k1) # save Lo value on stack

Save Exception 
Registers

mfc0 $a0, $cr # copy cause register
sw $a0, XCT_CR($k1) # save $cr value on stack
... # save $v1, ....
mfc0 $a3, $sr # copy Status Register
sw $a3, XCT_SR($k1) # save $sr on stack

Set sp move $sp, $k1 # sp = sp - XCPSIZE

Enable nested exceptions

andi $v0, $a3, MASK1 # $v0 = $sr & MASK1, enable exceptions
mtc0 $v0, $sr # $sr = value that enables exceptions

Call C exception handler

Set $gp move $gp, GPINIT # set $gp to point to heap area

Call C code move $a0, $sp # arg1 = pointer to exception stack
jal xcpt_deliver # call C code to handle exception

Restoring state

Restore most 
GPR, Hi, Lo

move $at, $sp # temporary value of $sp
lw $ra, XCT_RA($at) # restore $ra from stack
... # restore $t0, ...., $a1
lw $a0, XCT_A0($k1) # restore $a0 from stack

Restore Status 
Register

lw $v0, XCT_SR($at) # load old $sr from stack
li $v1, MASK2 # mask to disable exceptions
and $v0, $v0, $v1 # $v0 = $sr & MASK2, disenable exceptions
mtc0 $v0, $sr # set Status Register

Exception return

Restore $sp and 
rest of GPR 
used as 
temporary 
registers

lw $sp, XCT_SP($at) # restore $sp from stack

lw $v0, XCT_V0($at) # restore $v0 from stack

lw $v1, XCT_V1($at) # restore $v1 from stack

lw $k1, XCT_EPC($at) # copy old $epc from stack

lw $at, XCT_AT($at) # restore $at from stack

Restore ERC and 
return

mtc0 $k1, $epc # restore $epc

eret $ra # return to interrupted instruction

FIGURE 7.28 MIPS code to save and restore state on an exception.



536 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Elaboration: This simplified version assumes that the stack pointer (sp) is valid. To
avoid the problem of a page fault during this low-level exception code, MIPS sets
aside a portion of its address space that cannot have page faults, called unmapped.
The operating system places exception entry point code and the exception stack in
unmapped memory. MIPS hardware translates virtual addresses 8000 0000hex to
BFFF FFFFhex to physical addresses simply by ignoring the upper bits of the virtual
address, thereby placing these addresses in the low part of physical memory. Thus,
the operating system places exception entry points and exception stacks in
unmapped memory.

Elaboration: The code in Figure 7.28 shows the MIPS-32 exception return sequence.
MIPS-I uses rfe and jr instead of eret.

Summary

Virtual memory is the name for the level of memory hierarchy that manages cach-
ing between the main memory and disk. Virtual memory allows a single program
to expand its address space beyond the limits of main memory. More importantly,
in recent computer systems virtual memory supports sharing of the main mem-
ory among multiple, simultaneously active processes, which together require far
more total physical main memory than exists. To support sharing, virtual mem-
ory also provides mechanisms for memory protection. 

Managing the memory hierarchy between main memory and disk is challeng-
ing because of the high cost of page faults. Several techniques are used to reduce
the miss rate:

1. Blocks, called pages, are made large to take advantage of spatial locality and
to reduce the miss rate.

2. The mapping between virtual addresses and physical addresses, which is
implemented with a page table, is made fully associative so that a virtual
page can be placed anywhere in main memory.

3. The operating system uses techniques, such as LRU and a reference bit, to
choose which pages to replace.

Writes to disk are expensive, so virtual memory uses a write-back scheme and also
tracks whether a page is unchanged (using a dirty bit) to avoid writing unchanged
pages back to disk.

The virtual memory mechanism provides address translation from a virtual
address used by the program to the physical address space used for accessing
memory. This address translation allows protected sharing of the main memory
and provides several additional benefits, such as simplifying memory allocation.
To ensure that processes are protected from each other requires that only the

unmapped A portion of the 
address space that cannot have 
page faults.
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operating system can change the address translations, which is implemented by
preventing user programs from changing the page tables. Controlled sharing of
pages among processes can be implemented with the help of the operating sys-
tem and access bits in the page table that indicate whether the user program has
read or write access to a page.

If a processor had to access a page table resident in memory to translate every
access, virtual memory would have too much overhead and caches would be
pointless! Instead, a TLB acts as a cache for translations from the page table.
Addresses are then translated from virtual to physical using the translations in
the TLB. 

Caches, virtual memory, and TLBs all rely on a common set of principles and
policies. The next section discusses this common framework. 

Although virtual memory was invented to enable a small memory to act as a
large one, the performance difference between disk and memory means that if
a program routinely accesses more virtual memory than it has physical mem-
ory it will run very slowly. Such a program would be continuously swapping
pages between memory and disk, called thrashing. Thrashing is a disaster if it
occurs, but it is rare. If your program thrashes, the easiest solution is to run it
on a computer with more memory or buy more memory for your computer. A
more complex choice is to reexamine your algorithm and data structures to
see if you can change the locality and thereby reduce the number of pages that
your program uses simultaneously. This set of pages is informally called the
working set.

A more common performance problem is TLB misses. Since a TLB might han-
dle only 32–64 page entries at a time, a program could easily see a high TLB miss
rate, as the processor may access less than a quarter megabyte directly: 64 ¥ 4 KB
= 0.25 MB. For example, TLB misses are often a challenge for Radix Sort. To try to
alleviate this problem, most computer architectures now support variable page
sizes. For example, in addition to the standard 4 KB page, MIPS hardware sup-
ports 16 KB, 64 KB, 256 KB, 1 MB, 4 MB, 16 MB, 64 MB, and 256 MB pages.
Hence, if a program uses large page sizes, it can access more memory directly
without TLB misses. 

The practical challenge is getting the operating system to allow programs to
select these larger page sizes. Once again, the more complex solution to reducing
TLB misses is to reexamine the algorithm and data structures to reduce the work-
ing set of pages.

Understanding
Program
Performance
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Check
Yourself

Match the memory hierarchy element on the left with the closest phrase on the right: 

By now, you’ve recognized that the different types of memory hierarchies share a
great deal in common. Although many of the aspects of memory hierarchies differ
quantitatively, many of the policies and features that determine how a hierarchy
functions are similar qualitatively. Figure 7.29 shows how some of the quantitative
characteristics of memory hierarchies can differ. In the rest of this section, we will
discuss the common operational aspects of memory hierarchies and how these
determine their behavior. We will examine these policies as a series of four ques-
tions that apply between any two levels of a memory hierarchy, although for sim-
plicity we will primarily use terminology for caches.

Question 1: Where Can a Block Be Placed? 

We have seen that block placement in the upper level of the hierarchy can use a range
of schemes, from direct mapped to set associative to fully associative. As mentioned
above, this entire range of schemes can be thought of as variations on a set-associa-
tive scheme where the number of sets and the number of blocks per set varies: 

The advantage of increasing the degree of associativity is that it usually
decreases the miss rate. The improvement in miss rate comes from reducing
misses that compete for the same location. We will examine these in more detail
shortly. First, let’s look at how much improvement is gained. Figure 7.30 shows
the data for a workload consisting of the SPEC2000 benchmarks with caches of 4

1. L1 cache a. A cache for a cache

2. L2 cache b. A cache for disks

3. Main memory c. A cache for a main memory

4. TLB d. A cache for page table entries

7.5 A Common Framework for Memory 
Hierarchies 7.5

Scheme name Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Set associative Associativity (typically 2–16)

Fully associative 1 Number of blocks in the cache

Number of blocks in cache
Associativity

---------------------------------------------------------------------------------------------------------
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KB to 512 KB, varying from direct mapped to eight-way set associative. The larg-
est gains are obtained in going from direct mapped to two-way set associative,
which yields between a 20% and 30% reduction in the miss rate. As cache sizes
grow, the relative improvement from associativity increases only slightly; since the
overall miss rate of a larger cache is lower, the opportunity for improving the miss
rate decreases and the absolute improvement in the miss rate from associativity

Feature
Typical values
for L1 caches

Typical values
for L2 caches

Typical values for
paged memory

Typical values
for a TLB

Total size in blocks 250–2000 4000–250,000 16,000–250,000 16–512

Total size in kilobytes 16–64 500–8000 250,000–1,000,000,000 0.25–16

Block size in bytes 32–64 32–128 4000–64,000 4–32

Miss penalty in clocks 10–25 100–1000 10,000,000–100,000,000 10–1000

Miss rates (global for L2) 2%–5% 0.1%–2% 0.00001%–0.0001% 0.01%–2%

FIGURE 7.29 The key quantitative design parameters that characterize the major elements of memory hierarchy in a com-
puter. These are typical values for these levels as of 2004. Although the range of values is wide, this is partially because many of the values that have
shifted over time are related; for example, as caches become larger to overcome larger miss penalties, block sizes also grow. 

FIGURE 7.30 The data cache miss rates for each of eight cache sizes improve as the
associativity increases. While the benefit of going from one-way (direct-mapped) to two-way set
associative is significant, the benefits of further associativity are smaller (e.g., 1%–10% going from two-way
to four-way versus 20%–30% improvement going from one-way to two-way). There is even less improve-
ment in going from four-way to eight-way set associative, which, in turn, comes very close to the miss rates
of a fully associative cache. Smaller caches obtain a significantly larger absolute benefit from associativity
because the base miss rate of a small cache is larger. Figure 7.15 explains how this data was collected. 

Associativity
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shrinks significantly. The potential disadvantages of associativity, as we men-
tioned earlier, are increased cost and slower access time. 

Question 2: How Is a Block Found?

The choice of how we locate a block depends on the block placement scheme,
since that dictates the number of possible locations. We can summarize the
schemes as follows:

The choice among direct-mapped, set-associative, or fully associative mapping
in any memory hierarchy will depend on the cost of a miss versus the cost of
implementing associativity, both in time and in extra hardware. Including the L2
cache on the chip enables much higher associativity, because the hit times are not
as critical and the designer does not have to rely on standard SRAM chips as the
building blocks. Fully associative caches are prohibitive except for small sizes,
where the cost of the comparators is not overwhelming and where the absolute
miss rate improvements are greatest.

In virtual memory systems, a separate mapping table (the page table) is kept to
index the memory. In addition to the storage required for the table, using an index
table requires an extra memory access. The choice of full associativity for page
placement and the extra table is motivated by four facts:

1. Full associativity is beneficial, since misses are very expensive.

2. Full associativity allows software to use sophisticated replacement schemes
that are designed to reduce the miss rate. 

3. The full map can be easily indexed with no extra hardware and no search-
ing required. 

4. The large page size means the page table size overhead is relatively small.
(The use of a separate lookup table, like a page table for virtual memory, is
not practical for a cache because the table would be much larger than a page
table and could not be accessed quickly.)

Therefore, virtual memory systems almost always use fully associative placement. 
Set-associative placement is often used for caches and TLBs, where the access

combines indexing and the search of a small set. A few systems have used direct-

Associativity Location method Comparisons required

Direct mapped index 1

Set associative index the set, search among elements degree of associativity

Full search all cache entries size of the cache

separate lookup table 0
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mapped caches because of their advantage in access time and simplicity. The
advantage in access time occurs because finding the requested block does not
depend on a comparison. Such design choices depend on many details of the
implementation, such as whether the cache is on-chip, the technology used for
implementing the cache, and the critical role of cache access time in determining
the processor cycle time. 

Question 3: Which Block Should Be Replaced
on a Cache Miss? 

When a miss occurs in an associative cache, we must decide which block to
replace. In a fully associative cache, all blocks are candidates for replacement. If
the cache is set associative, we must choose among the blocks in the set. Of course,
replacement is easy in a direct-mapped cache because there is only one candidate. 

We have already mentioned the two primary strategies for replacement in set-
associative or fully associative caches:

■ Random: Candidate blocks are randomly selected, possibly using some
hardware assistance. For example, MIPS supports random replacement for
TLB misses.

■ Least recently used (LRU): The block replaced is the one that has been
unused for the longest time. 

In practice, LRU is too costly to implement for hierarchies with more than a
small degree of associativity (two to four, typically), since tracking the usage
information is costly. Even for four-way set associativity, LRU is often approxi-
mated—for example, by keeping track of which of a pair of blocks is LRU (which
requires 1 bit), and then tracking which block in each pair is LRU (which requires
1 bit per pair). 

For larger associativity, either LRU is approximated or random replacement is
used. In caches, the replacement algorithm is in hardware, which means that the
scheme should be easy to implement. Random replacement is simple to build in
hardware, and for a two-way set-associative cache, random replacement has a
miss rate about 1.1 times higher than LRU replacement. As the caches become
larger, the miss rate for both replacement strategies falls, and the absolute differ-
ence becomes small. In fact, random replacement can sometimes be better than
the simple LRU approximations that are easily implemented in hardware.

In virtual memory, some form of LRU is always approximated since even a tiny
reduction in the miss rate can be important when the cost of a miss is enormous.
Reference bits or equivalent functionality is often provided to make it easier for
the operating system to track a set of less recently used pages. Because misses are
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so expensive and relatively infrequent, approximating this information primarily
in software is acceptable. 

Question 4: What Happens on a Write?

A key characteristic of any memory hierarchy is how it deals with writes. We have
already seen the two basic options:

■ Write-through: The information is written to both the block in the cache and
to the block in the lower level of the memory hierarchy (main memory for a
cache). The caches in Section 7.2 used this scheme. 

■ Write-back (also called copy-back): The information is written only to the
block in the cache. The modified block is written to the lower level of the
hierarchy only when it is replaced. Virtual memory systems always use
write-back, for the reasons discussed in Section 7.4.

Both write-back and write-through have their advantages. The key advantages
of write-back are the following:

■ Individual words can be written by the processor at the rate that the cache,
rather than the memory, can accept them.

■ Multiple writes within a block require only one write to the lower level in
the hierarchy.

■ When blocks are written back, the system can make effective use of a high-
bandwidth transfer, since the entire block is written. 

Write-through has these advantages:

■ Misses are simpler and cheaper because they never require a block to be
written back to the lower level.

■ Write-through is easier to implement than write-back, although to be prac-
tical in a high-speed system, a write-through cache will need to use a write
buffer. 

In virtual memory systems, only a write-back policy is practical because of the
long latency of a write to the lower level of the hierarchy (disk). As processors con-
tinue to increase in performance at a faster rate than DRAM-based main memory,
the rate at which writes are generated by a processor will exceed the rate at which
the memory system can process them, even allowing for physically and logically
wider memories. Consequently, more and more caches are using a write-back
strategy.
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The Three Cs: An Intuitive Model for Understanding the 
Behavior of Memory Hierarchies

In this section, we look at a model that provides insight into the sources of misses
in a memory hierarchy and how the misses will be affected by changes in the hier-
archy. We will explain the ideas in terms of caches, although the ideas carry over
directly to any other level in the hierarchy. In this model, all misses are classified
into one of three categories (the three Cs):

■ Compulsory misses: These are cache misses caused by the first access to a
block that has never been in the cache. These are also called cold-start misses.

■ Capacity misses: These are cache misses caused when the cache cannot con-
tain all the blocks needed during execution of a program. Capacity misses
occur when blocks are replaced and then later retrieved. 

■ Conflict misses: These are cache misses that occur in set-associative or
direct-mapped caches when multiple blocks compete for the same set. Con-
flict misses are those misses in a direct-mapped or set-associative cache that
are eliminated in a fully associative cache of the same size. These cache
misses are also called collision misses.

While caches, TLBs, and virtual memory may initially look very different,
they rely on the same two principles of locality and can be understood by
looking at how they deal with four questions:

Question 1: Where can a block be placed?
Answer: One place (direct mapped), a few places (set associative),

or any place (fully associative).

Question 2: How is a block found?
Answer: There are four methods: indexing (as in a direct-mapped

cache), limited search (as in a set-associative cache), full
search (as in a fully associative cache), and a separate
lookup table (as in a page table). 

Question 3: What block is replaced on a miss?
Answer: Typically, either the least recently used or a random block.

Question 4: How are writes handled?
Answer: Each level in the hierarchy can use either write-through

or write-back.

The BIG
Picture

three Cs model A cache model
in which all cache misses are 
classified into one of three cate-
gories: compulsory misses, 
capacity misses, and conflict 
misses.

compulsory miss Also called 
cold start miss. A cache miss 
caused by the first access to a 
block that has never been in the 
cache.

capacity miss A cache miss 
that occurs because the cache, 
even with full associativity, can-
not contain all the block needed 
to satisfy the request. 

conflict miss Also called colli-
sion miss. A cache miss that 
occurs in a set-associative or 
direct-mapped cache when mul-
tiple blocks compete for the 
same set and that are eliminated 
in a fully associative cache of the 
same size.



544 Chapter 7 Large and Fast: Exploiting Memory Hierarchy

Figure 7.31 shows how the miss rate divides into the three sources. These
sources of misses can be directly attacked by changing some aspect of the cache
design. Since conflict misses arise directly from contention for the same cache
block, increasing associativity reduces conflict misses. Associativity, however, may
slow access time, leading to lower overall performance.

Capacity misses can easily be reduced by enlarging the cache; indeed, second-
level caches have been growing steadily larger for many years. Of course, when we
make the cache larger, we must also be careful about increasing the access time,
which could lead to lower overall performance. Thus, first-level caches have been
growing slowly if at all. 

FIGURE 7.31 The miss rate can be broken into three sources of misses. This graph shows
the total miss rate and its components for a range of cache sizes. This data is for the SPEC2000 integer and
floating-point benchmarks and is from the same source as the data in Figure 7.30. The compulsory miss
component is 0.006% and cannot be seen in this graph. The next component is the capacity miss rate,
which depends on cache size. The conflict portion, which depends both on associativity and on cache size,
is shown for a range of associativities from one-way to eight-way. In each case, the labeled section corre-
sponds to the increase in the miss rate that occurs when the associativity is changed from the next higher
degree to the labeled degree of associativity. For example, the section labeled two-way indicates the addi-
tional misses arising when the cache has associativity of two rather than four. Thus, the difference in the
miss rate incurred by a direct-mapped cache versus a fully associative cache of the same size is given by the
sum of the sections marked eight-way, four-way, two-way, and one-way. The difference between eight-way
and four-way is so small that it is difficult to see on this graph. 
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Because compulsory misses are generated by the first reference to a block, the
primary way for the cache system to reduce the number of compulsory misses is
to increase the block size. This will reduce the number of references required to
touch each block of the program once because the program will consist of fewer
cache blocks. Increasing the block size too much can have a negative effect on per-
formance because of the increase in the miss penalty.

The decomposition of misses into the three Cs is a useful qualitative model. In
real cache designs, many of the design choices interact, and changing one cache
characteristic will often affect several components of the miss rate. Despite such
shortcomings, this model is a useful way to gain insight into the performance of
cache designs.  

Check
Yourself

Which of the following statements (if any) are generally true?

1. There is no way to reduce compulsory misses.

2. Fully associate caches have no conflict misses.

3. In reducing misses, associativity is more important than capacity.

Design change Effect on miss rate
Possible negative 
performance effect

Increase cache size decreases capacity misses may increase access time

Increase associativity decreases miss rate due to conflict 
misses

may increase access time

Increase block size decreases miss rate for a wide range of 
block sizes due to spatial locality

increases miss penalty. Very large 
block could increase miss rate

FIGURE 7.32 Memory hierarchy design challenges.

The challenge in designing memory hierarchies is that every change that
potentially improves the miss rate can also negatively affect overall perfor-
mance, as Figure 7.32 summarizes. This combination of positive and nega-
tive effects is what makes the design of a memory hierarchy interesting.

The BIG
Picture
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In this section, we will look at the memory hierarchy in two modern microproces-
sors: the Intel Pentium P4 and the AMD Opteron processor. In 2004, the P4 is
used in a variety of PC desktops and small servers. The AMD Opteron processor is
finding its way into higher-end servers and clusters.  

Figure 7.33 shows the Opteron die photo, and Figure 1.9 on page 21 in Chapter
1 shows the P4 die photo. Both have secondary caches on the main processor die.
Such integration reduces access time to the secondary cache and also reduces the
number of pins on the chip, since there is no need for a bus to an external second-
ary cache. 

7.6 Real Stuff: The Pentium P4 and the AMD 
Opteron Memory Hierarchies 7.6

FIGURE 7.33 An AMD Opteron die processor photo with the components labeled. The L2
cache occupies 42% of the die. The remaining components in order of size are HyperTransport™: 13%,
DDR memory: 10%, Fetch/Scan/Align/Microcode: 6%, Memory controller: 4%, FPU: 4%, Instruction
cache: 4%, Data cache: 4%, Execution units: 3%, Bus unit: 2%, and clock generator: 0.2%. In a 0.13 tech-
nology, this die is 193 mm2. 
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The Memory Hierarchies of the P4 and Opteron

Figure 7.34 summarizes the address sizes and TLBs of the two processors.
Note that the AMD Opteron has four TLBs while the P4 has two and that the

virtual and physical addresses do not have to match the word size. AMD imple-
ments only 48 of the potential 64 bits of its virtual space and 40 of the potential 64
bits of its physical address space. Intel increases the physical address space to 36-
bits, although no single program can address more than 32 bits.

Figure 7.35 shows their caches. Note that both the L1 data cache and the L2
caches are larger in the Opteron and that P4 uses a larger block size for its L2
cache than its L1 data cache.

Although the Opteron runs the same IA-32 programs as the Pentium P4, its
biggest difference is that it has added a 64-bit addressing mode. Just as the 80386
added a flat 32-bit address space and 32-bit registers to the prior 16-bit 80286
architecture, Opteron adds a new mode with flat 64-bit address space and 64-bit
registers to the IA-32 architecture, called AMD64. It increases the program
counter to 64 bits, extends eight 32-bit registers to 64 bits, adds eight new 64-bit
registers, and doubles the number of SSE2 registers. In 2004 Intel announced that
future IA-32 processors will include their 64-bit address extension.

Techniques to Reduce Miss Penalties

Both the Pentium 4 and the AMD Opteron have additional optimizations that
allow them to reduce the miss penalty. The first of these is the return of the

Characteristic Intel Pentium P4 AMD Opteron

Virtual address 32 bits 48 bits

Physical address 36 bits 40 bits

Page size 4 KB, 2/4 MB 4 KB, 2/4 MB

TLB organization 1 TLB for instructions and 1 TLB for 
data

Both are four-way set associative

Both use pseudo-LRU replacement

Both have 128 entries 

TLB misses handled in hardware

2 TLBs for instructions and 2 TLBs for data

Both L1 TLBs fully associative, LRU 
replacement

Both L2 TLBs are four-way set associativity, 
round-robin LRU

Both L1 TLBs have 40 entries

Both L2 TLBs have 512 entries

TLB misses handled in hardware

FIGURE 7.34 Address translation and TLB hardware for the Intel Pentium P4 and AMD
Opteron. The word size sets the maximum size of the virtual address, but a processor need not use all bits.
The physical address size is independent of word size. The P4 has one TLB for instructions and a separate
identical TLB for data, while the Opteron has both an L1 TLB and an L2 TLB for instructions and identical
L1 and L2 TLBs for data. Both processors provide support for large pages, which are used for things like the
operating system or mapping a frame buffer. The large-page scheme avoids using a large number of entries
to map a single object that is always present. 
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requested word first on a miss, as described in the Elaboration on page 490. Both
allow the processor to continue to execute instructions that access the data cache
during a cache miss. This technique, called a nonblocking cache, is commonly
used as designers attempt to hide the cache miss latency by using out-of-order pro-
cessors. They implement two flavors of nonblocking. Hit under miss allows addi-
tional cache hits during a miss, while miss under miss allows multiple outstanding
cache misses. The aim of the first of these two is hiding some miss latency with
other work, while the aim of the second is overlapping the latency of two different
misses.

Overlapping a large fraction of miss times for multiple outstanding misses
requires a high-bandwidth memory system capable of handling multiple misses in
parallel. In desktop systems, the memory may only be able to take limited advan-
tage of this capability, but large servers and multiprocessors often have memory
systems capable of handling more than one outstanding miss in parallel.

Both microprocessors prefetch instructions and have a built-in hardware
prefetch mechanism for data accesses. They look at a pattern of data misses and use
this information to try to predict the next address to start fetching the data before
the miss occurs. Such techniques generally work best when accessing arrays in loops.

A significant challenge facing cache designers is to support processors like the P4
and Opteron that can execute more than one memory instruction per clock cycle.
Multiple requests can be supported in the first-level cache by two different tech-
niques. The cache can be multiported, allowing more than one simultaneous access
to the same cache block. Multiported caches, however, are often too expensive, since

Characteristic Intel Pentium P4 AMD Opteron

L1 cache organization Split instruction and data caches Split instruction and data caches

L1 cache size 8 KB for data, 96 KB trace cache for 
RISC instructions (12K RISC operations)

64 KB each for instructions/data

L1 cache associativity 4-way set associative 2-way set associative

L1 replacement Approximated LRU replacement LRU replacement

L1 block size 64 bytes 64 bytes

L1 write policy Write-through Write-back

L2 cache organization Unified (instruction and data) Unified (instruction and data) 

L2 cache size 512 KB 1024 KB (1 MB)

L2 cache associativity 8-way set associative 16-way set associative

L2 replacement Approximated LRU replacement Approximated LRU replacement

L2 block size 128 bytes 64 bytes

L2 write policy Write-back Write-back

FIGURE 7.35 First-level and second-level caches in the Intel Pentium P4 and AMD
Opteron. The primary caches in the P4 are physically indexed and tagged; for a discussion of the alterna-
tives, see the Elaboration on page 527.

nonblocking cache A cache 
that allows the processor to 
make references to the cache 
while the cache is handling an 
earlier miss.
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the RAM cells in a multiported memory must be much larger than single-ported
cells. The alternative scheme is to break the cache into banks and allow multiple,
independent accesses, provided the accesses are to different banks. The technique is
similar to interleaved main memory (see Figure 7.11 on page 489). 

To reduce the memory traffic in a multiprocessor configuration, Intel has other
versions of the P4 with much larger on-chip caches in 2004. For example, the Intel
Pentium P4 Xeon comes with third-level cache on chip of 1 MB and is intended for
dual-processor servers. A more radical example is the Intel Pentium P4 Extreme
Edition, which comes with 2 MB of L3 cache but no support for multiprocessing.
These two chips are much larger and more expensive. For example, in 2004 a Preci-
sion Workstation 360 with a 3.2 GHz P4 costs about $1900. Upgrading to the
Extreme Edition processor adds $500 to the price. The Dell Precision Workstation
450, which allows dual processors, costs about $2000 for a 3.2 GHz Xeon with 1 MB
of L3 cache. Adding a second processor like that one adds $1500 to the price.

The sophisticated memory hierarchies of these chips and the large fraction of
the dies dedicated to caches and TLBs show the significant design effort expended
to try to close the gap between processor cycle times and memory latency. Future
advances in processor pipeline designs, together with the increased use of multi-
processing that presents its own problems in memory hierarchies, provide many
new challenges for designers. 

Elaboration: Perhaps the largest difference between the AMD and Intel chips is the
use of a trace cache for the P4 instruction cache, while the AMD Opteron uses a more
traditional instruction cache. 

Instead of organizing the instructions in a cache block sequentially to promote spa-
tial locality, a trace cache finds a dynamic sequence of instructions including taken
branches to load into a cache block. Thus, the cache blocks contain dynamic traces of
the executed instructions as determined by the CPU rather than static sequences of
instructions as determined by memory layout. It folds branch prediction (Chapter 6) into
the cache, so the branches must be validated along with the addresses in order to have
a valid fetch. In addition, the P4 caches the micro-operations (see Chapter 5) rather
than the IA-32 instructions as in the Opteron.

Clearly, trace caches have much more complicated address mapping mechanisms,
since the addresses are no longer aligned to power-of-two multiples of the word size. 

Trace caches can improve utilization of cache blocks, however. For example, very
long blocks in conventional caches may be entered from a taken branch, and hence the
first portion of the block occupies space in the cache that might not be fetched. Simi-
larly, such blocks may be exited by taken branches, so the last portion of the block
might be wasted. Given that taken branches or jumps occur every 5–10 instructions,
effective block utilization is a real problem for processors like the Opteron, whose 64-
byte block would likely include 16–24 80x86 instructions. Trace caches store instruc-
tions only from the branch entry point to the exit of the trace, thereby avoiding such
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header and trailer overhead. A downside of trace caches is that they potentially store
the same instructions multiple times in the cache: conditional branches making differ-
ent choices result in the same instructions being part of separate traces, which each
appear in the cache.

To account for both the larger size of the micro-operations and the redundancy inher-
ent in a trace cache, Intel claims that the miss rate of the 96 KB trace cache of the P4,
which holds 12K micro-operations, is about that of an 8 KB cache, which holds about
2K–3K IA-32 instructions.

As one of the most naturally quantitative aspects of computer architecture, the
memory hierarchy would seem to be less vulnerable to fallacies and pitfalls. Not
only have there been many fallacies propagated and pitfalls encountered, but
some have led to major negative outcomes. We start with a pitfall that often traps
students in exercises and exams.

Pitfall: Forgetting to account for byte addressing or the cache block size in simu-
lating a cache. 

When simulating a cache (by hand or by computer), we need to make sure we
account for the effect of byte addressing and multiword blocks in determining
which cache block a given address maps into. For example, if we have a 32-byte
direct-mapped cache with a block size of 4 bytes, the byte address 36 maps into
block 1 of the cache, since byte address 36 is block address 9 and (9 modulo 8) = 1.
On the other hand, if address 36 is a word address, then it maps into block (36
mod 8) = 4. Make sure the problem clearly states the base of the address. 

In like fashion, we must account for the block size. Suppose we have a cache
with 256 bytes and a block size of 32 bytes. Which block does the byte address
300 fall into? If we break the address 300 into fields, we can see the answer:

7.7 Fallacies and Pitfalls 7.7

31 30 29 … … … 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 … … … 0 0 0 1 0 0 1 0 1 1 0 0

Cache
block

number

Block
offset

Block address
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Byte address 300 is block address

The number of blocks in the cache is

Block number 9 falls into cache block number (9 modulo 8) = 1. 
This mistake catches many people, including the authors (in earlier drafts) and

instructors who forget whether they intended the addresses to be in words, bytes,
or block numbers. Remember this pitfall when you tackle the exercises.

Pitfall: Ignoring memory system behavior when writing programs or when gener-
ating code in a compiler.

This could easily be written as a fallacy: “Programmers can ignore memory hierar-
chies in writing code.” We illustrate with an example using matrix multiply, to
complement the sort comparison in Figure 7.18 on page 508. 

Here is the inner loop of the version of matrix multiply from Chapter 3: 

for (i=0; i!=500; i=i+1)
   for (j=0; j!=500; j=j+1)
      for (k=0; k!=500; k=k+1)
         x[i][j] = x[i][j] + y[i][k] * z[k][j];

When run with inputs that are 500 ¥ 500 double precision matrices, the CPU
runtime of the above loop on a MIPS CPU with a 1 MB secondary cache was
about half the speed compared to when the loop order is changed to k,j,i (so i
is innermost)! The only difference is how the program accesses memory and the
ensuing effect on the memory hierarchy. Further compiler optimizations using a
technique called blocking can result in a runtime that is another four times faster
for this code! 

Pitfall: Using average memory access time to evaluate the memory hierarchy of an
out-of-order processor.

If a processor stalls during a cache miss, then you can separately calculate the
memory-stall time and the processor execution time, and hence evaluate the
memory hierarchy independently using average memory access time.

If the processor continues to execute instructions and may even sustain more
cache misses during a cache miss, then the only accurate assessment of the mem-
ory hierarchy is to simulate the out-of-order processor along with the memory
hierarchy.

300
32
-------- 9=

256
32
-------- 8=
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Pitfall: Extending an address space by adding segments on top of an unsegmented
address space.

During the 1970s, many programs grew so large that not all the code and data
could be addressed with just a 16-bit address. Computers were then revised to
offer 32-bit addresses, either through an unsegmented 32-bit address space (also
called a flat address space) or by adding 16 bits of segment to the existing 16-bit
address. From a marketing point of view, adding segments that were program-
mer-visible and that forced the programmer and compiler to decompose pro-
grams into segments could solve the addressing problem. Unfortunately, there is
trouble any time a programming language wants an address that is larger than one
segment, such as indices for large arrays, unrestricted pointers, or reference
parameters. Moreover, adding segments can turn every address into two words—
one for the segment number and one for the segment offset—causing problems in
the use of addresses in registers. Given the size of DRAMs and Moore’s law, many
of today’s 32-bit systems are facing similar problems. 

The difficulty of building a memory system to keep pace with faster processors is
underscored by the fact that the raw material for main memory, DRAMs, is essen-
tially the same in the fastest computers as it is in the slowest and cheapest. Figure
7.36 compares the memory hierarchy of microprocessors aimed at desktop, server,
and embedded applications. The L1 caches are similar across applications, with
the primary differences being L2 cache size, die size, processor clock rate, and
instructions issued per clock.

It is the principle of locality that gives us a chance to overcome the long latency
of memory access—and the soundness of this strategy is demonstrated at all levels
of the memory hierarchy. Although these levels of the hierarchy look quite differ-
ent in quantitative terms, they follow similar strategies in their operation and
exploit the same properties of locality. 

Because processor speeds continue to improve faster than either DRAM access
times or disk access times, memory will increasingly be the factor that limits per-
formance. Processors increase in performance at a high rate, and DRAMs are now
doubling their density about every two years. The access time of DRAMs, however,
is improving at a much slower rate—less than 10% per year. Figure 7.37 plots pro-
cessor performance against a 7% annual performance improvement in DRAM
latency. While latency improves slowly, recent enhancements in DRAM technol-
ogy (double data rate DRAMs and related techniques) have led to greater

7.8 Concluding Remarks 7.8
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increases in memory bandwidth. This potentially higher memory bandwidth has
enabled designers to increase cache block sizes with smaller increases in the miss
penalty. 

Recent Trends

The challenge in designing memory hierarchies to close this growing gap, as we
noted in the Big Picture on page 545, is that all the hardware design choices for
memory hierarchies have both a positive and negative effect on performance. This
means that for each level of the hierarchy there is an optimal performance point
per program, which must include some misses. If this is the case, how can we
overcome the growing gap between processor speeds and lower levels of the hier-
archy? This question is currently the topic of much research. 

MPU
AMD
Opteron

Intrinsity
FastMATH Intel Pentium 4 Intel PXA250

Sun
UltraSPARC IV

Instruction set architecture IA-32, AMD64 MIPS32 IA-32 ARM SPARC v9

Intended application server embedded desktop low-power embedded server

Die size (mm2) (2004) 193 122 217 356

Instructions issued/clock 3 2 3 RISC ops 1 4 ¥ 2

Clock rate (2004) 2.0 GHz 2.0 GHz 3.2 GHz 0.4 GHz 1.2 GHz

Instruction cache 64 KB, 
2-way set 
associative

16 KB, 
direct mapped

12000 RISC op trace 
cache (~96 KB)

32 KB, 
32-way set 
associative

32 KB, 
4-way set 
associative

Latency (clocks) 3? 4 4 1 2

Data cache 64 KB, 
2-way set 
associative

16 KB, 
1-way
set associative

8 KB, 
4-way
set associative

32 KB, 
32-way set 
associative

64 KB, 
4-way set 
associative

Latency (clocks) 3 3 2 1 2

TLB entries (I/D/L2 TLB) 40/40/512/
512

16 128/128 32/32 128/512

Minimum page size 4 KB 4 KB 4 KB 1 KB 8 KB

On-chip L2 cache 1024 KB, 
16-way set 
associative

1024 KB, 
4-way set 
associative

512 KB, 
8-way set 
associative

—  —

Off-chip L2 cache —  —  —  — 16 MB, 2-way 
set associative

Block size (L1/L2, bytes) 64 64 64/128 32 32

FIGURE 7.36 Desktop, embedded, and server microprocessors in 2004. From a memory hierarchy perspective, the primary differences
between categories is the L2 cache. There is no L2 cache for the low-power embedded, a large on-chip L2 for the embedded and desktop, and 16 MB
off chip for the server. The processor clock rates also vary: 0.4 GHz for low-power embedded, 1 GHz or higher for the rest. Note that UltraSPARC IV
has two processors on the chip.
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On-chip first-level caches initially helped close the gap that was growing
between processor clock cycle time and off-chip SRAM cycle time. To narrow the
gap between the small on-chip caches and DRAM, second-level caches became
widespread. Today, all desktop computers use second-level caches on chip, and
third-level caches are becoming popular in some segments. Multilevel caches also
make it possible to use other optimizations more easily for two reasons. First, the
design parameters of a second- or third-level cache are different from a first-level
cache. For example, because a second- or third-level cache will be much larger, it
is possible to use larger block sizes. Second, a second- or third-level cache is not
constantly being used by the processor, as a first-level cache is. This allows us to
consider having the second- or third-level cache do something when it is idle that
may be useful in preventing future misses. 

Another possible direction is to seek software help. Efficiently managing the
memory hierarchy using a variety of program transformations and hardware
facilities is a major focus of compiler enhancements. Two different ideas are being
explored. One idea is to reorganize the program to enhance its spatial and tempo-
ral locality. This approach focuses on loop-oriented programs that use large arrays
as the major data structure; large linear algebra problems are a typical example. By

FIGURE 7.37 Using their 1980 performance as a baseline, the access time of DRAMs versus the performance of processors
is plotted over time Note that the vertical axis must be on a logarithmic scale to record the size of the processor-DRAM performance gap. The
memory baseline is 64 KB DRAM in 1980, with three years to the next generation until 1996 and two years thereafter, with a 7% per year performance
improvement in latency. The processor line assumes a 35% improvement per year until 1986, and a 55% improvement until 2003. It slows thereafter.
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restructuring the loops that access the arrays, substantially improved locality—
and, therefore, cache performance—can be obtained. The example on page 551
showed how effective even a simple change of loop structure could be. 

Another direction is to try to use compiler-directed prefetching. In prefetch-
ing, a block of data is brought into the cache before it is actually referenced. The
compiler tries to identify data blocks needed in the future and, using special
instructions, tells the memory hierarchy to move the blocks into the cache. When
the block is actually referenced, it is found in the cache, rather than causing a
cache miss. The use of secondary caches has made prefetching even more attrac-
tive, since the secondary cache can be involved in a prefetch, while the primary
cache continues to service processor requests. 

As we will see in  Chapter 9, memory systems are also a central design issue
for parallel processors. The growing importance of the memory hierarchy in
determining system performance in both uniprocessor and multiprocessor sys-
tems means that this important area will continue to be a focus of both designers
and researchers for some years to come.

This history section gives an overview of memory technologies, from mercury
delay lines to DRAM, the invention of the memory hierarchy and protection
mechanisms, and concludes with a brief history of operating systems, including
CTSS, MULTICS, UNIX, BSD UNIX, MS-DOS, Windows, and Linux.

7.1 [5] <§7.1> SRAM is commonly used to implement small, fast, on-chip caches
while DRAM  is used for larger, slower main memory.  In the past, a common de-
sign for supercomputers was to build machines with no caches and main memo-
ries made entirely out of SRAM (the Cray C90, for example, a very fast computer
in its day).  If cost were no object, would you still want to design a system this way?

7.2 [10] <§7.2> Describe the general characteristics of a program that would ex-
hibit very little temporal and spatial locality with regard to data accesses. Provide
an example program (pseudocode is fine).

Historical Perspective and Further 
Reading 7.9

7.10 Exercises 7.10

prefetching A technique in 
which data blocks needed in the 
future are brought into the 
cache early by the use of special 
instructions that specify the 
address of the block.

7.9
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7.3 [10] <§7.2> Describe the general characteristics of a program that would ex-
hibit very high amounts of temporal locality but very little spatial locality with re-
gard to data accesses. Provide an example program (pseudocode is fine).

7.4 [10] <§7.2> Describe the general characteristics of a program that would ex-
hibit very little temporal locality but very high amounts of spatial locality with re-
gard to data accesses. Provide an example program (pseudocode is fine).

7.5 [3/3] <§7.2> A new processor can use either a write-through or write-back
cache selectable through software.

a. Assume the processor will run data intensive applications with a large num-
ber of load and store operations. Explain which cache write policy should be
used.

b. Consider the same question but this time for a safety critical system in
which data integrity is more important than memory performance.

7.6 [10] <§7.2>  For More Practice: Locality.

7.7 [10] <§7.2>  For More Practice: Locality.

7.8 [10] <§7.2>  For More Practice: Locality.

7.9 [10] <§7.2> Here is a series of address references given as word addresses: 2,
3, 11, 16, 21, 13, 64, 48, 19, 11, 3, 22, 4, 27, 6, and 11. Assuming a direct-mapped
cache with 16 one-word blocks that is initially empty, label each reference in the
list as a hit or a miss and show the final contents of the cache.

7.10 [10] <§7.2> Using the series of references given in Exercise 7.9, show the hits
and misses and final cache contents for a direct-mapped cache with four-word
blocks and a total size of 16 words. 

7.11 [15] <§7.2> Given the following pseudocode:

int array[10000,100000];

for each element array[i][j] {

array[i][j] = array[i][j]*2;

}

write two C programs that implement this algorithm: one should access the ele-
ments of the array in row-major order, and the other should access them in col-
umn-major order.  Compare the execution times of the two programs.  What does
this tell you about the effects of memory layout on cache performance? 

7.12 [10] <§7.2> Compute the total number of bits required to implement the
cache in Figure 7.9 on page 486.  This number is different from the size of the
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cache, which usually refers to the number of bytes of data stored in the cache.  The
number of bits needed to implement the cache represents the total amount of
memory needed for storing all the data, tags, and valid bits.

7.13 [10] <§7.2> Find a method to eliminate the AND gate on the valid bit in
Figure 7.7 on page 478. (Hint: You need to change the comparison.)

7.14 [10] <§7.2> Consider a memory hierarchy using one of the three organiza-
tions for main memory shown in Figure 7.11 on page 489. Assume that the cache
block size is 16 words, that the width of organization (b) of the figure is four words,
and that the number of banks in organization (c) is four. If the main memory latency
for a new access is 10 memory bus clock  cycles and the transfer time is 1 memory bus
clock cycle, what are the miss penalties for each of these organizations? 

7.15 [10] <§7.2>  For More Practice: Cache Performance.

7.16 [15] <§7.2> Cache C1 is direct-mapped with 16 one-word blocks. Cache C2
is direct-mapped with 4 four-word blocks.  Assume that the miss penalty for C1 is
8 memory bus clock cycles and the miss penalty for C2 is 11 memory bus clock cy-
cles.  Assuming that the caches are initially empty, find a reference string for which
C2 has a lower miss rate but spends more memory bus clock cycles on cache misses
than C1.  Use word addresses.

7.17 [5] <§7.2>  In More Depth: Average Memory Access Time

7.18 [5] <§7.2>  In More Depth: Average Memory Access Time

7.19 [10] <§7.2>  In More Depth: Average Memory Access Time

7.20 [10] <§7.2> Assume a memory system that supports interleaving either four
reads or four writes.  Given the following memory addresses in order as they ap-
pear on the memory bus: 3, 9, 17, 2, 51, 37, 13, 4, 8, 41, 67, 10, which ones will result
in a bank conflict?

7.21 [3 hours] <§7.3> Use a cache simulator to simulate several different cache
organizations for the first 1 million references in a trace of gcc. Both dinero (a
cache simulator) and the gcc traces are available—see the Preface of this book for
information on how to obtain them. Assume an instruction cache of 32 KB and a
data cache of 32 KB using the same organization. You should choose at least two
kinds of associativity and two block sizes. Draw a diagram like that in Figure 7.17
on page 503 that shows the data cache organization with the best hit rate.

7.22 [1 day] <§7.3> You are commissioned to design a cache for a new system. It
has a 32-bit physical byte address and requires separate instruction and data cach-
es. The SRAMs have an access time of 1.5 ns and a size of 32K ¥ 8 bits, and you have
a total of 16 SRAMs to use. The miss penalty for the memory system is 8 + 2 ¥ Block
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size in words. Using set associativity adds 0.2 ns to the cache access time. Using the
first 1 million references of gcc, find the best I and D cache organizations, given the
available SRAMs.

7.23 [10] <§§7.2, B.5>  For More Practice: Cache Configurations

7.24 [10] <§§7.2, B.5>  For More Practice: Cache Configurations

7.25 [10] <§7.3>  For More Practice: Cache Operation

7.26 [10] <§7.3>  For More Practice: Cache Operation

7.27 [10] <§7.3>  For More Practice: Cache Operation

7.28 [5] <§7.3> Associativity usually improves the miss ratio, but not always.
Give a short series of address references for which a two-way set-associative cache
with LRU replacement would experience more misses than a direct-mapped cache
of the same size.

7.29 [15] <§7.3> Suppose a computer’s address size is k bits (using byte address-
ing), the cache size is S bytes, the block size is B bytes, and the cache is A-way set-
associative. Assume that B is a power of two, so B = 2b. Figure out what the follow-
ing quantities are in terms of S, B, A, b, and k: the number of sets in the cache, the
number of index bits in the address, and the number of bits needed to implement
the cache (see Exercise 7.12).

7.30 [10] <§7.3>  For More Practice: Cache Configurations.

7.31 [10] <§7.3>  For More Practice: Cache Configurations.

7.32 [20] <§7.3> Consider three processors with different cache configurations:

■ Cache 1: Direct-mapped with one-word blocks

■ Cache 2: Direct-mapped with four-word blocks

■ Cache 3: Two-way set associative with four-word blocks

The following miss rate measurements have been made:

■ Cache 1: Instruction miss rate is 4%; data miss rate is 6%.

■ Cache 2: Instruction miss rate is 2%; data miss rate is 4%.

■ Cache 3: Instruction miss rate is 2%; data miss rate is 3%.

For these processors, one-half of the instructions contain a data reference. Assume
that the cache miss penalty is 6 + Block size in words. The CPI for this workload
was measured on a processor with cache 1 and was found to be 2.0. Determine
which processor spends the most cycles on cache misses. 
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7.33 [5] <§7.3> The cycle times for the processors in Exercise 7.32 are 420 ps for
the first and second processors and 310 ps for the third processor. Determine
which processor is the fastest and which is the slowest.

7.34 [15] <§7.3> Assume that the cache for the system described in Exercise 7.32 is
two-way set associative and has eight-word blocks and a total size of 16 KB. Show the
cache organization and access using the same format as Figure 7.17 on page 503.

7.35 [10] <§§7.2, 7.4> The following C program is run (with no optimizations)
on a processor with a cache that has eight-word (32-byte) blocks and holds 256
bytes of data:

int i,j,c,stride,array[512];
...
for (i=0; i<10000; i++)

for (j=0; j<512; j=j+stride)
c = array[j]+17;

If we consider only the cache activity generated by references to the array and we
assume that integers are words, what is the expected miss rate when the cache is
direct mapped and stride = 256? How about if stride = 255? Would either of these
change if the cache were two-way set associative?

7.36 [10] <§§7.3, B.5>  For More Practice: Cache Configurations

7.37 [5] <§§7.2–7.4>  For More Practice: Memory Hierarchy Interactions

7.38 [4 hours] <§§7.2–7.4> We want to use a cache simulator to simulate several
different TLB and virtual memory organizations. Use the first 1 million references
of gcc for this evaluation. We want to know the TLB miss rate for each of the fol-
lowing TLBs and page sizes:

1. 64-entry TLB with full associativity and 4 KB pages

2. 32-entry TLB with full associativity and 8 KB pages

3. 64-entry TLB with eight-way associativity and 4 KB pages

4. 128-entry TLB with four-way associativity and 4 KB pages

7.39 [15] <§7.4> Consider a virtual memory system with the following properties:

■ 40-bit virtual byte address

■ 16 KB pages

■ 36-bit physical byte address

What is the total size of the page table for each process on this processor, assuming
that the valid, protection, dirty, and use bits take a total of 4 bits and that all the vir-
tual pages are in use? (Assume that disk addresses are not stored in the page table.)
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7.40 [15] <§7.4> Assume that the virtual memory system of Exercise 7.39 is im-
plemented with a two-way set-associative TLB with a total of 256 TLB entries.
Show the virtual-to-physical mapping with a figure like Figure 7.24 on page 525.
Make sure to label the width of all fields and signals. 

7.41 [10] <§7.4> A processor has a 16-entry TLB and uses 4 KB pages.  What are
the performance consequences of this memory system if a program accesses at least
2 MB of memory at a time?  Can anything be done to improve performance?

7.42 [10] <§7.4> Buffer overflows are a common exploit used to gain control of
a system. If a buffer is allocated on the stack, a hacker could overflow the buffer and
insert a sequence of malicous instructions compromising the system.  Can you
think of a hardware mechanism that could be used to prevent this?

7.43 [15] <§7.4>  For More Practice: Hierarchical Page Tables

7.44 [15] <§7.4>  For More Practice: Hierarchical Page Tables

7.45 [5] <§7.5> If all misses are classified into one of three categories—compul-
sory, capacity, or conflict (as discussed on page 543)—which misses are likely to be
reduced when a program is rewritten so as to require less memory? How about if
the clock rate of the processor that the program is running on is increased? How
about if the associativity of the existing cache is increased?

7.46 [5] <§7.5> The following C program could be used to help construct a cache
simulator. Many of the data types have not been defined, but the code accurately
describes the actions that take place during a read access to a direct-mapped cache.

word ReadDirectMappedCache(address a)
static Entry cache[CACHE_SIZE_IN_WORDS];
Entry e = cache[a.index];
if (e.valid == FALSE !! e.tag != a.tag) {

e.valid = true;
e.tag = a.tag;
e.data = load_from_memory(a);

}
return e.data;

Your task is to modify this code to produce an accurate description of the actions
that take place during a read access to a direct-mapped cache with multiple-word
blocks.

7.47 [8] <§7.5> This exercise is similar to Exercise 7.46, except this time write the
code for read accesses to an n-way set-associative cache with one-word blocks.
Note that your code will likely suggest that the comparisons are sequential in na-
ture when in fact they would be performed in parallel by actual hardware.
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7.48 [8] <§7.5> Extend your solution to Exercise 7.46 by including the specifica-
tion of a new procedure for handling write accesses, assuming a write-through pol-
icy. Be sure to consider whether or not your solution for handling read accesses
needs to be modified.

7.49 [8] <§7.5> Extend your solution to Exercise 7.46 by including the specifica-
tion of a new procedure for handling write accesses, assuming a write-back policy.
Be sure to consider whether or not your solution for handling read accesses needs
to be modified.

7.50 [8] <§7.5> This exercise is similar to Exercise 7.48, but this time extend your
solution to Exercise 7.47. Assume that the cache uses random replacement.

7.51 [8] <§7.5> This exercise is similar to Exercise 7.49, but this time extend your
solution to Exercise 7.47. Assume that the cache uses random replacement.

7.52 [5] <§§7.7–7.8> Why might a compiler perform the following optimization?

/* Before */

for (j = 0; j < 20; j++)
for (i = 0; i < 200; i++)
x[i][j] = x[i][j] + 1;

/* After */

for (i = 0; i < 200; i++)
for (j = 0; j < 20; j++)
x[i][j] = x[i][j] + 1;

Answers To 
Check Yourself

§7.1, page 472: 1. 
§7.2, page 491: 1 and 4: A lower miss penalty can lead to smaller blocks, yet higher
memory bandwidth usually leads to larger blocks, since the miss penalty is only
slightly larger.
§7.3, page 510: 1.
§7.4, page 538: 1-a, 2-c, 3-c, 4-d. 
§7.5, page 545: 2.



Computers 
in the 

Real World

Saving the World's 
Art Treasures

Problem: Find a way to help conserve art-

work threatened by environmental factors and

aging or damaged by earlier attempts at resto-

ration without causing further harm to irre-

placeable artworks. 

Solution: Use computers and scientific

instrumentation to analyze the artwork and its

setting, enabling art conservators and restor-

ers to undertake a more informed and success-

ful preservation of an artwork.

Art conservation and restoration have devel-

oped into high-technology fields that make

extensive use of computing and scientific

instrumentation. For example, one of the most

challenging forms of art to restore and main-

tain are frescoes, which are painted in the wet

plaster of a wall or ceiling. Moisture and heat

change the surface and cause deterioration;

similarly air pollution, smoke from candles,

and other contaminants directly attack the

paint as well as add dirt and grime that cover

the original artwork. 

During the restoration of Michelangelo’s

frescoes in the Sistine Chapel, computers were

used to survey the ceiling, finding cracks and

precisely mapping the surface and the frescos.

Since the width of the ceiling and walls varies

from about three feet to almost six feet, there

are significant differences in thermal behavior,

which in turn affects the surface painting.

Computers were used to model the entire

structure, including the high humidity gener-

ated when a thousand people stand inside the

chapel on a warm day! This led to a computer-

controlled climate system that uses sensors

placed in strategic locations. The goal is to

keep the visitors cool while preserving Miche-

langelo’s masterpiece for generations to come.

A laser scan of Michelangelo’s statue of David



Perhaps the area of art conservation that

has been most affected by the availability of

low-cost, high-performance computation has

been painting restoration. Three techniques—

infrared reflectography, ultraviolet imaging,

and X-radiography—have found the heaviest

use. Because of the need for highly precise,

high resolution imaging, computer controlled

cameras or X-ray scanners are used in all these

techniques. This results in a patchwork of

images, which are then stitched together by a

computer. The combination of computer con-

trolled motion of a camera or X-ray scanner

and subsequent computer composition of tens

to thousands of images permits that scanning

of large surfaces at very high resolution. 

Infrared reflectography uses light in the

near-infrared spectrum and a digital camera

to detect the intensity of reflection of the light

from the surface of a painting, mural, or

fresco. This technique is useful for finding the

underdrawing that most artists use to initially

sketch out the forms in a painting. The under-

drawing, typically done in black, often using

charcoal, absorbs the infrared light. In the  fig-

ure below, are two images of a painting: one

shown in normal light (on the left) and one

using the infrared reflectography technique

(on the right).

Restorers use ultraviolet imaging to look at

the original colors of a painting that has been

retouched. X-radiography provides similar

information, since white and yellow pigments

that were covered or painted over appear

darker due to their lead content.

Scanning technologies have also been

applied to three-dimensional art objects, such

as sculpture. Michelangelo’s David was

scanned using a laser range finder by a group

led by Professor Marc Levoy at Stanford. The

resulting database for a scan with 0.29 mm

resolution consists of over 2 billion polygons

and 32 gigabytes of data. The Digital Miche-

langelo project has created a detailed model of

the famous sculpture useful both for conser-

vation as well as an educational tool for stu-

dents around the world. Two of the many

images that can be derived from the three-

dimensional scan as shown opposite.

To learn more see these references on 
the  library

Conserving paintings, a site dedicated to Harvard Uni-
versity’s digital imaging lab.

Sistine Chapel, a short background on the Sistine
Chapel.

The Digital Michelangelo project

An image from the Sistine Chapel in normal light 
(left) and in infrared (right).
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Combining bandwidth and storage . . . 
enables swift and reliable access to 
the ever-expanding troves of content 
on the proliferating disks and . . . 
repositories of the Internet.

George Gilder 
The End Is Drawing Nigh, 2000

Storage, Networks,
and Other 
Peripherals



8.1 Introduction 566
8.2 Disk Storage and Dependability 569
8.3 Networks 580
8.4 Buses and Other Connections between Processors, Memory, and I/O 

Devices 581
8.5 Interfacing I/O Devices to the Processor, Memory, and Operating 

System 588
8.6 I/O Performance Measures: Examples from Disk and File Systems 597
8.7 Designing an I/O System 600
8.8 Real Stuff: A Digital Camera 603
8.9 Fallacies and Pitfalls 606
8.10 Concluding Remarks 609
8.11 Historical Perspective and Further Reading 611
8.12 Exercises 611

The Five Classic Components of a Computer



566 Chapter 8

Although users can get frustrated if their computer hangs and must be rebooted,
they become apoplectic if their storage system crashes and they lose information.
Thus, the bar for dependability is much higher for storage than for computation.
Networks also plan for failures in communication, including several mechanisms
to detect and recover from such failures. Hence, I/O systems generally place much
greater emphasis on dependability and cost, while processors and memory focus
on performance and cost. 

I/O systems must also plan for expandability and for diversity of devices, which
is not a concern for processors. Expandability is related to storage capacity, which
is another design parameter for I/O systems; systems may need a lower bound of
storage capacity to fulfill their role.

Although performance plays a smaller role for I/O, it is more complex. For
example, with some devices we may care primarily about access latency, while
with others throughput is crucial. Furthermore, performance depends on many
aspects of the system: the device characteristics, the connection between the
device and the rest of the system, the memory hierarchy, and the operating sys-
tem. Figure 8.1 shows the structure of a simple system with its I/O. All of the com-
ponents, from the individual I/O devices to the processor to the system software,
will affect the dependability, expandability, and performance of tasks that include
I/O.

I/O devices are incredibly diverse. Three characteristics are useful in organizing
this wide variety:

■ Behavior: Input (read once), output (write only, cannot be read), or storage
(can be reread and usually rewritten).

■ Partner: Either a human or a machine is at the other end of the I/O device,
either feeding data on input or reading data on output.

■ Data rate: The peak rate at which data can be transferred between the I/O
device and the main memory or processor. It is useful to know what maxi-
mum demand the device may generate. 

For example, a keyboard is an input device used by a human with a peak data rate
of about 10 bytes per second. Figure 8.2 shows some of the I/O devices connected
to computers.

In Chapter 1, we briefly discussed four important and characteristic I/O
devices: mice, graphics displays, disks, and networks. In this chapter we go into
much more depth on disk storage and networks. 

8.1 Introduction 8.1
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How we should assess I/O performance often depends on the application. In
some environments, we may care primarily about system throughput. In these
cases, I/O bandwidth will be most important. Even I/O bandwidth can be mea-
sured in two different ways:

1. How much data can we move through the system in a certain time?

2. How many I/O operations can we do per unit of time? 

Which performance measurement is best may depend on the environment. For
example, in many multimedia applications, most I/O requests are for long streams
of data, and transfer bandwidth is the important characteristic. In another
environment, we may wish to process a large number of small, unrelated accesses
to an I/O device. An example of such an environment might be a tax-processing
office of the National Income Tax Service (NITS). NITS mostly cares about pro-
cessing a large number of forms in a given time; each tax form is stored separately
and is fairly small. A system oriented toward large file transfer may be satisfactory,
but an I/O system that can support the simultaneous transfer of many small files
may be cheaper and faster for processing millions of tax forms. 

FIGURE 8.1 A typical collection of I/O devices. The connections between the I/O devices, pro-
cessor, and memory are usually called buses. Communication among the devices and the processor use both
interrupts and protocols on the bus, as we will see in this chapter. Figure 8.11 on page 585 shows the organi-
zation for a desktop PC.

Disk Disk

Processor

Cache

Memory- I/O bus

Main
memory

I/O
controller

I/O
controller

I/O
controller

Graphics
output

Network

Interrupts
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In other applications, we care primarily about response time, which you will
recall is the total elapsed time to accomplish a particular task. If the I/O requests
are extremely large, response time will depend heavily on bandwidth, but in many
environments most accesses will be small, and the I/O system with the lowest
latency per access will deliver the best response time. On single-user machines
such as desktop computers and laptops, response time is the key performance
characteristic.

A large number of applications, especially in the vast commercial market for
computing, require both high throughput and short response times. Examples
include automatic teller machines (ATMs), order entry and inventory tracking
systems, file servers, and Web servers. In such environments, we care about both
how long each task takes and how many tasks we can process in a second. The
number of ATM requests you can process per hour doesn’t matter if each one
takes 15 minutes—you won’t have any customers left! Similarly, if you can process
each ATM request quickly but can only handle a small number of requests at once,
you won’t be able to support many ATMs, or the cost of the computer per ATM
will be very high.

In summary, the three classes of desktop, server, and embedded computers are
sensitive to I/O dependability and cost. Desktop and embedded systems are more

Device Behavior Partner Data rate (Mbit/sec)

Keyboard input human 30,000.0001

Mouse input human 30,000.0038

Voice input input human 30,000.2640

Sound input input machine 30,003.0000

Scanner input human 30,003.2000

Voice output output human 30,000.2640

Sound output output human 30,008.0000

Laser printer output human 30,003.2000

Graphics display output human 800.0000–8000.0000

Modem input or output machine 0.0160–0.0640

Network/LAN input or output machine 100.0000–1000.0000

Network/wireless LAN input or output machine 11.0000–54.0000

Optical disk storage machine 30,080.0000

Magnetic tape storage machine 0032.0000

Magnetic disk storage machine 240.0000–2560.0000

FIGURE 8.2 The diversity of I/O devices. I/O devices can be distinguished by whether they serve as
input, output, or storage devices; their communication partner (people or other computers); and their peak
communication rates. The data rates span eight orders of magnitude. Note that a network can be an input
or an output device, but cannot be used for storage. Transfer rates for devices are always quoted in base 10,
so that 10 Mbit/sec = 10,000,000 bits/sec. 

I/O requests Reads or writes to 
I/O devices.
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focused on response time and diversity of I/O devices, while server systems are
more focused on throughput and expandability of I/O devices.

As mentioned in Chapter 1, magnetic disks rely on a rotating platter coated with a
magnetic surface and use a moveable read/write head to access the disk. Disk stor-
age is nonvolatile—the data remains even when power is removed. A magnetic
disk consists of a collection of platters (1–4), each of which has two recordable
disk surfaces. The stack of platters is rotated at 5400 to 15,000 RPM and has a
diameter from an inch to just over 3.5 inches. Each disk surface is divided into
concentric circles, called tracks. There are typically 10,000 to 50,000 tracks per
surface. Each track is in turn divided into sectors that contain the information;
each track may have 100 to 500 sectors. Sectors are typically 512 bytes in size,
although there is an initiative to increase the sector size to 4096 bytes. The
sequence recorded on the magnetic media is a sector number, a gap, the informa-
tion for that sector including error correction code (see  Appendix B, page B-
64), a gap, the sector number of the next sector, and so on. Originally, all tracks
had the same number of sectors and hence the same number of bits, but with the
introduction of zone bit recording (ZBR) in the early 1990s, disk drives changed
to a varying number of sectors (and hence bits) per track, instead keeping the
spacing between bits constant. ZBR increases the number of bits on the outer
tracks and thus increases the drive capacity.

As we saw in Chapter 1, to read and write information the read/write heads
must be moved so that they are over the correct location. The disk heads for each
surface are connected together and move in conjunction, so that every head is
over the same track of every surface. The term cylinder is used to refer to all the
tracks under the heads at a given point on all surfaces.

To access data, the operating system must direct the disk through a three-stage
process. The first step is to position the head over the proper track. This operation
is called a seek, and the time to move the head to the desired track is called the
seek time.

Disk manufacturers report minimum seek time, maximum seek time, and
average seek time in their manuals. The first two are easy to measure, but the aver-
age is open to wide interpretation because it depends on the seek distance. The
industry has decided to calculate average seek time as the sum of the time for all
possible seeks divided by the number of possible seeks. Average seek times are
usually advertised as 3 ms to 14 ms, but, depending on the application and sched-
uling of disk requests, the actual average seek time may be only 25% to 33% of the

8.2 Disk Storage and Dependability 8.2

nonvolatile Storage device 
where data retains its value even 
when power is removed.

track One of thousands of con-
centric circles that makes up the 
surface of a magnetic disk.

sector One of the segments 
that make up a track on a mag-
netic disk; a sector is the small-
est amount of information that 
is read or written on a disk.

seek The process of positioning 
a read/write head over the 
proper track on a disk.
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advertised number because of locality of disk references. This locality arises both
because of successive accesses to the same file and because the operating system
tries to schedule such accesses together.

Once the head has reached the correct track, we must wait for the desired sec-
tor to rotate under the read/write head. This time is called the rotational latency
or rotational delay. The average latency to the desired information is halfway
around the disk. Because the disks rotate at 5400 RPM to 15,000 RPM, the average
rotational latency is between

and

The last component of a disk access, transfer time, is the time to transfer a block
of bits. The transfer time is a function of the sector size, the rotation speed, and
the recording density of a track. Transfer rates in 2004 are between 30 and 80
MB/sec. The one complication is that most disk controllers have a built-in cache
that stores sectors as they are passed over; transfer rates from the cache are typi-
cally higher and may be up to 320 MB/sec in 2004. Today, most disk transfers are
multiple sectors in length. 

A disk controller usually handles the detailed control of the disk and the transfer
between the disk and the memory. The controller adds the final component of
disk access time, controller time, which is the overhead the controller imposes in
performing an I/O access. The average time to perform an I/O operation will con-
sist of these four times plus any wait time incurred because other processes are
using the disk.

Disk Read Time

What is the average time to read or write a 512-byte sector for a typical disk
rotating at 10,000 RPM? The advertised average seek time is 6 ms, the transfer
rate is 50 MB/sec, and the controller overhead is 0.2 ms. Assume that the disk
is idle so that there is no waiting time.

rotation latency Also called 
delay. The time required for the 
desired sector of a disk to rotate 
under the read/write head; usu-
ally assumed to be half the 
rotation time.

Average rotational latency 0.5 rotation
5400 RPM
----------------------------= 0.5 rotation

5400 RPM 60 seconds
minute

------------------Ë ¯
Ê ˆ§

--------------------------------------------------------------=

0.0056= seconds 5.6 ms=

Average rotational latency 0.5 rotation

15,000 RPM
---------------------------=

0.5 rotation

15,000 RPM 60 seconds
minute

------------------Ë ¯
Ê ˆ§

------------------------------------------------------------=

0.0020= seconds 2.0 ms=

EXAMPLE
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Disk densities have continued to increase for more than 50 years. The impact
of this compounded improvement in density and the reduction in physical size of
a disk drive has been amazing, as Figure 8.3 shows. The aims of different disk
designers have led to a wide variety of drives being available at any particular time.
Figure 8.4 shows the characteristics of three magnetic disks. In 2004, these disks
from a single manufacturer cost between $0.50 and $5 per gigabyte, depending on
size, interface, and performance. The smaller drive has advantages in power and
volume per byte.

Elaboration: Most disk controllers include caches. Such caches allow for fast
access to data that was recently read between transfers requested by the CPU. They
use write through and do not update on a write miss. They often also include prefetch
algorithms to try to anticipate demand. Of course, such capabilities complicate the
measurement of disk performance and increase the importance of workload choice.

Dependability, Reliability, and Availability

Users crave dependable storage, but how do you define it? In the computer indus-
try, it is harder than looking it up in the dictionary. After considerable debate, the
following is considered the standard definition (Laprie 1985):

Computer system dependability is the quality of delivered service such that reli-
ance can justifiably be placed on this service. The service delivered by a system 
is its observed actual behavior as perceived by other system(s) interacting with 
this system’s users. Each module also has an ideal specified behavior, where a 
service specification is an agreed description of the expected behavior. A system 
failure occurs when the actual behavior deviates from the specified behavior. 

Average disk access time is equal to Average seek time + Average rotational
delay + Transfer time + Controller overhead. Using the advertised average
seek time, the answer is

If the measured average seek time is 25% of the advertised average time, the
answer is

Notice that when we consider measured average seek time, as opposed to
advertised average seek time, the rotational latency can be the largest compo-
nent of the access time.

ANSWER

6.0 ms 0.5 rotation
10,000 RPM
--------------------------- 0.5 KB

50 MB/sec
----------------------- 0.2 ms+ + + 6.0 3.0 0.01 0.2+ + + 9.2 ms= =

1.5 ms 3.0 ms 0.01 ms 0.2 ms+ + + 4.7 ms=
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Thus, you need a reference specification of expected behavior to be able to
determine dependability. Users can then see a system alternating between two
states of delivered service with respect to the service specification:

1. Service accomplishment, where the service is delivered as specified 

2. Service interruption, where the delivered service is different from the speci-
fied service

Transitions from state 1 to state 2 are caused by failures, and transitions from state
2 to state 1 are called restorations. Failures can be permanent or intermittent. The
latter is the more difficult case to diagnose when a system oscillates between the
two states; permanent failures are much easier to diagnose. This definition leads
to two related terms: reliability and availability.

FIGURE 8.3 Six magnetic disks, varying in diameter from 14 inches down to 1.8 inches.
The IBM microdrive, not shown, has a 1-inch diameter. The pictured disks were introduced over more than
15 years ago and hence are not intended to be representative of the best capacity of modern disks of these
diameters. This photograph does, however, accurately portray their relative physical sizes. The widest disk is
the DEC R81, containing four 14-inch diameter platters and storing 456 MB. It was manufactured in 1985.
The 8-inch diameter disk comes from Fujitsu, and this 1984 disk stores 130 MB on six platters. The Microp-
olis RD53 has five 5.25-inch platters and stores 85 MB. The IBM 0361 also has five platters, but these are just
3.5 inches in diameter. This 1988 disk holds 320 MB. In 2004, the most dense 3.5-inch disk had 2 platters
and holds 200 GB in the same space, yielding an increase in density of about 600 times! The Conner CP
2045 has two 2.5-inch platters containing 40 MB and was made in 1990. The smallest disk in this photo-
graph is the Integral 1820. This single 1.8-inch platter contains 20 MB and was made in 1992. Figure 8.11
on page 585 shows a 10-inch drive that holds 340 MB. 
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Reliability is a measure of the continuous service accomplishment—or, equiva-
lently, of the time to failure—from a reference point. Hence, the mean time to fail-
ure (MTTF) of disks in Figure 8.4 is a reliability measure. Service interruption is
measured as mean time to repair (MTTR). Mean time between failures (MTBF) is
simply the sum of MTTF + MTTR. Although MTBF is widely used, MTTF is
often the more appropriate term.

Availability is a measure of the service accomplishment with respect to the
alternation between the two states of accomplishment and interruption. Availabil-
ity is statistically quantified as

Note that reliability and availability are quantifiable measures, rather than just
synonyms for dependability. 

What is the cause of failures? Figure 8.5 summarizes many papers that have col-
lected data on reasons for computer systems and telecommunications systems to
fail. Clearly, human operators are a significant source of failures.

Characteristics Seagate ST373453 Seagate ST3200822 Seagate ST94811A

Disk diameter (inches) 3.50 3.50 2.50

Formatted data capacity (GB) 73.4 200.0 40.0

Number of disk surfaces (heads) 8 4 2

Rotation speed (RPM) 15,000 7200 5400

Internal disk cache size (MB) 8 8 8

External interface, bandwidth (MB/sec) Ultra320 SCSI, 320 Serial ATA, 150 ATA, 100

Sustained transfer rate (MB/sec) 57–86 32–58 34

Minimum seek (read/write) (ms) 0.2/0.4 1.0/1.2 1.5/2.0

Average seek read/write (ms) 3.6/3.9 8.5/9.5 12.0/14.0

Mean time to failure (MTTF) (hours) 1,200,000 @ 25˚C 600,000 @ 25˚C 330,000 @ 25˚C

Warranty (years) 5 3 —

Nonrecoverable read errors per bits read <1 per 1015 < 1 per 1014 < 1 per 1014

Temperature, vibration limits (operating) 5˚–55˚C, 400 Hz @ 0.5 G 0˚–60˚C, 350 Hz @ 0.5 G 5˚–55˚C, 400 Hz @ 1 G

Size: dimensions (in.), weight (pounds) 1.0" ¥ 4.0" ¥ 5.8", 1.9 lbs 1.0" ¥ 4.0" ¥ 5.8", 1.4 lbs 0.4" ¥ 2.7" ¥ 3.9", 0.2 lbs

Power: operating/idle/standby (watts) 20?/12/— 12/8/1 2.4/1.0/0.4

GB/cu. in., GB/watt 3 GB/cu.in., 4 GB/W 9 GB/cu.in., 16 GB/W 10 GB/cu.in., 17 GB/W
Price in 2004, $/GB ª $400, ª $5/GB ª $100, ª $0.5/GB ª $100, ª $2.50/GB

FIGURE 8.4 Characteristics of three magnetic disks by a single manufacturer in 2004. The disks shown here either interface to
SCSI, a standard I/O bus for many systems, or ATA, a standard I/O bus for PCs. The first disk is intended for file servers, the second for desktop PCs,
and the last for laptop computers. Each disk has an 8 MB cache. The transfer rate from the cache is 3–6 times faster than the transfer rate from the disk
surface. The much lower cost of the ATA 3.5-inch drive is primarily due to the hypercompetitive PC market, although there are differences in perfor-
mance and reliability between it and the SCSI drive. The service life for these disks is 5 years, although Seagate offers a 5-year guarantee only on the
SCSI drive, with a 1-year guarantee on the other two. Note that the quoted MTTF assumes nominal power and temperature. Disk lifetimes can be
much shorter if temperature and vibration are not controlled. See the link to Seagate at www.seagate.com for more information on these drives.

small computer systems 
interface (SCSI) A bus used as 
a standard for I/O devices.

Availability MTTF
MTTF MTTR+( )

---------------------------------------=



574 Chapter 8

To increase MTTF, you can improve the quality of the components or design
systems to continue operation in the presence of components that have failed.
Hence, failure needs to be defined with respect to a context. A failure in a compo-
nent may not lead to a failure of the system. To make this distinction clear, the
term fault is used to mean failure of a component. Here are three ways to improve
MTTF:

1. Fault avoidance: preventing fault occurrence by construction

2. Fault tolerance: using redundancy to allow the service to comply with the
service specification despite faults occurring, which applies primarily to
hardware faults

3. Fault forecasting: predicting the presence and creation of faults, which
applies to hardware and software faults

Shrinking MTTR can help availability as much as increasing MTTF. For example,
tools for fault detection, diagnosis, and repair can help reduce the time to repair
faults by people, software, and hardware.

RAID

Leveraging redundancy to improve the availability of disk storage is captured in
the phrase Redundant Arrays of Inexpensive Disks, abbreviated RAID. At the
time the term was coined, the alternative was large, expensive disks, such as the
larger ones in Figure 8.3. The argument was that by replacing a few large disks

Operator Software Hardware System Year data collected

42% 25% 18% Data center (Tandem) 1985

15% 55% 14% Data center (Tandem) 1989

18% 44% 39% Data center (DEC VAX) 1985

50% 20% 30% Data center (DEC VAX) 1993

50% 14% 19% U.S. public telephone network 1996

54% 7% 30% U.S. public telephone network 2000

60% 25% 15% Internet services 2002

FIGURE 8.5 Summary of studies of reasons for failures. Although it is difficult to collect data
to determine if operators are the cause of errors, since operators often record the reasons for failures, these
studies did capture that data. There were often other categories, such as environmental reasons for outages,
but they were generally small. The top two rows come from a classic paper by Jim Gray [1990], which is still
widely quoted almost 20 years after the data was collected. The next two rows are from a paper by Murphy
and Gent who studied causes of outages in VAX systems over time (“Measuring system and software reli-
ability using an automated data collection process,” Quality and Reliability Engineering International 11:5,
September–October 1995, 341–53). The fifth and sixth rows are studies of FCC failure data about the U.S.
public switched telephone network by Kuhn (“Sources of failure in the public switched telephone network,”
IEEE Computer 30:4, April 1997, 31–36) and by Patty Enriquez. The most recent study of three Internet ser-
vices is from Oppenheimer, Ganapath, and Patterson [2003].

redundant arrays of inexpen-
sive disks (RAID) An
organization of disks that uses 
an array of small and inexpen-
sive disks so as to increase both 
performance and reliability.
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with many small disks, performance would improve because there would be more
read heads, and there would be advantages in cost, power, and floor space since
smaller disks are much more efficient per gigabyte than larger disks. Redundancy
was needed because the many more smaller disks had lower reliability than a few
large disks.

By having many small disks, the cost of extra redundancy to improve depend-
ability is small relative to the large disks. Thus, dependability was more affordable
if you constructed a redundant array of inexpensive disks. In retrospect, this was
the key advantage. 

How much redundancy do you need? Do you need extra information to find
the faults? Does it matter how you organize the data and the extra check informa-
tion on these disks? The paper that coined the term gave an evolutionary answer
to these questions, starting with the simplest but most expensive solution. Figure
8.6 shows the evolution and example cost in number of extra check disks. To keep
track of the evolution, the authors numbered the stages of RAID, and they are still
used today.

No Redundancy (RAID 0) 
Simply spreading data over multiple disks, called striping, automatically forces
accesses to several disks. Striping across a set of disks makes the collection appear
to software as a single large disk, which simplifies storage management. It also
improves performance for large accesses, since many disks can operate at once.
Video-editing systems, for example, often stripe their data and may not worry
about dependability as much as, say, databases.

RAID 0 is something of a misnomer as there is no redundancy. However, RAID
levels are often left to the operator to set when creating a storage system, and
RAID 0 is often listed as one of the options. Hence, the term RAID 0 has become
widely used. 

Mirroring (RAID 1) 
This traditional scheme for tolerating disk failure, called mirroring or shadowing,
uses twice as many disks as does RAID 0. Whenever data are written to one disk,
those data are also written to a redundant disk, so that there are always two copies
of the information. If a disk fails, the system just goes to the “mirror” and reads its
contents to get the desired information. Mirroring is the most expensive RAID
solution, since it requires the most disks.

Error Detecting and Correcting Code (RAID 2)
RAID 2 borrows an error detection and correction scheme most often used for
memories (see  Appendix B). Since RAID 2 has fallen into disuse, we’ll not
describe it here.

striping Allocation of logically 
sequential blocks to separate 
disks to allow higher perfor-
mance than a single disk can 
deliver.

mirroring Writing the identi-
cal data to multiple disks to 
increase data availability.
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Bit-Interleaved Parity (RAID 3)
The cost of higher availability can be reduced to 1/N, where N is the number of
disks in a protection group. Rather than have a complete copy of the original data
for each disk, we need only add enough redundant information to restore the lost
information on a failure. Reads or writes go to all disks in the group, with one
extra disk to hold the check information in case there is a failure. RAID 3 is popu-
lar in applications with large data sets, such as multimedia and some scientific
codes.

Parity is one such scheme. Readers unfamiliar with parity can think of the
redundant disk as having the sum of all the data in the other disks. When a disk
fails, then you subtract all the data in the good disks from the parity disk; the
remaining information must be the missing information. Parity is simply the sum
modulo two. 

FIGURE 8.6 RAID for an example of four data disks showing extra check disks per RAID
level and companies that use each level. Figures 8.7 and 8.8 explain the difference between RAID
3, RAID 4, and RAID 5.

RAID 0
(No redundancy)
Widely used

Data disks

RAID 1
(Mirroring)
EMC, HP(Tandem), IBM

RAID 2
(Error correction code)
Unused

RAID 3
(Bit-interleaved parity)
Storage Concepts

RAID 4
(Block-interleaving parity)
Network Appliance

RAID 5
(Distributed block-
interleaved parity)
Widely used

RAID 6
(P + Q redundancy )
Rarely used

Check disks

protection group The group 
of data disks or blocks that share 
a common check disk or block.
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Unlike RAID 1, many disks must be read to determine the missing data. The
assumption behind this technique is that taking longer to recover from failure but
spending less on redundant storage is a good trade-off.

Block-Interleaved Parity (RAID 4)
RAID 4 uses the same ratio of data disks and check disks as RAID 3, but they
access data differently. The parity is stored as blocks and associated with a set of
data blocks.

In RAID 3, every access went to all disks. However, some applications prefer
smaller accesses, allowing independent accesses to occur in parallel. That is the
purpose of the RAID levels 4 to 6. Since error detection information in each sector
is checked on reads to see if data are correct, such “small reads” to each disk can
occur independently as long as the minimum access is one sector. In the RAID
context, a small access goes to just one disk in a protection group while a large
access goes to all the disks in a protection group.

Writes are another matter. It would seem that each small write would demand
that all other disks be accessed to read the rest of the information needed to
recalculate the new parity, as in Figure 8.7. A “small write” would require reading
the old data and old parity, adding the new information, and then writing the new
parity to the parity disk and the new data to the data disk.

FIGURE 8.7 Small write update on RAID 3 versus RAID 4. This optimization for small writes reduces the number of disk accesses as well as
the number of disks occupied. This figure assumes we have four blocks of data and one block of parity. The straightforward RAID 3 parity calculation
in the left of the figure reads blocks D1, D2, and D3 before adding block D0¢ to calculate the new parity P¢. (In case you were wondering, the new data
D0¢ comes directly from the CPU, so disks are not involved in reading it.) The RAID 4 shortcut on the right reads the old value D0 and compares it to
the new value D0¢ to see which bits will change. You then read to old parity P and then change the corresponding bits to form P¢. The logical function
exclusive OR does exactly what we want. This example replaces three disk reads (D1, D2, D3) and two disk writes (D0¢, P¢) involving all the disks for
two disk reads (D0, P) and two disk writes (D0¢, P¢), which involve just two disks. Increasing the size of the parity group increases the savings of the
shortcut. RAID 5 uses the same shortcut.
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The key insight to reduce this overhead is that parity is simply a sum of infor-
mation; by watching which bits change when we write the new information, we
need only change the corresponding bits on the parity disk. Figure 8.7 shows the
shortcut. We must read the old data from the disk being written, compare old data
to the new data to see which bits change, read the old parity, change the corre-
sponding bits, then write the new data and new parity. Thus, the small write
involves four disk accesses to two disks instead of accessing all disks. This organi-
zation is RAID 4.

Distributed Block-Interleaved Parity (RAID 5)
RAID 4 efficiently supports a mixture of large reads, large writes, and small reads,
plus it allows small writes. One drawback to the system is that the parity disk must
be updated on every write, so the parity disk is the bottleneck for back-to-back
writes. 

To fix the parity-write bottleneck, the parity information can be spread
throughout all the disks so that there is no single bottleneck for writes. The dis-
tributed parity organization is RAID 5. 

Figure 8.8 shows how data are distributed in RAID 4 versus RAID 5. As the
organization on the right shows, in RAID 5 the parity associated with each row of
data blocks is no longer restricted to a single disk. This organization allows multi-
ple writes to occur simultaneously as long as the parity blocks are not located to
the same disk. For example, a write to block 8 on the right must also access its par-
ity block P2, thereby occupying the first and third disks. A second write to block 5
on the right, implying an update to its parity block P1, accesses the second and
fourth disks and thus could occur concurrently with the write to block 8. Those
same writes to the organization on the left result in changes to blocks P1 and P2,
both on the fifth disk, which is a bottleneck. 

P + Q Redundancy (RAID 6)
Parity-based schemes protect against a single self-identifying failure. When a single
failure correction is not sufficient, parity can be generalized to have a second calcu-
lation over the data and another check disk of information. This second check
block allows recovery from a second failure. Thus, the storage overhead is twice
that of RAID 5. The small write shortcut of Figure 8.7 works as well, except now
there are six disk accesses instead of four to update both P and Q information.

RAID Summary
RAID 1 and RAID 5 are widely used in servers; one estimate is 80% of disks in
servers are found in some RAID system.

One weakness of the RAID systems is repair. First, to avoid making the data
unavailable during repair, the array must be designed to allow the failed disks to
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be replaced without having to turn off the system. RAIDs have enough redun-
dancy to allow continuous operation, but hot swapping disks places demands on
the physical and electrical design of the array and the disk interfaces. Second,
another failure could occur during repair, so the repair time affects the chances of
losing data: the longer the repair time, the greater the chances of another failure
that will lose data. Rather than having to wait for the operator to bring in a good
disk, some systems include standby spares so that the data can be reconstructed
immediately upon discovery of the failure. The operator can then replace the
failed disks in a more leisurely fashion. Third, although disk manufacturers quote
very high MTTF for their products, those numbers are under nominal conditions.
If a particular disk array has been subject to temperature cycles due to, say, the
failure of the air conditioning system, or to shaking due to a poor rack design,
construction, or installation, the failure rates will be much higher. The calculation
of RAID reliability assumes independence between disk failures, but disk failures
could be correlated because such damage due to the environment would likely
happen to all the disks in the array. Finally, a human operator ultimately deter-
mines which disks to remove. As Figure 8.5 shows, operators are only human, so
they occasionally remove the good disk instead of the broken disk, leading to an
unrecoverable disk failure. 

Although RAID 6 is rarely used today, a cautious operator might want its extra
redundancy to protect against expected hardware failures plus a safety margin to
protect against human error and correlated failures due to problems with the
environment. 

FIGURE 8.8 Block-interleaved parity (RAID 4) versus distributed block-interleaved par-
ity (RAID 5). By distributing parity blocks to all disks, some small writes can be performed in
parallel.
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Check
Yourself

Which of the following are true about dependability?

1. If a system is up, then all its components are accomplishing their expected
service.

2. Availability is a quantitative measure of the percentage of time a system is
accomplishing its expected service.

3. Reliability is a quantitative measure of continuous service accomplishment
by a system.

4. The major source of outages today is software.

Which of the following are true about RAID levels 1, 3, 4, 5, and 6?

1. RAID systems rely on redundancy to achieve high availability.

2. RAID 1 (mirroring) has the highest check disk overhead.

3. For small writes, RAID 3 (bit-interleaved parity) has the worst throughput.

4. For large writes, RAID 3, 4, and 5 have the same throughput.

Elaboration: One issue is how mirroring interacts with striping. Suppose you had,
say, four disks worth of data to store and eight physical disks to use. Would you create
four pairs of disks—each organized as RAID 1—and then stripe data across the four
RAID 1 pairs? Alternatively, would you create two sets of four disks—each organized as
RAID 0—and then mirror writes to both RAID 0 sets? The RAID terminology has evolved
to call the former RAID 1 + 0 or RAID 10 (“striped mirrors”) and the latter RAID 0 + 1 or
RAID 01 (“mirrored stripes”).

Networks are growing in popularity over time, and unlike other I/O devices, there
are many books and courses on them. For readers who have not taken courses or
read books on networking, Section 8.3 on the  CD gives a quick overview of the
topics and terminology, including internetworking, the OSI model, protocol fam-
ilies such as TCP/IP, long-haul networks such as ATM, local area networks such as
Ethernet, and wireless networks such as IEEE 802.11.

Networks 8.38.3
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In a computer system, the various subsystems must have interfaces to one another.
For example, the memory and processor need to communicate, as do the proces-
sor and the I/O devices. For many years, this has been done with a bus. A bus is a
shared communication link, which uses one set of wires to connect multiple sub-
systems. The two major advantages of the bus organization are versatility and low
cost. By defining a single connection scheme, new devices can easily be added, and
peripherals can even be moved between computer systems that use the same kind
of bus. Furthermore, buses are cost-effective because a single set of wires is shared
in multiple ways. 

The major disadvantage of a bus is that it creates a communication bottleneck,
possibly limiting the maximum I/O throughput. When I/O must pass through a
single bus, the bandwidth of that bus limits the maximum I/O throughput.
Designing a bus system capable of meeting the demands of the processor as well as
connecting large numbers of I/O devices to the machine presents a major chal-
lenge. 

One reason bus design is so difficult is that the maximum bus speed is largely
limited by physical factors: the length of the bus and the number of devices.
These physical limits prevent us from running the bus arbitrarily fast. In addition,
the need to support a range of devices with widely varying latencies and data
transfer rates also makes bus design challenging.

As it becomes difficult to run many parallel wires at high speed due to clock
skew and reflection, the industry is in transition from parallel shared buses to
high-speed serial point-to-point interconnections with switches. Thus, such net-
works are gradually replacing buses in our systems.

As a result of this transition, this section has been revised in this edition to
emphasize the general problem of connecting I/O devices, processors, and mem-
ory rather than focus exclusively on buses.

Bus Basics

Classically, a bus generally contains a set of control lines and a set of data lines.
The control lines are used to signal requests and acknowledgments, and to indi-
cate what type of information is on the data lines. The data lines of the bus carry
information between the source and the destination. This information may con-
sist of data, complex commands, or addresses. For example, if a disk wants to
write some data into memory from a disk sector, the data lines will be used to
indicate the address in memory in which to place the data as well as to carry the

8.4 Buses and Other Connections between 
Processors, Memory, and I/O Devices 8.4
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actual data from the disk. The control lines will be used to indicate what type of
information is contained on the data lines of the bus at each point in the transfer.
Some buses have two sets of signal lines to separately communicate both data and
address in a single bus transmission. In either case, the control lines are used to
indicate what the bus contains and to implement the bus protocol. And because
the bus is shared, we also need a protocol to decide who uses it next; we will dis-
cuss this problem shortly.

Let's consider a typical bus transaction. A bus transaction includes two
parts: sending the address and receiving or sending the data. Bus transactions are
typically defined by what they do to memory. A read transaction transfers data
from memory (to either the processor or an I/O device), and a write transaction
writes data to the memory. Clearly, this terminology is confusing. To avoid this,
we’ll try to use the terms input and output, which are always defined from the per-
spective of the processor: an input operation is inputting data from the device to
memory, where the processor can read it, and an output operation is outputting
data to a device from memory where the processor wrote it. 

Buses are traditionally classified as processor-memory buses or I/O buses. Pro-
cessor-memory buses are short, generally high speed, and matched to the memory
system so as to maximize memory-processor bandwidth. I/O buses, by contrast,
can be lengthy, can have many types of devices connected to them, and often have
a wide range in the data bandwidth of the devices connected to them. I/O buses
do not typically interface directly to the memory but use either a processor-mem-
ory or a backplane bus to connect to memory. Other buses with different charac-
teristics have emerged for special functions, such as graphics buses. 

The I/O bus serves as a way of expanding the machine and connecting new
peripherals. To make this easier, the computer industry has developed several
standards. The standards serve as a specification for the computer manufacturer
and for the peripheral manufacturer. A standard ensures the computer designer
that peripherals will be available for a new machine, and it ensures the peripheral
builder that users will be able to hook up their new equipment. Figure 8.9 sum-
marizes the key characteristics of the two dominant I/O bus standards: Firewire
and USB. They connect a variety of devices to the desktop computer, from key-
boards to cameras to disks. 

The two basic schemes for communication on the bus are synchronous and
asynchronous. If a bus is synchronous, it includes a clock in the control lines and
a fixed protocol for communicating that is relative to the clock. For example, for a
processor-memory bus performing a read from memory, we might have a proto-
col that transmits the address and read command on the first clock cycle, using
the control lines to indicate the type of request. The memory might then be
required to respond with the data word on the fifth clock. This type of protocol
can be implemented easily in a small finite state machine. Because the protocol is
predetermined and involves little logic, the bus can run very fast and the interface
logic will be small.

bus transaction A sequence of 
bus operations that includes a 
request and may include a 
response, either of which may 
carry data. A transaction is initi-
ated by a single request and may 
take many individual bus opera-
tions.

processor-memory bus A bus 
that connects processor and 
memory and that is short, gen-
erally high speed, and matched 
to the memory system so as to 
maximize memory-processor 
bandwidth.

backplane bus A bus that is 
designed to allow processors, 
memory, and I/O devices to 
coexist on a single bus.

synchronous bus A bus that 
includes a clock in the control 
lines and a fixed protocol for 
communicating that is relative 
to the clock.

asynchronous bus A bus that 
uses a handshaking protocol for 
coordinating usage rather than a 
clock; can accommodate a wide 
variety of devices of differing 
speeds.



8.4 Buses and Other Connections between Processors, Memory, and I/O Devices 583

Synchronous buses have two major disadvantages, however. First, every device
on the bus must run at the same clock rate. Second, because of clock skew prob-
lems, synchronous buses cannot be long if they are fast (see  Appendix B for a
discussion of clock skew). Processor-memory buses are often synchronous
because the devices communicating are close, small in number, and prepared to
operate at high clock rates.

An asynchronous bus is not clocked. Because it is not clocked, an asynchronous
bus can accommodate a wide variety of devices, and the bus can be lengthened
without worrying about clock skew or synchronization problems. Both Firewire
and USE 2.0 are asynchronous. To coordinate the transmission of data between
sender and receiver, an asynchronous bus uses a handshaking protocol. A hand-
shaking protocol consists of a series of steps in which the sender and receiver pro-
ceed to the next step only when both parties agree. The protocol is implemented
with an additional set of control lines. 

A simple example will illustrate how asynchronous buses work. Let’s consider a
device requesting a word of data from the memory system. Assume that there are
three control lines:

1. ReadReq: Used to indicate a read request for memory. The address is put
on the data lines at the same time.

2. DataRdy: Used to indicate that the data word is now ready on the data
lines. In an output transaction, the memory will assert this signal since it is
providing the data. In an input transaction, an I/O device would assert this
signal, since it would provide data. In either case, the data is placed on the
data lines at the same time.

3. Ack: Used to acknowledge the ReadReq or the DataRdy signal of the other
party.

Characteristic Firewire (1394) USB 2.0

Bus type I/O I/O

Basic data bus width (signals) 4 2

Clocking asynchronous asynchronous

Theoretical peak bandwidth 50 MB/sec (Firewire 400) or 
100 MB/sec (Firewire 800)

0.2 MB/sec (low speed), 
1.5 MB/sec (full speed), 

or 60 MB/sec (high speed)

Hot plugable yes yes

Maximum number of devices 63 127

Maximum bus length
(copper wire)

4.5 meters 5 meters

Standard name IEEE 1394, 1394b USE Implementors Forum

FIGURE 8.9 Key characteristics of two dominant I/O bus standards.

handshaking protocol A
series of steps used to coordi-
nate asynchronous bus transfers 
in which the sender and receiver 
proceed to the next step only 
when both parties agree that 
the current step has been 
completed.
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In an asynchronous protocol, the control signals ReadReq and DataRdy are
asserted until the other party (the memory or the device) indicates that the con-
trol lines have been seen and the data lines have been read; this indication is made
by asserting the Ack line. This complete process is called handshaking. Figure 8.10
shows how such a protocol operates by depicting the steps in the communication.

Although much of the bandwidth of a bus is decided by the choice of a syn-
chronous or asynchronous protocol and the timing characteristics of the bus, sev-
eral other factors affect the bandwidth that can be attained by a single transfer.
The most important of these are the data bus width, and whether it supports
block transfers or it transfers a word at a time. 

The steps in the protocol begin immediately after the device signals a request by raising ReadReq and 

putting the address on the Data lines:

1. When memory sees the ReadReq line, it reads the address from the data bus and raises Ack to 

indicate it has been seen.

2. I/O device sees the Ack line high and releases the ReadReq and data lines.

3. Memory sees that ReadReq is low and drops the Ack line to acknowledge the ReadReq signal.

4. This step starts when the memory has the data ready. It places the data from the read request on 

the data lines and raises DataRdy.

5. The I/O device sees DataRdy, reads the data from the bus, and signals that it has the data by raising 

Ack.

6. The memory sees the Ack signal, drops DataRdy, and releases the data lines.

7. Finally, the I/O device, seeing DataRdy go low, drops the Ack line, which indicates that the 

transmission is completed.

A new bus transaction can now begin.

FIGURE 8.10 The asynchronous handshaking protocol consists of seven steps to read a
word from memory and receive it in an I/O device. The signals in color are those asserted by the
I/O device, while the memory asserts the signals shown in black. The arrows label the seven steps and the
event that triggers each step. The symbol showing two lines (high and low) at the same time on the data
lines indicates that the data lines have valid data at this point. (The symbol indicates that the data is valid,
but the value is not known.)
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Elaboration: Another method for increasing the effective bus bandwidth is to
release the bus when it is not being used for transmitting information. This type of pro-
tocol is called a split transaction protocol. The advantage of such a protocol is that, by
freeing the bus during the time data is not being transmitted, the protocol allows
another requestor to use the bus. This can improve the effective bus bandwidth for the
entire system if the memory is sophisticated enough to handle multiple overlapping
transactions. Multiprocessors sharing a memory bus may use split transaction proto-
cols.

The Buses and Networks of the Pentium 4

Figure 8.11 shows the I/O system of a PC based on the Pentium 4. The processor
connects to peripherals via two main chips. The chip next to the processor is the
memory controller hub, commonly called the north bridge, and the one connected
to it is the I/O controller hub, called the south bridge.

FIGURE 8.11 Organization of the I/O system on a Pentium 4 PC using the Intel 875 chip
set. Note that the maximum transfer rate between the north bridge (memory hub) and south bridge (I/O
hub) is 266 MB/sec, which is why Intel put the AGP bus and Gigabit Ethernet on the north bridge. 

split transaction protocol A
protocol in which the bus is 
released during a bus transac-
tion while the requester is wait-
ing for the data to be 
transmitted, which frees the bus 
for access by another requester.
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The north bridge is basically a DMA controller, connecting the processor to
memory, the AGP graphic bus, and the south bridge chip. The south bridge con-
nects the north bridge to a cornucopia of I/O buses. Intel and others offer a wide
variety of these chip sets to connect the Pentium 4 to the outside world. To give a
flavor of the options, Figure 8.12 shows two of the chip sets.

As Moore’s law continues, an increasing number of I/O controllers that were
formerly available as optional cards that connected to I/O buses have been co-
opted into these chip sets. For example, the south bridge chip of the Intel 875
includes a striping RAID controller, and the north bridge chip of the Intel 845GL
includes a graphics controller.

875P chip set 845GL chip set

Target segment Performance PC Value PC

System bus (64 bit) 800/533 MHz 400 MHz

 Memory controller hub (“north bridge”)

Package size, pins 42.5 ¥ 42.5 mm, 1005 37.5 ¥ 37.5 mm, 760

Memory speed DDR 400/333/266 SDRAM DDR 266/200, PC133 SDRAM

Memory buses, widths 2 ¥ 72 1 ¥ 64

Number of DIMMs, DRAM Mbit 
support

4, 128/256/512 Mbits 2, 128/256/512 MBits

Maximum memory capacity 4 GB 2 GB

Memory error correction available? yes no

AGP graphics bus, speed yes, 8X or 4X no

Graphics controller external Internal (Extreme Graphics)

CSA Gigabit Ethernet interface yes no

South bridge interface speed (8 bit) 266 MHz 266 MHz

I/O controller hub (“south bridge”)

Package size, pins 31 ¥ 31 mm, 460 31 ¥ 31 mm, 421

PCI bus: width, speed, masters 32-bit, 33 MHz, 6 masters 32-bit, 33 MHz, 6 masters

Ethernet MAC controller, interface 100/10 Mbit 100/10 Mbit

USB 2.0 ports, controllers 8, 4 6, 3

ATA 100 ports 2 2

Serial ATA 150 controller, ports yes, 2 no

RAID 0 controller yes no

AC-97 audio controller, interface yes yes

I/O management SMbus 2.0, GPIO SMbus 2.0, GPIO

FIGURE 8.12 Two Pentium 4 I/O chip sets from Intel. The 845GL north bridge uses many fewer
pins than the 875 by having just one memory bus and by omitting the AGP bus and the Gigabit Ethernet
interface. Note that the serial nature of USB and Serial ATA means that two more USB ports and two more
Serial ATA ports need just 39 more pins in the south bridge of the 875 versus the 845GL chip sets.
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These two chips demonstrate the gradual evolution from parallel shared buses
to high-speed serial point-to-point interconnections with switches via the past
and future versions of ATA and PCI.

Serial ATA is a serial successor to the parallel ATA bus used by magnetic and
optical disks in PCs. The first generation transfers at 150 MB/sec compared to the
100 MB/sec of parallel ATA-100 bus. Its distance is 1 meter, twice the maximum
length of ATA-100. It uses just 7 wires, with one 2-wire data channel in each direc-
tion, compared to 80 for ATA-100. 

The south bridge in Figure 8.11 demonstrates the transitory period between
parallel buses and serial networks by providing both parallel and serial ATA buses.

PCI Express is a serial successor to the popular PCI bus. Rather than 32–64
shared wires operating at 33 MHz–133 MHz with a peak bandwidth of 132–1064
MB/sec, PCI Express uses just 4 wires in each direction operating at 625 MHz to
offer 300 MB/sec per direction. The bandwidth per pin of PCI Express is 5–10
times its predecessors. A computer can then afford to have several PCI Express
interfaces to get even higher bandwidth. 

Although the chips in Figure 8.11 only show the parallel PCI bus, Intel plans to
replace the AGP graphics bus and the bus between the north bridge and the south
bridge with PCI Express in the next generation of these chips.

Buses and networks provide electrical interconnection among I/O devices, pro-
cessors, and memory, and also define the lowest-level protocol for communica-
tion. Above this basic level, we must define hardware and software protocols for
controlling data transfers between I/O devices and memory, and for the processor
to specify commands to the I/O devices. These topics are covered in the next sec-
tion.

Check
Yourself

Both networks and buses connect components together. Which of the following
are true about them?

1. Networks and I/O buses are almost always standardized.

2. Shared media networks and multimaster buses need an arbitration scheme.

3. Local area networks and processor-memory buses are almost always syn-
chronous.

4. High-performance networks and buses use similar techniques compared to
their lower-performance alternatives: they are wider, send many words per
transaction, and have separate address and data lines.
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A bus or network protocol defines how a word or block of data should be commu-
nicated on a set of wires. This still leaves several other tasks that must be per-
formed to actually cause data to be transferred from a device and into the memory
address space of some user program. This section focuses on these tasks and will
answer such questions as the following:

■ How is a user I/O request transformed into a device command and commu-
nicated to the device?

■ How is data actually transferred to or from a memory location?

■ What is the role of the operating system? 

As we will see in answering these questions, the operating system plays a major
role in handling I/O, acting as the interface between the hardware and the pro-
gram that requests I/O. 

The responsibilities of the operating system arise from three characteristics of
I/O systems:

1. Multiple programs using the processor share the I/O system. 

2. I/O systems often use interrupts (externally generated exceptions) to com-
municate information about I/O operations. Because interrupts cause a
transfer to kernel or supervisor mode, they must be handled by the operat-
ing system (OS).

3. The low-level control of an I/O device is complex because it requires man-
aging a set of concurrent events and because the requirements for correct
device control are often very detailed.

8.5 Interfacing I/O Devices to the Processor, 
Memory, and Operating System 8.5
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The three characteristics of I/O systems above lead to several different functions
the OS must provide:

■ The OS guarantees that a user’s program accesses only the portions of an
I/O device to which the user has rights. For example, the OS must not allow
a program to read or write a file on disk if the owner of the file has not
granted access to this program. In a system with shared I/O devices, protec-
tion could not be provided if user programs could perform I/O directly.

■ The OS provides abstractions for accessing devices by supplying routines
that handle low-level device operations.



8.5 Interfacing I/O Devices to the Processor, Memory, and Operating System 589

Giving Commands to I/O Devices

To give a command to an I/O device, the processor must be able to address the
device and to supply one or more command words. Two methods are used to
address the device: memory-mapped I/O and special I/O instructions. In
memory-mapped I/O, portions of the address space are assigned to I/O devices.
Reads and writes to those addresses are interpreted as commands to the I/O
device. 

For example, a write operation can be used to send data to an I/O device where
the data will be interpreted as a command. When the processor places the address
and data on the memory bus, the memory system ignores the operation because
the address indicates a portion of the memory space used for I/O. The device con-
troller, however, sees the operation, records the data, and transmits it to the device
as a command. User programs are prevented from issuing I/O operations directly
because the OS does not provide access to the address space assigned to the I/O
devices and thus the addresses are protected by the address translation. Memory-
mapped I/O can also be used to transmit data by writing or reading to select
addresses. The device uses the address to determine the type of command, and the
data may be provided by a write or obtained by a read. In any event, the address
encodes both the device identity and the type of transmission between processor
and device. 

■ The OS handles the interrupts generated by I/O devices, just as it handles
the exceptions generated by a program.

■ The OS tries to provide equitable access to the shared I/O resources, as well
as schedule accesses in order to enhance system throughput. 

To perform these functions on behalf of user programs, the operating system
must be able to communicate with the I/O devices and to prevent the user pro-
gram from communicating with the I/O devices directly. Three types of commu-
nication are required:

1. The OS must be able to give commands to the I/O devices. These com-
mands include not only operations like read and write, but also other oper-
ations to be done on the device, such as a disk seek.

2. The device must be able to notify the OS when the I/O device has com-
pleted an operation or has encountered an error. For example, when a disk
completes a seek, it will notify the OS.

3. Data must be transferred between memory and an I/O device. For example,
the block being read on a disk read must be moved from disk to memory.

In the next few sections, we will see how these communications are performed.

memory-mapped I/O An I/O 
scheme in which portions of 
address space are assigned to 
I/O devices and reads and writes 
to those addresses are inter-
preted as commands to the I/O 
device.
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Actually performing a read or write of data to fulfill a program request usually
requires several separate I/O operations. Furthermore, the processor may have to
interrogate the status of the device between individual commands to determine
whether the command completed successfully. For example, a simple printer has
two I/O device registers—one for status information and one for data to be
printed. The Status register contains a done bit, set by the printer when it has
printed a character, and an error bit, indicating that the printer is jammed or out
of paper. Each byte of data to be printed is put into the Data register. The proces-
sor must then wait until the printer sets the done bit before it can place another
character in the buffer. The processor must also check the error bit to determine if
a problem has occurred. Each of these operations requires a separate I/O device
access. 

Elaboration: The alternative to memory-mapped I/O is to use dedicated I/O instruc-
tions in the processor. These I/O instructions can specify both the device number and
the command word (or the location of the command word in memory). The processor
communicates the device address via a set of wires normally included as part of the
I/O bus. The actual command can be transmitted over the data lines in the bus. Exam-
ples of computers with I/O instructions are the Intel IA-32 and the IBM 370 computers.
By making the I/O instructions illegal to execute when not in kernel or supervisor
mode, user programs can be prevented from accessing the devices directly.

Communicating with the Processor

The process of periodically checking status bits to see if it is time for the next I/O
operation, as in the previous example, is called polling. Polling is the simplest way
for an I/O device to communicate with the processor. The I/O device simply puts
the information in a Status register, and the processor must come and get the
information. The processor is totally in control and does all the work. 

Polling can be used in several different ways. Real-time embedded applications
poll the I/O devices since the I/O rates are predetermined and it makes I/O over-
head more predictable, which is helpful for real time. As we will see, this allows
polling to be used even when the I/O rate is somewhat higher. 

The disadvantage of polling is that it can waste a lot of processor time because
processors are so much faster than I/O devices. The processor may read the Status
register many times, only to find that the device has not yet completed a compara-
tively slow I/O operation, or that the mouse has not budged since the last time it
was polled. When the device completes an operation, we must still read the status
to determine whether it was successful. 

The overhead in a polling interface was recognized long ago, leading to the
invention of interrupts to notify the processor when an I/O device requires atten-
tion from the processor. Interrupt-driven I/O, which is used by almost all systems

I/O instructions A dedicated 
instruction that is used to give a 
command to an I/O device and 
that specifies both the device 
number and the command 
word (or the location of the 
command word in memory).

polling The process of periodi-
cally checking the status of an 
I/O device to determine the 
need to service the device.

interrupt-driven I/O An I/O 
scheme that employs interrupts 
to indicate to the processor that 
an I/O device needs attention.
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for at least some devices, employs I/O interrupts to indicate to the processor that
an I/O device needs attention. When a device wants to notify the processor that it
has completed some operation or needs attention, it causes the processor to be
interrupted. 

An I/O interrupt is just like the exceptions we saw in Chapters 5, 6, and 7, with
two important exceptions:

1. An I/O interrupt is asynchronous with respect to the instruction execution.
That is, the interrupt is not associated with any instruction and does not
prevent the instruction completion. This is very different from either page
fault exceptions or exceptions such as arithmetic overflow. Our control unit
need only check for a pending I/O interrupt at the time it starts a new
instruction. 

2. In addition to the fact that an I/O interrupt has occurred, we would like to
convey further information such as the identity of the device generating the
interrupt. Furthermore, the interrupts represent devices that may have dif-
ferent priorities and whose interrupt requests have different urgencies asso-
ciated with them. 

To communicate information to the processor, such as the identity of the
device raising the interrupt, a system can use either vectored interrupts or an
exception Cause register. When the processor recognizes the interrupt, the device
can send either the vector address or a status field to place in the Cause register. As
a result, when the OS gets control, it knows the identity of the device that caused
the interrupt and can immediately interrogate the device. An interrupt mecha-
nism eliminates the need for the processor to poll the device and instead allows
the processor to focus on executing programs.

Interrupt Priority Levels

To deal with the different priorities of the I/O devices, most interrupt mechanisms
have several levels of priority: UNIX operating systems use four to six levels. These
priorities indicate the order in which the processor should process interrupts.
Both internally generated exceptions and external I/O interrupts have priorities;
typically, I/O interrupts have lower priority than internal exceptions. There may
be multiple I/O interrupt priorities, with high-speed devices associated with the
higher priorities. 

To support priority levels for interrupts, MIPS provides the primitives that let
the operating system implement the policy, similar to how MIPS handles TLB
misses. Figure 8.13 shows the key registers, and Section A.7 in  Appendix A
gives more details.

The Status register determines who can interrupt the computer. If the interrupt
enable bit is 0, then none can interrupt. A more refined blocking of interrupts is
available in the interrupt mask field. There is a bit in the mask corresponding to
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each bit in the pending interrupt field of the Cause register. To enable the corre-
sponding interrupt, there must be a 1 in the mask field at that bit position. Once
an interrupt occurs, the operating system can find the reason in the exception
code field of the Status register: 0 means an interrupt occurred, with other values
for the exceptions mentioned in Chapter 7.

Here are the steps that must occur in handling an interrupt:

1. Logically AND the pending interrupt field and the interrupt mask field to
see which enabled interrupts could be the culprit. Copies are made of these
two registers using the mfc0 instruction.

2. Select the higher priority of these interrupts. The software convention is
that the leftmost is the highest priority.

3. Save the interrupt mask field of the Status register.

4. Change the interrupt mask field to disable all interrupts of equal or lower
priority.

5. Save the processor state needed to handle the interrupt.

6. To allow higher-priority interrupts, set the interrupt enable bit of the Cause
register to 1.

7. Call the appropriate interrupt routine.

8. Before restoring state, set the interrupt enable bit of the Cause register to 0.
This allows you to restore the interrupt mask field.

FIGURE 8.13 The Cause and Status registers. This version of the Cause register corresponds to
the MIPS-32 architecture. The earlier MIPS I architecture had three nested sets of kernel/user and interrupt
enable bits to support nested interrupts. Section A.7 in Appendix A has more detials about these regis-
ters. 
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Appendix A shows an exception handler for a simple I/O task on pages A-36 to
A-37.

How do the interrupt priority levels (IPL) correspond to these mechanisms? The
IPL is an operating system invention. It is stored in the memory of the process,
and every process is given an IPL. At the lowest IPL, all interrupts are permitted.
Conversely, at the highest IPL, all interrupts are blocked. Raising and lowering the
IPL involves changes to the interrupt mask field of the Status register. 

Elaboration: The two least significant bits of the pending interrupt and interrupt
mask fields are for software interrupts, which are lower priority. These are typically
used by higher-priority interrupts to leave work for lower-priority interrupts to do once
the immediate reason for the interrupt is handled. Once the higher-priority interrupt is
finished, the lower-priority tasks will be noticed and handled.

Transferring the Data between a Device and Memory

We have seen two different methods that enable a device to communicate with the
processor. These two techniques—polling and I/O interrupts—form the basis for
two methods of implementing the transfer of data between the I/O device and
memory. Both these techniques work best with lower-bandwidth devices, where
we are more interested in reducing the cost of the device controller and interface
than in providing a high-bandwidth transfer. Both polling and interrupt-driven
transfers put the burden of moving data and managing the transfer on the proces-
sor. After looking at these two schemes, we will examine a scheme more suitable
for higher-performance devices or collections of devices.

We can use the processor to transfer data between a device and memory based
on polling. In real-time applications, the processor loads data from I/O device
registers and stores them into memory.

An alternative mechanism is to make the transfer of data interrupt driven. In
this case, the OS would still transfer data in small numbers of bytes from or to the
device. But because the I/O operation is interrupt driven, the OS simply works on
other tasks while data is being read from or written to the device. When the OS
recognizes an interrupt from the device, it reads the status to check for errors. If
there are none, the OS can supply the next piece of data, for example, by a
sequence of memory-mapped writes. When the last byte of an I/O request has
been transmitted and the I/O operation is completed, the OS can inform the pro-
gram. The processor and OS do all the work in this process, accessing the device
and memory for each data item transferred. 

Interrupt-driven I/O relieves the processor from having to wait for every I/O
event, although if we used this method for transferring data from or to a hard
disk, the overhead could still be intolerable, since it could consume a large frac-
tion of the processor when the disk was transferring. For high-bandwidth devices
like hard disks, the transfers consist primarily of relatively large blocks of data
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(hundreds to thousands of bytes). Thus, computer designers invented a mecha-
nism for offloading the processor and having the device controller transfer data
directly to or from the memory without involving the processor. This mechanism
is called direct memory access (DMA). The interrupt mechanism is still used by
the device to communicate with the processor, but only on completion of the I/O
transfer or when an error occurs. 

DMA is implemented with a specialized controller that transfers data between
an I/O device and memory independent of the processor. The DMA controller
becomes the bus master and directs the reads or writes between itself and mem-
ory. There are three steps in a DMA transfer:

1. The processor sets up the DMA by supplying the identity of the device, the
operation to perform on the device, the memory address that is the source
or destination of the data to be transferred, and the number of bytes to
transfer.

2. The DMA starts the operation on the device and arbitrates for the bus.
When the data is available (from the device or memory), it transfers the
data. The DMA device supplies the memory address for the read or the
write. If the request requires more than one transfer on the bus, the DMA
unit generates the next memory address and initiates the next transfer.
Using this mechanism, a DMA unit can complete an entire transfer, which
may be thousands of bytes in length, without bothering the processor.
Many DMA controllers contain some memory to allow them to deal flexi-
bly with delays either in transfer or those incurred while waiting to become
bus master.

3. Once the DMA transfer is complete, the controller interrupts the processor,
which can then determine by interrogating the DMA device or examining
memory whether the entire operation completed successfully. 

There may be multiple DMA devices in a computer system. For example, in a
system with a single processor-memory bus and multiple I/O buses, each I/O bus
controller will often contain a DMA processor that handles any transfers between
a device on the I/O bus and the memory. 

Unlike either polling or interrupt-driven I/O, DMA can be used to interface a
hard disk without consuming all the processor cycles for a single I/O. Of course, if
the processor is also contending for memory, it will be delayed when the memory
is busy doing a DMA transfer. By using caches, the processor can avoid having to
access memory most of the time, thereby leaving most of the memory bandwidth
free for use by I/O devices.

Elaboration: To further reduce the need to interrupt the processor and occupy it in
handling an I/O request that may involve doing several actual operations, the I/O con-
troller can be made more intelligent. Intelligent controllers are often called I/O proces-

direct memory access (DMA)
A mechanism that provides a 
device controller the ability to 
transfer data directly to or from 
the memory without involving 
the processor.

bus master A unit on the bus 
that can initiate bus requests.
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sors (as well as I/O controllers or channel controllers). These specialized processors
basically execute a series of I/O operations, called an I/O program. The program may
be stored in the I/O processor, or it may be stored in memory and fetched by the I/O
processor. When using an I/O processor, the operating system typically sets up an
I/O program that indicates the I/O operations to be done as well as the size and
transfer address for any reads or writes. The I/O processor then takes the operations
from the I/O program and interrupts the processor only when the entire program is
completed. DMA processors are essentially special-purpose processors (usually single-
chip and nonprogrammable), while I/O processors are often implemented with general-
purpose microprocessors, which run a specialized I/O program. 

Direct Memory Access and the Memory System

When DMA is incorporated into an I/O system, the relationship between the
memory system and processor changes. Without DMA, all accesses to the memory
system come from the processor and thus proceed through address translation
and cache access as if the processor generated the references. With DMA, there is
another path to the memory system—one that does not go through the address
translation mechanism or the cache hierarchy. This difference generates some
problems in both virtual memory systems and systems with caches. These prob-
lems are usually solved with a combination of hardware techniques and software
support.

The difficulties in having DMA in a virtual memory system arise because pages
have both a physical and a virtual address. DMA also creates problems for systems
with caches because there can be two copies of a data item: one in the cache and
one in memory. Because the DMA processor issues memory requests directly to
the memory rather than through the processor cache, the value of a memory loca-
tion seen by the DMA unit and the processor may differ. Consider a read from
disk that the DMA unit places directly into memory. If some of the locations into
which the DMA writes are in the cache, the processor will receive the old value
when it does a read. Similarly, if the cache is write-back, the DMA may read a
value directly from memory when a newer value is in the cache, and the value has
not been written back. This is called the stale data problem or coherence problem.

In a system with virtual memory, should DMA work with virtual addresses or
physical addresses? The obvious problem with virtual addresses is that the DMA
unit will need to translate the virtual addresses to physical addresses. The major
problem with the use of a physical address in a DMA transfer is that the transfer
cannot easily cross a page boundary. If an I/O request crossed a page boundary,
then the memory locations to which it was being transferred would not necessar-
ily be contiguous in the virtual memory. Consequently, if we use physical
addresses, we must constrain all DMA transfers to stay within one page.

Hardware
Software
Interface
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We have looked at three different methods for transferring data between an I/O
device and memory. In moving from polling to an interrupt-driven to a DMA
interface, we shift the burden for managing an I/O operation from the processor
to a progressively more intelligent I/O controller. These methods have the advan-
tage of freeing up processor cycles. Their disadvantage is that they increase the
cost of the I/O system. Because of this, a given computer system can choose which
point along this spectrum is appropriate for the I/O devices connected to it.

Before discussing the design of I/O systems, let’s look briefly at performance
measures of them.

One method to allow the system to initiate DMA transfers that cross page
boundaries is to make the DMA work on virtual addresses. In such a system, the
DMA unit has a small number of map entries that provide virtual-to-physical
mapping for a transfer. The operating system provides the mapping when the I/O
is initiated. By using this mapping, the DMA unit need not worry about the loca-
tion of the virtual pages involved in the transfer. 

Another technique is for the operating system to break the DMA transfer into a
series of transfers, each confined within a single physical page. The transfers are
then chained together and handed to an I/O processor or intelligent DMA unit
that executes the entire sequence of transfers; alternatively, the operating system
can individually request the transfers. 

Whichever method is used, the operating system must still cooperate by not
remapping pages while a DMA transfer involving that page is in progress. 

Hardware
Software
Interface

The coherency problem for I/O data is avoided by using one of three major tech-
niques. One approach is to route the I/O activity through the cache. This ensures
that reads see the latest value while writes update any data in the cache. Routing all
I/O through the cache is expensive and potentially has a large negative perfor-
mance impact on the processor, since the I/O data is rarely used immediately and
may displace useful data that a running program needs. A second choice is to have
the OS selectively invalidate the cache for an I/O read or force write-backs to
occur for an I/O write (often called cache flushing). This approach requires some
small amount of hardware support and is probably more efficient if the software
can perform the function easily and efficiently. Because this flushing of large parts
of the cache need only happen on DMA block accesses, it will be relatively infre-
quent. The third approach is to provide a hardware mechanism for selectively
flushing (or invalidating) cache entries. Hardware invalidation to ensure cache
coherence is typical in multiprocessor systems, and the same technique can be
used for I/O; we discuss this topic in detail in Chapter 9.
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Check
Yourself

In ranking of the three ways of doing I/O, which statements are true?

1. If we want the lowest latency for an I/O operation to a single I/O device, the
order is polling, DMA, and interrupt driven.

2. In terms of lowest impact on processor utilization from a single I/O device,
the order is DMA, interrupt driven, and polling

How should we compare I/O systems? This is a complex question because I/O
performance depends on many aspects of the system and different applications
stress different aspects of the I/O system. Furthermore, a design can make com-
plex trade-offs between response time and throughput, making it impossible to
measure just one aspect in isolation. For example, handling a request as early as
possible generally minimizes response time, although greater throughput can be
achieved if we try to handle related requests together. Accordingly, we may
increase throughput on a disk by grouping requests that access locations that are
close together. Such a policy will increase the response time for some requests,
probably leading to a larger variation in response time. Although throughput will
be higher, some benchmarks constrain the maximum response time to any
request, making such optimizations potentially problematic.

In this section, we give some examples of measurements proposed for deter-
mining the performance of disk systems. These benchmarks are affected by a
variety of system features, including the disk technology, how disks are con-
nected, the memory system, the processor, and the file system provided by the
operating system. 

Before we discuss these benchmarks, we need to address a confusing point
about terminology and units. The performance of I/O systems depends on the
rate at which the system transfers data. The transfer rate depends on the clock
rate, which is typically given in GHz = 109 cycles per second. The transfer rate is
usually quoted in GB/sec. In I/O systems, GBs are measured using base 10 (i.e., 1
GB = 109 = 1,000,000,000 bytes), unlike main memory where base 2 is used (i.e., 1
GB = 230 = 1,073,741,824). In addition to adding confusion, this difference intro-
duces the need to convert between base 10 (1K = 1000) and base 2 (1K = 1024)
because many I/O accesses are for data blocks that have a size that is a power of
two. Rather than complicate all our examples by accurately converting one of the
two measurements, we make note here of this distinction and the fact that treating
the two measures as if the units were identical introduces a small error. We illus-
trate this error in Section 8.9.

8.6 I/O Performance Measures: Examples 
from Disk and File Systems 8.6
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Transaction Processing I/O Benchmarks

Transaction processing (TP) applications involve both a response time require-
ment and a performance measurement based on throughput. Furthermore, most
of the I/O accesses are small. Because of this, TP applications are chiefly con-
cerned with I/O rate, measured as the number of disk accesses per second, as
opposed to data rate, measured as bytes of data per second. TP applications gen-
erally involve changes to a large database, with the system meeting some response
time requirements as well as gracefully handling certain types of failures. These
applications are extremely critical and cost-sensitive. For example, banks nor-
mally use TP systems because they are concerned about a range of characteristics.
These include making sure transactions aren’t lost, handling transactions quickly,
and minimizing the cost of processing each transaction. Although dependability
in the face of failure is an absolute requirement in such systems, both response
time and throughput are critical to building cost-effective systems.

A number of transaction processing benchmarks have been developed. The
best-known set of benchmarks is a series developed by the Transaction Processing
Council (TPC). 

TPC-C, initially created in 1992, simulates a complex query environment.
TPC-H models ad hoc decision support—the queries are unrelated and knowl-
edge of past queries cannot be used to optimize future queries; the result is that
query execution times can be very long. TPC-R simulates a business decision sup-
port system where users run a standard set of queries. In TPC-R, preknowledge of
the queries is taken for granted, and the DBMS can be optimized to run these que-
ries. TPC-W is a Web-based transaction benchmark that simulates the activities of
a business-oriented transactional Web server. It exercises the database system as
well as the underlying Web server software. The TPC benchmarks are described at
www.tpc.org.

All the TPC benchmarks measure performance in transactions per second. In
addition, they include a response time requirement, so that throughput perfor-
mance is measured only when the response time limit is met. To model real-world
systems, higher transaction rates are also associated with larger systems, both in
terms of users and the size of the database that the transactions are applied to.
Finally, the system cost for a benchmark system must also be included, allowing
accurate comparisons of cost-performance. 

File System and Web I/O Benchmarks

File systems, which are stored on disks, have a different access pattern. For exam-
ple, measurements of UNIX file systems in an engineering environment have
found that 80% of accesses are to files of less than 10 KB and that 90% of all file
accesses are to data with sequential addresses on the disk. Furthermore, 67% of
the accesses were reads, 27% were writes, and 6% were read-modify-write
accesses, which read data, modify it, and then rewrite the same location. Such

transaction processing A type 
of application that involves han-
dling small short operations 
(called transactions) that typi-
cally require both I/O and com-
putation. Transaction 
processing applications typi-
cally have both response time 
requirements and a perfor-
mance measurement based on 
the throughput of transactions.

I/O rate Performance measure 
of I/Os per unit time, such as 
reads per second.

data rate Performance mea-
sure of bytes per unit time, such 
as GB/second.
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measurements have led to the creation of synthetic file system benchmarks. One
of the most popular of such benchmarks has five phases, using 70 files:

■ MakeDir: Constructs a directory subtree that is identical in structure to the
given directory subtree

■ Copy: Copies every file from the source subtree to the target subtree

■ ScanDir: Recursively traverses a directory subtree and examines the status
of every file in it

■ ReadAll: Scans every byte of every file in a subtree once

■ Make: Compiles and links all the files in a subtree

As we will see in Section 8.7, the design of an I/O system involves knowing what
the workload is.

In addition to processor benchmarks, SPEC offers both a file server benchmark
(SPECSFS) and a Web server benchmark (SPECWeb). SPECSFS is a benchmark
for measuring NFS (Network File System) performance using a script of file server
requests; it tests the performance of the I/O system, including both disk and net-
work I/O, as well as the processor. SPECSFS is a throughput-oriented benchmark
but with important response time requirements. SPECWeb is a Web server bench-
mark that simulates multiple clients requesting both static and dynamic pages
from a server, as well as clients posting data to the server. 

I/O Performance versus Processor Performance

Amdahl’s law in Chapter 2 reminds us that neglecting I/O is dangerous. A simple
example demonstrates this. 

Impact of I/O on System Performance

Suppose we have a benchmark that executes in 100 seconds of elapsed time,
where 90 seconds is CPU time and the rest is I/O time. If CPU time improves
by 50% per year for the next five years but I/O time doesn’t improve, how
much faster will our program run at the end of five years?

We know that

EXAMPLE

ANSWER
Elapsed time CPU time= I/O time+

100 90= I/O time+

I/O time 10= seconds
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Check
Yourself

Are the following true or false? Unlike processor benchmarks, I/O benchmarks

1. concentrate on throughput rather than latency

2. can require that the data set scale in size or number of users to achieve per-
formance milestones

3. come from organizations rather than from individuals

There are two primary types of specifications that designers encounter in I/O sys-
tems: latency constraints and bandwidth constraints. In both cases, knowledge of
the traffic pattern affects the design and analysis.

Latency constraints involve ensuring that the latency to complete an I/O opera-
tion is bounded by a certain amount. In the simple case, the system may be

The new CPU times and the resulting elapsed times are computed in the fol-
lowing table:

The improvement in CPU performance over five years is

However, the improvement in elapsed time is only

and the I/O time has increased from 10% to 45% of the elapsed time.

After n years CPU time I/O time Elapsed time % I/O time

0 90 seconds 10 seconds 100 seconds 10%

1 seconds 10 seconds 70 seconds 14%

2 seconds 10 seconds 50 seconds 20%

3 seconds 10 seconds 37 seconds 27%

4 seconds 10 seconds 28 seconds 36%

5 seconds 10 seconds 22 seconds 45%

90
1.5
------------- 60=

60
1.5
------------- 40=

40
1.5
------------- 27=

27
1.5
------------- 18=

18
1.5
------------- 12=

90
12
----- 7.5=

100
22
-------- 4.5=
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unloaded, and the designer must ensure that some latency bound is met either
because it is critical to the application or because the device must receive certain
guaranteed service to prevent errors. Examples of the latter are similar to the anal-
ysis we looked at in the previous section. Likewise, determining the latency on an
unloaded system is relatively easy, since it involves tracing the path of the I/O
operation and summing the individual latencies. 

Finding the average latency (or distribution of latency) under a load is a much
more complex problem. Such problems are tackled either by queuing theory
(when the behavior of the workload requests and I/O service times can be approx-
imated by simple distributions) or by simulation (when the behavior of I/O events
is complex). Both topics are beyond the limits of this text.

Designing an I/O system to meet a set of bandwidth constraints given a work-
load is the other typical problem designers face. Alternatively, the designer may be
given a partially configured I/O system and be asked to balance the system to main-
tain the maximum bandwidth achievable as dictated by the preconfigured portion
of the system. This latter design problem is a simplified version of the first. 

The general approach to designing such a system is as follows:

1. Find the weakest link in the I/O system, which is the component in the I/O
path that will constrain the design. Depending on the workload, this com-
ponent can be anywhere, including the CPU, the memory system, the back-
plane bus, the I/O controllers, or the devices. Both the workload and
configuration limits may dictate where the weakest link is located.

2. Configure this component to sustain the required bandwidth.

3. Determine the requirements for the rest of the system and configure them
to support this bandwidth.

The easiest way to understand this methodology is with an example.

I/O System Design

Consider the following computer system:

 

■ A CPU that sustains 3 billion instructions per second and averages
100,000 instructions in the operating system per I/O operation

 

■ A memory backplane bus capable of sustaining a transfer rate of 1000
MB/sec

 

■ SCSI Ultra320 controllers with a transfer rate of 320 MB/sec and accom-
modating up to 7 disks

 

■ Disk drives with a read/write bandwidth of 75 MB/sec and an average
seek plus rotational latency of 6 ms

EXAMPLE
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If the workload consists of 64 KB reads (where the block is sequential on a
track) and the user program needs 200,000 instructions per I/O operation,
find the maximum sustainable I/O rate and the number of disks and SCSI
controllers required. Assume that the reads can always be done on an idle
disk if one exists (i.e., ignore disk conflicts).

The two fixed components of the system are the memory bus and the CPU.
Let’s first find the I/O rate that these two components can sustain and deter-
mine which of these is the bottleneck. Each I/O takes 200,000 user instruc-
tions and 100,000 OS instructions, so

Maximum I/O rate of CPU = 

Each I/O transfers 64 KB, so

The CPU is the bottleneck, so we can now configure the rest of the system to
perform at the level dictated by the CPU, 10,000 I/Os per second.

Let’s determine how many disks we need to be able to accommodate 10,000
I/Os per second. To find the number of disks, we first find the time per I/O op-
eration at the disk:

 Time per I/O at disk = Seek + rotational time + Transfer time

Thus, each disk can complete 1000 ms/6.9 ms or 146 I/Os per second. To sat-
urate the CPU requires 10,000 I/Os per second, or 10,000/146 ª 69 disks.

To compute the number of SCSI buses, we need to check the average trans-
fer rate per disk to see if we can saturate the bus, which is given by

The maximum number of disks per SCSI bus is 7, which won’t saturate this
bus. This means we will need 69/7, or 10 SCSI buses and controllers.

ANSWER

Instruction execution rate
Instructions per I/O

-------------------------------------------------------- 3 10
9¥

200 100+( ) 10
3¥

--------------------------------------- 10,000 I/Os
second
---------------= =

Maximum I/O rate of bus Bus bandwidth
Bytes per I/O

---------------------------------= 1000 10
6¥

64 10
3¥

----------------------- 15,625 I/Os
second
---------------= =

6=  ms 64 KB
75 MB/sec
-----------------------+ = 6.9 ms

Transfer rate Transfer size
Transfer time
----------------------------- 64 KB

6.9 ms
--------------= 9.56 MB/secª=
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Notice the significant number of simplifying assumptions that are needed to do
this example. In practice, many of these simplifications might not hold for critical
I/O-intensive applications (such as databases). For this reason, simulation is often
the only realistic way to predict the I/O performance of a realistic workload.

Digital cameras are basically embedded computers with removable, writable, non-
volatile, storage, and interesting I/O devices. Figure 8.14 shows our example.

8.8 Real Stuff: A Digital Camera 8.8

FIGURE 8.14 The Sanyo VPC-SX500 with Flash memory card and IBM Microdrive.
Although newer cameras offer more pixels per picture, the principles are the same. This 1360 ¥ 1024 pixel
digital camera stores pictures either using CompactFlash memory or using a IBM Microdrive. This photo
was taken using a 340 MB microdrive and a 8 MB CompactFlash memory. As Figure 8.15 shows, in 2004 the
capacities are as large as 1 GB to 4 GB. It is 4.3 inches wide ¥ 2.5 inches high ¥ 1.6 inches deep, and it weighs
7.4 ounces. In addition to taking a still picture and converting it to JPEG format every 0.9 seconds, it can
record a Quick Time video clip at VGA size (640 ¥ 480). One technological advantage is the use of a custom
system on a chip to reduce size and power, so the camera only needs two AA batteries to operate versus four
in other digital cameras.



604 Chapter 8

When powered on, the microprocessor first runs diagnostics on all compo-
nents and writes any error messages to the liquid crystal display (LCD) on the
back of the camera. This camera uses a 1.8-inch low-temperature polysilicon TFT
color LCD. When photographers take pictures, they first hold the shutter halfway
so that the microprocessor can take a light reading. The microprocessor then
keeps the shutter open to get the necessary light, which is captured by a charged-
couple device (CCD) as red, green, and blue pixels. 

For the camera in Figure 8.14, the CCD is a 1/2-inch, 1360 ¥ 1024 pixel, pro-
gressive-scan chip. The pixels are scanned out row by row and then passed
through routines for white balance, color, and aliasing correction, and then stored
in a 4 MB frame buffer. The next step is to compress the image into a standard for-
mat, such as JPEG, and store it in the removable Flash memory. The photographer
picks the compression, in this camera called either fine or normal, with a com-
pression ratio of 10 to 20 times. A fine-quality compressed image takes less than
0.5 MB, and a normal-quality compressed image takes about 0.25 MB. The micro-
processor then updates the LCD display to show that there is room for one less
picture.

Although the previous paragraph covers the basics of a digital camera, there are
many more features that are included: showing the recorded images on the color
LCD display; sleep mode to save battery life; monitoring battery energy; buffering
to allow recording a rapid sequence of uncompressed images; and, in this camera,
video recording using MPEG format and audio recording using WAV format. 

This camera allows the photographer to use a Microdrive disk instead of Com-
pactFlash memory. Figure 8.15 compares CompactFlash and the IBM Microdrive.

Characteristics

Sandisk Type I
CompactFlash
SDCFB-128-768

Sandisk Type II
CompactFlash
SDCFB-1000-768

Hitachi 4 GB 
Microdrive
DSCM-10340

Formatted data capacity (MB) 128 1000 4000

Bytes per sector 512 512 512

Data transfer rate (MB/sec) 4 (burst) 4 (burst) 4–7

Link speed to buffer (MB/sec) 6 6 33

Power standby/operating (W) 0.15/0.66 0.15/0.66 0.07/0.83

Size: height ¥ width ¥ depth (inches) 1.43 ¥ 1.68 ¥ 0.13 1.43 ¥ 1.68 ¥ 0.13 1.43 ¥ 1.68 ¥ 0.16

Weight in grams (454 grams/pound) 11.4 13.5 16

Write cycles before sector wear-out 300,000 300,000 not applicable

Mean time between failures (hours) > 1,000,000 > 1,000,000 (see caption)

Best price (2004) $40 $200 $480

FIGURE 8.15 Characteristics of three storage alternatives for digital cameras. Hitachi
matches the Type II form factor in the Microdrive, while the CompactFlash card uses that space to include
many more Flash chips. Hitachi does not quote MTTF for the 1.0-inch drives, but the service life is five
years or 8800 powered-on hours, whichever is first. They rotate at 3600 RPM and have 12 ms seek times.
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The CompactFlash standard package was proposed by Sandisk Corporation in
1994 for the PCMCIA-ATA cards of portable PCs. Because it follows the ATA
interface, it simulates a disk interface including seek commands, logical tracks,
and so on. It includes a built-in controller to support many types of Flash memory
and to help with chip yield for Flash memories by mapping out bad blocks.

The electronic brain of this camera is an embedded computer with several spe-
cial functions embedded on the chip. Figure 8.16 shows the block diagram of a
chip similar to the one in the camera. Such chips have been called systems on a
chip (SOC) because they essentially integrate into a single chip all the parts that
were found on a small printed circuit board of the past. SOC generally reduces
size and lowers power compared to less integrated solutions. The manufacturer
claims the SOC enables the camera to operate on half the number of batteries and
to offer a smaller form factor than competitors’ cameras.  

FIGURE 8.16 The system on a chip (SOC) found in Sanyo digital cameras. This block dia-
gram is for the predecessor of the SOC in the camera in Figure 8.14. The successor SOC, called Super
Advanced IC, uses three buses instead of two, operates at 60 MHz, consumes 800 mW, and fits 3.1M transis-
tors in a 10.2 ¥ 10.2 mm die using a 0.35-micron process. Note that this embedded system has twice as
many transistors as the state-of-the-art, high-performance microprocessor in 1990! The SOC in the figure is
limited to processing 1024 ¥ 768 pixels, but its successor supports 1360 ¥ 1024 pixels. (See Okada, Matsuda,
Yamada, and Kobayashi [1999]). 
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For higher performance, it has two buses. The 16-bit bus is for the many slower
I/O devices: Smart Media interface, program and data memory, and DMA. The
32-bit bus is for the SDRAM, the signal processor (which is connected to the
CCD), the Motion JPEG encoder, and the NTSC/PAL encoder (which is con-
nected to the LCD). Unlike desktop microprocessors, note the large variety of I/O
buses that this chip must integrate. The 32-bit RISC MPU is a proprietary design
and runs at 28.8 MHz, the same clock rate as the buses. This 700 mW chip con-
tains 1.8M transistors in a 10.5 ¥ 10.5 mm die implemented using a 0.35-micron
process.

Fallacy: The rated mean time to failure of disks is 1,200,000 hours or almost 140
years, so disks practically never fail.

The current marketing practices of disk manufacturers can mislead users. How is
such an MTTF calculated? Early in the process manufacturers will put thousands
of disks in a room, run them for a few months, and count the number that fail.
They compute MTTF as the total number of hours that the disks were cumula-
tively up divided by the number that failed.

One problem is that this number far exceeds the lifetime of a disk, which is
commonly assumed to be five years or 43,800 hours. For this large MTTF to make
some sense, disk manufacturers argue that the calculation corresponds to a user
who buys a disk, and then keeps replacing the disk every five years—the planned
lifetime of the disk. The claim is that if many customers (and their great-
grandchildren) did this for the next century, on average they would replace a disk
27 times before a failure, or about 140 years.

A more useful measure would be percentage of disks that fail. Assume 1000
disks with a 1,200,000-hour MTTF and that the disks are used 24 hours a day. If
you replaced failed disks with a new one having the same reliability characteristics,
the number that would fail over five years (43,800 hours) is 

Stated alternatively, 3.6% would fail over the 5-year period.

Pitfall: Using the peak transfer rate of a portion of the I/O system to make perfor-
mance projections or performance comparisons.

Many of the components of an I/O system, from the devices to the controllers to
the buses, are specified using their peak bandwidths. In practice, these peak band-
width measurements are often based on unrealistic assumptions about the system

8.9 Fallacies and Pitfalls 8.9

Failed disks 1000 drives 43,800 hours/drive¥
1,200,000 hours/failure

------------------------------------------------------------------------ 36==
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or are unattainable because of other system limitations. For example, in quoting
bus performance, the peak transfer rate is sometimes specified using a memory
system that is impossible to build. For networked systems, the software overhead
of initiating communication is ignored.

The 32-bit, 33 MHz PCI bus has a peak bandwidth of about 133 MB/sec. In
practice, even for long transfers, it is difficult to sustain more than about 80
MB/sec for realistic memory systems. As mentioned above, users of wireless net-
works typically achieve only about a third of the peak bandwidth.

Amdahl’s law also reminds us that the throughput of an I/O system will be lim-
ited by the lowest-performance component in the I/O path.

Fallacy: Magnetic disk storage is on its last legs and will be replaced shortly.

This is both a fallacy and a pitfall. Such claims have been made constantly for the
past 20 years, though the string of failed alternatives in recent years seems to have
reduced the level of claims for the death of magnetic storage. Among the unsuc-
cessful contenders are magnetic bubble memories, optical storage, and holo-
graphic storage. None of these systems has matched the combination of
characteristics that favor magnetic disks: high reliability, nonvolatility, low cost,
reasonable access time, and rapid improvement. Magnetic storage technology
continues to improve at the same—or faster—pace that it has sustained over the
past 25 years.

Pitfall: Using magnetic tapes to back up disks.

Once again, this is both a fallacy and a pitfall. 
Magnetic tapes have been part of computer systems as long as disks because

they use similar technology as disks, and hence historically have followed the same
density improvements. The historic cost-performance difference between disks
and tapes is based on a sealed, rotating disk having lower access time than sequen-
tial tape access but removable spools of magnetic tape mean many tapes can be
used per reader and they can be very long and so have high capacity. Hence, in the
past a single magnetic tape could hold the contents of many disks, and since it was
10 to 100 times cheaper per gigabyte than disks, it was a useful backup medium.

The claim was that magnetic tapes must track disks since innovations in disks
must help tapes. This claim was important because tapes were a small market and
could not afford a separate large research and development effort. One reason the
market is small is that desktop owners generally do not back up disks onto tape,
and so while desktops are by far the largest market for disks, desktops are a small
market for tapes. 

Alas, the larger market has led disks to improve much more quickly than tapes.
Starting in 2000 to 2002, the largest popular disk was larger than the largest popu-
lar tape. In that same time frame, the price per gigabyte of ATA disks dropped
below that of tapes. Tape apologists now claim that tapes have compatibility
requirements that are not imposed on disks; tape readers must read or write the
current and previous generation of tapes, and must read the last four generations
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of tapes. As disks are closed systems, disk heads need only read the platters
enclosed with them, and this advantage explains why disks are improving much
more rapidly. 

Today, some organizations have dropped tapes altogether, using networks and
remote disks to replicate the data geographically. The sites are picked so that disas-
ters would not take out both sites, enabling instantaneous recovery time. (Long
recovery time is another serious drawback to the serial nature of magnetic tapes.)
Such a solution depends on advances in disk capacity and network bandwidth to
make economic sense, but these two are getting much greater investment and
hence have better recent records of accomplishment than tape.

Fallacy: A 100 MB/sec bus can transfer 100 MB of data in 1 second. 

First, you generally cannot use 100% of any computer resource. For a bus, you
would be fortunate to get 70% to 80% of the peak bandwidth. Time to send the
address, time to acknowledge the signals, and stalls while waiting to use a busy bus
are among the reasons you cannot use 100% of a bus. 

Second, the definition of a megabyte of storage and a megabyte per second of
bandwidth do not agree. As we discussed on page 597, I/O bandwidth measures
are usually quoted in base 10 (i.e., 1 MB/sec = 106

 

 bytes/sec), while 1 MB of data
is typically a base 2 measure (i.e., 1 MB = 220 bytes). How significant is this dis-
tinction? If we could use 100% of the bus for data transfer, the time to transfer 100
MB of data on a 100-MB/sec bus is actually 

1.05 second

A similar but larger error is introduced when we treat a gigabyte of data trans-
ferred or stored as equivalent, meaning 109 versus 230 bytes.

Pitfall: Trying to provide features only within the network versus end to end.

The concern is providing at a lower level features that can only be accomplished at
the highest level, thus only partially satisfying the communication demand.
Saltzer, Reed, and Clark [1984] give the end-to-end argument as

The function in question can completely and correctly be specified only with the 
knowledge and help of the application standing at the endpoints of the commu-
nication system. Therefore, providing that questioned function as a feature of 
the communication system itself is not possible. 

Their example of the pitfall was a network at MIT that used several gateways, each
of which added a checksum from one gateway to the next. The programmers of
the application assumed the checksum guaranteed accuracy, incorrectly believing
that the message was protected while stored in the memory of each gateway. One
gateway developed a transient failure that swapped one pair of bytes per million

100 2
20¥

100 10
6¥

-------------------- 1,048,576
1,000,000
--------------------- 1.048576 ª= =
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bytes transferred. Over time the source code of one operating system was repeat-
edly passed through the gateway, thereby corrupting the code. The only solution
was to correct the infected source files by comparing to paper listings and repair-
ing the code by hand! Had the checksums been calculated and checked by the
application running on the end systems, safety would have been assured.

There is a useful role for intermediate checks, however, provided that end-to-
end checking is available. End-to-end checking may show that something is broken
between two nodes, but it doesn’t point to where the problem is. Intermediate
checks can discover what is broken. You need both for repair.

Pitfall: Moving functions from the CPU to the I/O processor, expecting to improve
performance without a careful analysis. 

There are many examples of this pitfall trapping people, although I/O processors,
when properly used, can certainly enhance performance. A frequent instance of
this fallacy is the use of intelligent I/O interfaces, which, because of the higher
overhead to set up an I/O request, can turn out to have worse latency than a pro-
cessor-directed I/O activity (although if the processor is freed up sufficiently, sys-
tem throughput may still increase). Frequently, performance falls when the I/O
processor has much lower performance than the main processor. Consequently, a
small amount of main processor time is replaced with a larger amount of I/O pro-
cessor time. Workstation designers have seen both these phenomena repeatedly. 

Myer and Sutherland [1968] wrote a classic paper on the trade-off of complex-
ity and performance in I/O controllers. Borrowing the religious concept of the
“wheel of reincarnation,” they eventually noticed they were caught in a loop of
continuously increasing the power of an I/O processor until it needed its own sim-
pler coprocessor:

We approached the task by starting with a simple scheme and then adding com-
mands and features that we felt would enhance the power of the machine. 
Gradually the [display] processor became more complex . . . . Finally the display 
processor came to resemble a full-fledged computer with some special graphics 
features. And then a strange thing happened. We felt compelled to add to the 
processor a second, subsidiary processor, which, itself, began to grow in com-
plexity. It was then that we discovered the disturbing truth. Designing a display 
processor can become a never-ending cyclical process. In fact, we found the pro-
cess so frustrating that we have come to call it the “wheel of reincarnation.”

I/O systems are evaluated on several different characteristics: dependability; the
variety of I/O devices supported; the maximum number of I/O devices; cost; and

8.10 Concluding Remarks 8.10
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performance, measured both in latency and in throughput. These goals lead to
widely varying schemes for interfacing I/O devices. In the low-end and midrange
systems, buffered DMA is likely to be the dominant transfer mechanism. In the
high-end systems, latency and bandwidth may both be important, and cost may
be secondary. Multiple paths to I/O devices with limited buffering often charac-
terize high-end I/O systems. Typically, being able to access the data on an I/O
device at any time (high availability) becomes more important as systems grow. As
a result, redundancy and error correction mechanisms become more and more
prevalent as we enlarge the system.

Storage and networking demands are growing at unprecedented rates, in part
because of increasing demands for all information to be at your fingertips. One
estimate is that the amount of information created in 2002 was 5 exabytes—
equivalent to 500,000 copies of the text in the U.S. Library of Congress—and that
the total amount of information in the world doubled in the last three years
[Lyman and Varian 2003].

Future directions of I/O include expanding the reach of wired and wireless net-
works, with nearly every device potentially having an IP address, and the continu-
ing transformation from parallel buses to serial networks and switches. However,
consolidation in the disk industry may lead to a slowdown in improvement in disk
capacity to earlier rates, which have doubled every year between 2000 and 2004.

Understanding
Program

Performance

The performance of an I/O system, whether measured by bandwidth or latency,
depends on all the elements in the path between the device and memory, includ-
ing the operating system that generates the I/O commands. The bandwidth of the
buses, the memory, and the device determine the maximum transfer rate from or
to the device. Similarly, the latency depends on the device latency, together with
any latency imposed by the memory system or buses. The effective bandwidth and
response latency also depend on other I/O requests that may cause contention for
some resource in the path. Finally, the operating system is a bottleneck. In some
cases, the OS takes a long time to deliver an I/O request from a user program to an
I/O device, leading to high latency. In other cases, the operating system effectively
limits the I/O bandwidth because of limitations in the number of concurrent I/O
operations it can support.

Keep in mind that while performance can help sell an I/O system, users over-
whelmingly demand dependability and capacity from their I/O systems.
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The history of I/O systems is a fascinating one. This  Section 8.11 gives a brief
history of magnetic disks, RAID, databases, the Internet, the World Wide Web,
and how Ethernet continues to triumph over its challengers.

8.1 [10] <§§8.1–8.2> Here are two different I/O systems intended for use in
transaction processing:

■ System A can support 1500 I/O operations per second.

■ System B can support 1000 I/O operations per second.

The systems use the same processor that executes 500 million instructions per sec-
ond. Assume that each transaction requires 5 I/O operations and that each I/O
operation requires 10,000 instructions. Ignoring response time and assuming that
transactions may be arbitrarily overlapped, what is the maximum transaction-
per-second rate that each machine can sustain? 

8.2 [15] <§§8.1–8.2> The latency of an I/O operation for the two systems in Exer-
cise 8.1 differs. The latency for an I/O on system A is equal to 20 ms, while for sys-
tem B the latency is 18 ms for the first 500 I/Os per second and 25 ms per I/O for
each I/O between 500 and 1000 I/Os per second. In the workload, every 10th trans-
action depends on the immediately preceding transaction and must wait for its
completion. What is the maximum transaction rate that still allows every transac-
tion to complete in 1 second and that does not exceed the I/O bandwidth of the
machine? (For simplicity, assume that all transaction requests arrive at the begin-
ning of a 1-second interval.)

8.3 [5] <§§8.1–8.2> Suppose we want to use a laptop to send 100 files of approx-
imately 40 MB each to another computer over a 5 Mbit/sec wireless connection.
The laptop battery currently holds 100,000 oules of energy. The wireless network-
ing card alone consumes 5 watts while transmitting, while the rest of the laptop
always consumes 35 watts. Before each file transfer we need 10 seconds to choose
which file to send. How many complete files can we transfer before the laptop's
battery runs down to zero?

Historical Perspective and Further 
Reading 8.11

8.12 Exercises 8.12

8.11
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8.4 [10] <§§8.1–8.2> Consider the laptop's hard disk power consumption in
Exercise 8.3. Assume that it is no longer constant, but varies between 6 watts when
it is spinning and 1 watt when it is not spinning. The power consumed by the lap-
top apart from the hard disk and wireless card is a constant 32 watts. Suppose that
the hard disk's transfer rate is 50 MB/sec, its delay before it can begin transfer is 20
ms, and at all other times it does not spin. How many complete files can we transfer
before the laptop's battery runs down to zero? How much energy would we need
to send all 100 files? (Consider that the wireless card cannot send data until it is in
memory.)

8.5 [5] <§8.3> The following simplified diagram shows two potential ways of
numbering the sectors of data on a disk (only two tracks are shown and each track
has eight sectors). Assuming that typical reads are contiguous (e.g., all 16 sectors
are read in order), which way of numbering the sectors will be likely to result in
higher performance? Why?

8.6 [20] <§8.3> In this exercise, we will run a program to evaluate the behavior of
a disk drive. Disk sectors are addressed sequentially within a track, tracks sequen-
tially within cylinders, and cylinders sequentially within the disk. Determining
head switch time and cylinder switch time is difficult because of rotational effects.
Even determining platter count, sectors/track, and rotational delay is difficult
based on observation of typical disk workloads. 

The key is to factor out disk rotational effects by making consecutive seeks to indi-
vidual sectors with addresses that differ by a linearly increasing amount starting
with 0, 1, 2, and so forth. The Skippy algorithm, from work by Nisha Talagala and
colleagues of U.C. Berkeley [2000], is
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fd = open(“raw disk device”);
for (i = 0; i < measurements; i++) {
     //time the following sequence, and output <i, time>
     lseek(fd, i * SINGLE_SECTOR, SEEK_CUR);
     write(fd, buffer, SINGLE_SECTOR);
}
close(fd);

The basic algorithm skips through the disk, increasing the distance of the seek by
one sector before every write, and outputs the distance and time for each write.
The raw device interface is used to avoid file system optimizations. SINGLE_
SECTOR is the size of a single sector in bytes. The SEEK_CUR argument to lseek
moves the file pointer an amount relative to the current pointer. A technical
report describing Skippy and two other disk drive benchmarks (run in seconds or
minutes rather than hours or days) is at http://sunsite.berkeley.edu/Dienst /UI/2.0/
Describe/ncstrl.ucb/CSD-99-1063.

Run the Skippy algorithm on a disk drive of your choosing.

a. What is the number of heads? 

b. The number of platters?

c. What is the rotational latency?

d. What is the head switch time (the time to switch the head that is reading
from one disk surface to another without moving the arm; that is, in the
same cylinder)?

e. What is the cylinder switch time? (It is the time to move the arm to the next
sequential cylinder.)

8.7 [20] <§8.3> Figure 8.17 shows the output from running the benchmark
Skippy on a disk. 

a. What is the number of heads? 

b. The number of platters?

c. What is the rotational latency?

d. What is the head switch time (the time to switch the head that is reading
from one disk surface to another without moving the arm; that is, in the
same cylinder)?

e. What is the cylinder switch time (the time to move the arm to the next
sequential cylinder)?
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8.8 [10] <§8.3> Consider two RAID disk systems that are meant to store 10 ter-
abytes of data (not counting any redundancy). System A uses RAID 1 technology,
and System B uses RAID 5 technology with four disks in a “protection group.”

a. How many more terabytes of storage are needed in System A than in System
B?

b. Suppose an application writes one block of data to the disk. If reading or
writing a block takes 30 ms, how much time will the write take on System A
in the worst case? How about on System B in the worst case?

c. Is System A more reliable that System B? Why or why not?

8.9 [15] <§8.3> What can happen to a RAID 5 system if the power fails between
the write update to the data block and the write update to the check block so that
only one of the two is successfully written? What could be done to prevent this
from happening?

8.10 [5] <§8.3> The speed of light is approximately 3 ¥ 108 meters per second,
and electrical signals travel at about 50% of this speed in a conductor. When the

FIGURE 8.17  Example output of Skippy for a hypothetical disk.
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term high speed is applied to a network, it is the bandwidth that is higher, not nec-
essarily the velocity of the electrical signals. How much of a factor is the actual
“flight time” for the electrical signals? Consider two computers that are 20 meters
apart and two computers that are 2000 kilometers apart. Compare your results to
the latencies reported in the example on page 8.3-7 in  Section 8.3.

8.11 [5] <§8.3> The number of bytes in transit on a network is defined as the
flight time (described in Exercise 8.10) multiplied by the delivered bandwidth. Cal-
culate the number of bytes in transit for the two networks described in Exercise
8.10, assuming a delivered bandwidth of 6 MB/sec.

8.12 [5] <§8.3> A secret agency simultaneously monitors 100 cellular phone con-
versations and multiplexes the data onto a network with a bandwidth of 5 MB/sec
and an overhead latency of 150 ms per 1 KB message. Calculate the transmission
time per message and determine whether there is sufficient bandwidth to support
this application. Assume that the phone conversation data consists of 2 bytes sam-
pled at a rate of 4 KHz.

8.13 [5] <§8.3> Wireless networking has a much higher bit error rate (BER) than
wired networking. One way to cope with a higher BER is to use an error correcting
code (ECC) on the transmitted data. A very simple ECC is to triplicate each bit,
encoding each zero as 000 and each one as 111. When an encoded 3-bit pattern is
received, the system chooses the most likely original bit.

a. If the system received 001, what is the most likely value of the original bit?

b. If 000 was sent but a double-bit error causes it to be received as 110, what
will the receiver believe was the original bit's value?

c. How many bit errors can this simple ECC correct?

d. How many bit errors can this ECC detect?

e. If 1 out of every 100 bits sent over the network is incorrect, what percentage
of bit errors would a receiver using this ECC not detect?

8.14 [5] <§8.3> There are two types of parity: even and odd. A binary word with
even parity and no errors will have an even number of 1s in it, while a word with
odd parity and no errors will have an odd number of 1's in it. Compute the parity
bit for each of the following 8-bit words if even parity is used:

a. 01100111

b. 01010101

8.15 [10] <§8.3>

a. If a system uses even parity, and the word 0111 is read from the disk, can we
tell if there is a single-bit error?
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b. If a system uses odd parity, and the word 0101 appears on the processor-
memory bus, we suspect that a single-bit error has occurred. Can we tell
which bit the error occurs in? Why or why not?

c. If a system uses even parity and the word 0101 appears on the processor-
memory bus, can we tell if there is a double-bit error?

8.16 [10] <§8.3> A program repeatedly performs a three-step process: It reads in
a 4 KB block of data from disk, does some processing on that data, and then writes
out the result as another 4 KB block elsewhere on the disk. Each block is contiguous
and randomly located on a single track on the disk. The disk drive rotates at 10,000
RPM, has an average seek time of 8 ms, and has a transfer rate of 50 MB/sec. The
controller overhead is 2 ms. No other program is using the disk or processor, and
there is no overlapping of disk operation with processing. The processing step
takes 20 million clock cycles, and the clock rate is 5 GHz. What is the overall speed
of the system in blocks processed per second?

8.17 [5] <§8.4> The OSI network protocol is a hierarchy of layers of abstraction,
creating an interface between network applications and the physical wires. This is
similar to the levels of abstraction used in the ISA interface between software and
hardware. Name three advantages to using abstraction in network protocol design.

8.18 [5] <§§8.3, 8.5> Suppose we have a system with the following characteris-
tics:

1. A memory and bus system supporting block access of 4 to 16 32-bit words. 

2. A 64-bit synchronous bus clocked at 200 MHz, with each 64-bit transfer
taking 1 clock cycle, and 1 clock cycle required to send an address to mem-
ory.

3. Two clock cycles needed between each bus operation. (Assume the bus is
idle before an access.)

4. A memory access time for the first four words of 200 ns; each additional set
of four words can be read in 20 ns.

Assume that the bus and memory systems described above are used to handle disk
accesses from disks like the one described in the example on page 570. If the I/O is
allowed to consume 100% of the bus and memory bandwidth, what is the maxi-
mum number of simultaneous disk transfers that can be sustained for the two
block sizes?

8.19 [5] <§8.5> In the system described in Exercise 8.18, the memory system
took 200 ns to read the first four words, and each additional four words required
20 ns. Assuming that the memory system takes 150 ns to read the first four words
and 30 ns to read each additional four words, find the sustained bandwidth and the
latency for a read of 256 words for transfers that use 4-word blocks and for trans-
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fers that use 16-word blocks. Also compute the effective number of bus transac-
tions per second for each case.

8.20 [5] <§8.5> Exercise 8.19 demonstrates that using larger block sizes results in
an increase in the maximum sustained bandwidth that can be achieved. Under
what conditions might a designer tend to favor smaller block sizes? Specifically,
why would a designer choose a block size of 4 instead of 16 (assuming all of the
characteristics are as identified in Exercise 8.19)?

8.21 [15] <§8.5> This question examines in more detail how increasing the block
size for bus transactions decreases the total latency required and increases the max-
imum sustainable bandwidth. In Exercise 8.19, two different block sizes are con-
sidered (4 words and 16 words). Compute the total latency and the maximum
bandwidth for all of the possible block sizes (between 4 and 16) and plot your
results. Summarize what you learn by looking at your graph.

8.22 [15] <§8.5> This exercise is similar to Exercise 8.21. This time fix the block
size at 4 and 16 (as in Exercise 8.19), but compute latencies and bandwidths for
reads of different sizes. Specifically, consider reads of from 4 to 256 words, and use
as many data points as you need to construct a meaningful graph. Use your graph
to help determine at what point block sizes of 16 result in a reduced latency when
compared with block sizes of 4.

8.23 [10] <§8.5> This exercise examines a design alternative to the system
described in Exercise 8.18 that may improve the performance of writes. For writes,
assume all of the characteristics reported in Exercise 8.18 as well as the following:

The first 4 words are written 200 ns after the address is available, and each
new write takes 20 ns. Assume a bus transfer of the most recent data to
write, and a write of the previous 4 words can be overlapped.

The performance analysis reported in the example would thus remain unchanged
for writes (in actuality, some minor changes might exist due to the need to com-
pute error correction codes, etc., but we'll ignore this). An alternative bus scheme
relies on separate 32-bit address and data lines. This will permit an address and
data to be transmitted in the same cycle. For this bus alternative, what will the
latency of the entire 256-word transfer be? What is the sustained bandwidth? Con-
sider block sizes of 4 and 8 words. When do you think the alternative scheme
would be heavily favored? 

8.24 <20> <§8.5> Consider an asynchronous bus used to interface an I/O
device to the memory system described in Exercise 8.18. Each I/O request asks
for 16 words of data from the memory, which, along with the I/O device, has a
4-word bus. Assume the same type of handshaking protocol as appears in Figure
8.10 on page 584 except that it is extended so that the memory can continue the
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transaction by sending additional blocks of data until the transaction is com-
plete. Modify Figure 8.10 (both the steps and diagram) to indicate how such a
transfer might take place. Assuming that each handshaking step takes 20 ns and
memory access takes 60 ns, how long does it take to complete a transfer? What is
the maximum sustained bandwidth for this asynchronous bus, and how does it
compare to the synchronous bus in the example?

8.25 [1 day–1 week] <§§8.2–8.5>  For More Practice: Writing Code to Bench-
mark I/O Performance

8.26 [3 days–1 week] <§§8.3–8.5>  In More Depth: Ethernet Simulation

8.27 [15] <§8.5> We want to compare the maximum bandwidth for a synchro-
nous and an asynchronous bus. The synchronous bus has a clock cycle time of
50 ns, and each bus transmission takes 1 clock cycle. The asynchronous bus requires
40 ns per handshake. The data portion of both buses is 32 bits wide. Find the band-
width for each bus when performing one-word reads from a 200-ns memory.

8.28 [20] <§8.5> Suppose we have a system with the following characteristics:

1. A memory and bus system supporting block access of 4 to 16 32-bit words. 

2. A 64-bit synchronous bus clocked at 200 MHz, with each 64-bit transfer
taking 1 clock cycle, and 1 clock cycle required to send an address to mem-
ory.

3. Two clock cycles needed between each bus operation. (Assume the bus is
idle before an access.)

4. A memory access time for the first four words of 200 ns; each additional set
of four words can be read in 20 ns. Assume that a bus transfer of the most
recently read data and a read of the next four words can be overlapped.

Find the sustained bandwidth and the latency for a read of 256 words for transfers
that use 4-word blocks and for transfers that use 16-word blocks. Also compute
the effective number of bus transactions per second for each case. Recall that a
single bus transaction consists of an address transmission followed by data.

8.29 [10] <§8.5> Let’s determine the impact of polling overhead for three differ-
ent devices. Assume that the number of clock cycles for a polling operation—
including transferring to the polling routine, accessing the device, and restarting
the user program—is 400 and that the processor executes with a 500-MHz clock.

Determine the fraction of CPU time consumed for the following three cases,
assuming that you poll often enough so that no data is ever lost and assuming that
the devices are potentially always busy:

1. The mouse must be polled 30 times per second to ensure that we do not
miss any movement made by the user.
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2. The floppy disk transfers data to the processor in 16-bit units and has a data
rate of 50 KB/sec. No data transfer can be missed. 

3. The hard disk transfers data in four-word chunks and can transfer at
4 MB/sec. Again, no transfer can be missed.

8.30 [15] <§§8.3–8.6> For the I/O system described in Exercise 8.45, find the
maximum instantaneous bandwidth at which data can be transferred from disk to
memory using as many disks as needed. How many disks and I/O buses (the min-
imum of each) do you need to achieve the bandwidth? Since you need only achieve
this bandwidth for an instant, latencies need not be considered.

8.31 [20] <§§8.3–8.6>  In More Depth: Disk Arrays versus Single Disk

8.32 [10] <§§8.3–8.6>  In More Depth: Disk Arrays Bandwidth

8.33 [5] <§8.6> Suppose you are designing a microprocessor that uses special
instructions to access I/O devices (instead of mapping the devices to memory
addresses). What special instructions would you need to include? What additional
bus lines would you need this microprocessor to support in order to address I/O
devices?

8.34 <§8.6> An important advantage of interrupts over polling is the ability of
the processor to perform other tasks while waiting for communication from an I/O
device. Suppose that a 1 GHz processor needs to read 1000 bytes of data from a par-
ticular I/O device. The I/O device supplies 1 byte of data every 0.02 ms. The code
to process the data and store it in a buffer takes 1000 cycles.

a. If the processor detects that a byte of data is ready through polling, and a
polling iteration takes 60 cycles, how many cycles does the entire operation
take?

b. If instead, the processor is interrupted when a byte is ready, and the proces-
sor spends the time between interrupts on another task, how many cycles of
this other task can the processor complete while the I/O communication is
taking place? The overhead for handling an interrupt is 200 cycles.

8.35 [20] <§§8.3–8.6>  For More Practice: Finding I/O Bandwidth Bottlenecks

8.36 [15] <§§8.3–8.6>  For More Practice: Finding I/O Bandwidth Bottlenecks

8.37 [15] <§§7.3, 7.5, 8.5, 8.6>  For More Practice: I/O System Operation

8.38 [10] <§8.6> Write a paragraph identifying some of the simplifying assump-
tions made in the analysis below:

Suppose we have a processor that executes with a 500-MHz clock and the number
of clock cycles for a polling operation—including transferring to the polling rou-
tine, accessing the devise, and restarting the user program—is 400. The hard disk
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transfers data in four-word chunks and can transfer at 4 MB/sec. Assume that you
poll often enough that no data is ever lost and assume that the hard disk is poten-
tially always busy. The initial setup of a DMA transfer takes 1000 clock cycles for
the processor, and the handling of the interrupt at DMA completion requires 500
clock cycles for the processor. The hard disk has a transfer rate of 4 MB/sec and
uses DMA. Ignore any impact from bus contention between the processor and the
DMA controller. Therefore, if the average transfer from the disk is 8 KB, the frac-
tion of the 500-MHz processor consumed if the disk is actively transferring 100%
of the time is 0.2%.

8.39 [8] <§8.6> Suppose we have the same hard disk and processor we used in
Exercise 8.18, but we use interrupt-driven I/O. The overhead for each transfer,
including the interrupt, is 500 clock cycles. Find the fraction of the processor con-
sumed if the hard disk is only transferring data 5% of the time.

8.40 [8] <§8.6> Suppose we have the same processor and hard disk as in Exercise
8.18. Assume that the initial setup of a DMA transfer takes 1000 clock cycles for the
processor, and assume the handling of the interrupt at DMA completion requires
500 clock cycles for the processor. The hard disk has a transfer rate of 4 MB/sec and
uses DMA. If the average transfer from the disk is 8 KB, what fraction of the 500-
MHz processor is consumed if the disk is actively transferring 100% of the time?
Ignore any impact from bus contention between the processor and DMA control-
ler.

8.41 [2 days–1 week] <§8.6, Appendix A>  For More Practice: Using SPIM to
Explore I/O

8.42 [3 days–1 week] <§8.6, Appendix A>  For More Practice: Writing Code
to Perform I/O

8.43 [3 days–1 week] <§8.6, Appendix A>  For More Practice: Writing Code
to Perform I/O

8.44 [15] <§§8.3–8.7> Redo the example on page 601, but instead assume that
the reads are random 8-KB reads. You can assume that the reads are always to an
idle disk, if one is available.

8.45 [20] <§§8.3–8.7> Here are a variety of building blocks used in an I/O system
that has a synchronous processor-memory bus running at 800 MHz and one or
more I/O adapters that interface I/O buses to the processor-memory bus. 

■ Memory system: The memory system has a 32-bit interface and handles
four-word transfers. The memory system has separate address and data lines
and, for writes to memory, accepts a word every clock cycle for 4 clock cycles
and then takes an additional 4 clock cycles before the words have been
stored and it can accept another transaction.
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■ DMA interfaces: The I/O adapters use DMA to transfer the data between the
I/O buses and the processor-memory bus. The DMA unit arbitrates for the
processor-memory bus and sends/receives four-word blocks from/to the
memory system. The DMA controller can accommodate up to eight disks.
Initiating a new I/O operation (including the seek and access) takes 0.1 ms,
during which another I/O cannot be initiated by this controller (but out-
standing operations can be handled).

■ I/O bus: The I/O bus is a synchronous bus with a sustainable bandwidth of
100 MB/sec; each transfer is one word long. 

■ Disks: The disks have a measured average seek plus rotational latency of 8
ms. The disks have a read/write bandwidth of 40 MB/sec, when they are
transferring.

Find the time required to read a 16 KB sector from a disk to memory, assuming
that this is the only activity on the bus.

8.46 [5] <§8.7> In order to perform a disk or network access, it is typically nec-
essary for the user to have the operating system communicate with the disk or net-
work controllers. Suppose that in a particular 5 GHz computer, it takes 10,000
cycles to trap to the OS, 20 ms for the OS to perform a disk access, and 25 μs for
the OS to perform a network access. In a disk access, what percentage of the delay
time is spent in trapping to the OS? How about in a network access?

8.47 [5] <§8.7> Suppose that in the computer in Exercise 8.46 we can somehow
reduce the time for the OS to communicate with the disk controller by 60%, and
we can reduce the time for the OS to communicate with the network by 40%. By
what percentage can we reduce the total time for a network access? By what per-
centage can we reduce the total time for a disk access? Is it worthwhile for us to
spend a lot of effort improving the OS trap latency in a computer that performs
many disk accesses? How about in a computer that performs many network
accesses?

Answers To 
Check
Yourself

§8.2, Page 580: Dependability: 2 and 3. RAID: All are true. 
§8.3, Page 8.3-10: 1. 
§8.4, Page 587: 1 and 2. 
§8.5, Page 597: 1 and 2.
§8.6, Page 600: 1 and 2.



Computers
in the 

Real World

Saving Lives through 
Better Diagnosis

Problem: Find a way to examine internal

organs to diagnose psychological problems

without the use of invasive surgery or harmful

radiation.

Solution: The development of magnetic res-

onance imaging (MRI), a three-dimensional

scanning technology, has been one of the most

important breakthroughs in modern medical

technology. MRI uses a combination of radio-

frequency pulses and magnetic fields to scan

tissue. The organ to be imaged is scanned in a

series of two-dimensional slices, which are

then composed to create a three-dimensional

image. 

In addition to this computationally inten-

sive task of composing the slices to create a

volumetric image, extensive computation is

used to extract the initial two-dimensional

images, since the signal-to-noise ratio is often

low. The development of MRI has allowed the

scanning of soft tissues, such as the brain, for

which X-rays are not as effective and explor-

atory surgery is dangerous. Without a cost-

effective computing capability, MRI would

remain slow and expensive.

The two illustrations shows a series of MRI

images of the human brain; the images below

represent two-dimensional slices, while those on

the facing page show a three-dimensional recon-

struction. Once an image is in digital form, a

physician can manipulate the image, removing

outer layers, examining the image from different

viewpoints, or looking at the three-dimensional

structure to help in diagnosis.

The major benefits of MRI are twofold:

■ It can reduce the need for unnecessary 

exploratory surgery. A physician may be 

able to determine whether a patient ex-

MRI images of a human brain, in two-dimensional view



periencing headaches has a brain tumor, 

which requires surgery, or simply needs 

medication for a headache.

■ By providing a surgeon with an accurate 

three-dimensional image, MRI can im-

prove the surgical planning process and 

hence the outcome. For example, in oper-

ating on the brain to remove a tumor with-

out accurate images of the tumor, the 

surgeon likely would have to enter the 

brain and then create a plan on the fly de-

pending on the size and exact placement of 

the tumor. Furthermore, minimally inva-

sive techniques (e.g. endoscopic surgery), 

which have become quite effective, would 

be impossible without accurate images.

There are many new interesting uses of MRI

technology, which rely on faster and more cost

effective computing. Some of the most prom-

ising are  

■ real-time imaging of the heart and blood 

vessels to enhance diagnosis of cardiac 

and cardiovascular disease;

■ Combining real-time images and MRI 

images during surgery to help surgeons 

accurately perform surgery, particularly 

when using minimally invasive tech-

niques.

■ Functional MRI (FMRI): a new type of 

application that uses MRI to examine 

brain function, primarily by analyzing 

blood flow in various portions of the 

brain. FMRI is being used for a number of 

applications, including exploring the

physiological bases for cognitive problems 

such as dyslexia, pain management, plan-

ning for neurosurgery, and understanding 

neurological disorders. 

To learn more see these references on 
the  library

MRI scans from the National Institutes of Health’s Visi-
ble Human project

Principles of MRI and its application to medical imag-
ing (long and reasonably detailed, but only a little
mathematics)

Using MRI to do real-time cardiac imaging and angiog-
raphy (imaging of blood vessels)

Functional MRI, www.fmri.org/fmri.htm

Visualization and imaging (including MRI and CT
images): high-performance computing for complex
images

MRI images of a human brain in three dimensions
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Glossary

absolute address A variable’s or routine’s 
actual address in memory.
abstraction A model that renders lower-
level details of computer systems tempo-
rarily invisible in order to facilitate design of 
sophisticated systems.
acronym A word constructed by taking the 
initial letters of string of words. For exam-
ple: RAM is an acronym for Random Access 
Memory, and CPU is an acronym for Cen-
tral Processing Unit.
active matrix display A liquid crystal dis-
play using a transistor to control the trans-
mission of light at each individual pixel.
address translation Also called address 
mapping. The process by which a virtual ad-
dress is mapped to an address used to access 
memory.
address A value used to delineate the loca-
tion of a specific data element within a 
memory array.
addressing mode One of several address-
ing regimes delimited by their varied use of 
operands and/or addresses.
advanced load In IA-64, a speculative load 
instruction with support to check for aliases 
that could invalidate the load.
aliasing A situation in which the same ob-
ject is accessed by two addresses; can occur 
in virtual memory when there are two virtu-
al addresses for the same physical page.
alignment restriction A requirement that 
data be aligned in memory on natural 
boundaries

Amdahl’s law A rule stating that the per-
formance enhancement possible with a giv-
en improvement is limited by the amount 
that the improved feature is used.
antidependence Also called name depen-
dence. An ordering forced by the reuse of a 
name, typically a register, rather then by a 
true dependence that carries a value be-
tween two instructions.
antifuse A structure in an integrated cir-
cuit that when programmed makes a per-
manent connection between two wires.
application binary interface (ABI) The
user portion of the instruction set plus 
the operating system interfaces used by 
application programmers. Defines a 
standard for binary portability across 
computers.
architectural registers The instruction set 
visible registers of a processor; for example, 
in MIPS, these are the 32 integer and 16 
floating-point registers.
arithmetic mean The average of the execu-
tion times that is directly proportional to 
total execution time.
assembler directive An operation that tells 
the assembler how to translate a program 
but does not produce machine instructions; 
always begins with a period.
assembler A program that translates a 
symbolic version of instructions into the bi-
nary version.
assembly language A symbolic language 
that can be translated into binary.
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asserted signal A signal that is (logically) 
true, or 1.
asynchronous bus A bus that uses a hand-
shaking protocol for coordinating usage 
rather than a clock; can accommodate a 
wide variety of devices of differing speeds.
atomic swap operation An operation in 
which the processor can both read a loca-
tion and write it in the same bus operation, 
preventing any other processor or I/O 
device from reading or writing memory un-
til it completes.
backpatching A method for translating 
from assembly language to machine in-
structions in which the assembler builds a 
(possibly incomplete) binary representation 
of every instruction in one pass over a pro-
gram and then returns to fill in previously 
undefined labels.
backplane bus A bus that is designed to al-
low processors, memory, and I/O devices to 
coexist on a single bus.
barrier synchronization A synchroniza-
tion scheme in which processors wait at the 
barrier and do not proceed until every pro-
cessor has reached it.
basic block A sequence of instructions 
without branches (except possibly at the 
end) and without branch targets or 
branch labels (except possibly at the 
beginning).
behavioral specification Describes how a 
digital system operates functionally.
biased notation A notation that represents 
the most negative value by 00 . . . 000two and 
the most positive value by 11 . . . 11two, with 
0 typically having the value 10 . . . 00two,
thereby biasing the number such that the 
number plus the bias has a nonnegative 
representation.
binary digit Also called a bit. One of the 
two numbers in base 2 (0 or 1) that are the 
components of information.

bit error rate The fraction in bits of a 
message or collection of messages that is 
incorrect.
block The minimum unit of information 
that can be either present or not present in 
the two-level hierarchy.
blocking assignment In Verilog, an assign-
ment that completes before the execution of 
the next statement.
branch delay slot The slot directly after a 
delayed branch instruction, which in the 
MIPS architecture is filled by an instruction 
that does not affect the branch.
branch not taken A branch where the 
branch condition is false and the program 
counter (PC) becomes the address of the in-
struction that sequentially follows the 
branch.
branch prediction A method of resolving a 
branch hazard that assumes a given out-
come for the branch and proceeds from that 
assumption rather than waiting to ascertain 
the actual outcome.
branch prediction buffer Also called 
branch history table. A small memory that 
is indexed by the lower portion of the ad-
dress of the branch instruction and that 
contains one or more bits indicating wheth-
er the branch was recently taken or not.
branch taken A branch where the branch 
condition is satisfied and the program 
counter (PC) becomes the branch target. All 
unconditional branches are taken branches.
branch target address The address speci-
fied in a branch, which becomes the new 
program counter (PC) if the branch is tak-
en. In the MIPS architecture the branch tar-
get is given by the sum of the offset field of 
the instruction and the address of the in-
struction following the branch.
branch target buffer A structure that cach-
es the destination PC or destination instruc-
tion for a branch. It is usually organized as a 
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cache with tags, making it more costly than 
a simple prediction buffer.
bus In logic design, a collection of data 
lines that is treated together as a single logi-
cal signal; also, a shared collection of lines 
with multiple sources and uses.
bus master A unit on the bus that can ini-
tiate bus requests.
bus transaction A sequence of bus opera-
tions that includes a request and may in-
clude a response, either of which may carry 
data. A transaction is initiated by a single re-
quest and may take many individual bus op-
erations.
cache coherency Consistency in the value 
of data between the versions in the caches of 
several processors.
cache coherent NUMACC-NUMA A non-
uniform memory access multiprocessor 
that maintains coherence for all caches.
cache memory A small, fast memory that 
acts as a buffer for a slower, larger memory.
cache miss A request for data from the 
cache that cannot be filled because the data 
is not present in the cache.
callee A procedure that executes a series of 
stored instructions based on parameters 
provided by the caller and then returns con-
trol to the caller.
callee-saved register A register saved by 
the routine making a procedure call.
caller The program that instigates a proce-
dure and provides the necessary parameter 
values.
caller-saved register A register saved by 
the routine being called.
capacity miss A cache miss that occurs be-
cause the cache, even with full associativity, 
cannot contain all the block needed to satis-
fy the request.
carrier signal A continuous signal of a sin-
gle frequency capable of being modulated 
by a second data-carrying signal.

cathode ray tube (CRT) display A display, 
such as a television set, that displays an im-
age using an electron beam scanned across a 
screen.
central processor unit (CPU) Also called 
processor. The active part of the computer, 
which contains the datapath and control 
and which adds numbers, tests numbers, 
signals I/O devices to activate, and so on.
clock cycle Also called tick, clock tick, 
clock period, clock, cycle. The time for one 
clock period, usually of the processor clock, 
which runs at a constant rate.
clock cycles per instruction (CPI) Average
number of clock cycles per instruction for a 
program or program fragment.
clock period The length of each clock cycle.
clock skew The difference in absolute time 
between the times when two state elements 
see a clock edge.
clocking methodology The approach used 
to determine when data is valid and stable 
relative to the clock.
cluster A set of computers connected over 
a local area network (LAN) that function as 
a single large multiprocessor.
combinational logic A logic system whose 
blocks do not contain memory and hence 
compute the same output given the same 
input.
commit unit The unit in a dynamic or out-
of-order execution pipeline that decides 
when it is safe to release the result of an op-
eration to programmer-visible registers and 
memory.
compiler A program that translates high-
level language statements into assembly 
language statements.
compulsory miss Also called cold start 
miss. A cache miss caused by the first access 
to a block that has never been in the cache.
conditional branch An instruction that re-
quires the comparison of two values and 
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that allows for a subsequent transfer of con-
trol to a new address in the program based 
on the outcome of the comparison.
conflict miss Also called collision miss. A 
cache miss that occurs in a set-associative or 
direct-mapped cache when multiple blocks 
compete for the same set and that are elim-
inated in a fully associative cache of the 
same size.
constellation A cluster that uses an SMP as 
the building block.
context switch A changing of the internal 
state of the processor to allow a different 
process to use the processor that includes 
saving the state needed to return to the cur-
rently executing process.
control The component of the processor 
that commands the datapath, memory, and 
I/O devices according to the instructions of 
the program.
control hazard Also called branch hazard.
An occurrence in which the proper instruc-
tion cannot execute in the proper clock cy-
cle because the instruction that was fetched 
is not the one that is needed; that is, the flow 
of instruction addresses is not what the 
pipeline expected.
control signal A signal used for multiplex-
or selection or for directing the operation of 
a functional unit; contrasts with a data sig-
nal, which contains information that is op-
erated on by a functional unit.
correlating predictor A branch predictor 
that combines local behavior of a particular 
branch and global information about the 
behavior of some recent number of execut-
ed branches.
CPU execution time Also called CPU time.
The actual time the CPU spends computing 
for a specific task.
crossbar network A network that allows 
any node to communicate with any other 
node in one pass through the network.

D flip-flop A flip-flop with one data input 
that stores the value of that input signal in 
the internal memory when the clock edge 
occurs.
data hazard Also called pipeline data haz-
ard. An occurrence in which a planned in-
struction cannot execute in the proper clock 
cycle because data that is needed to execute 
the instruction is not yet available.
data parallelism Parallelism achieved by 
having massive data.
data rate Performance measure of bytes 
per unit time, such as GB/second.
data segment The segment of a UNIX ob-
ject or executable file that contains a binary 
representation of the initialized data used 
by the program.
data transfer instruction A command that 
moves data between memory and registers.
datapath The component of the processor 
that performs arithmetic operations.
datapath element A functional unit used 
to operate on or hold data within a proces-
sor. In the MIPS implementation the datap-
ath elements include the instruction and 
data memories, the register file, the arith-
metic logic unit (ALU), and adders.
deasserted signal A signal that is (logically) 
false, or 0.
decoder A logic block that has an n-bit in-
put and 2n outputs where only one output 
is asserted for each input combination.
defect A microscopic flaw in a wafer or in 
patterning steps that can result in the failure 
of the die containing that defect.
delayed branch A type of branch where the 
instruction immediately following the 
branch is always executed, independent of 
whether the branch condition is true or false.
desktop computer A computer designed 
for use by an individual, usually incorporat-
ing a graphics display, keyboard, and 
mouse.
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die The individual rectangular sections 
that are cut from a wafer, more informally 
known as chips.
DIMM (dual inline memory module) A
small board that contains DRAM chips on 
both sides. SIMMs have DRAMs on only 
one side. Both DIMMs and SIMMs are 
meant to be plugged into memory slots, 
usually on a motherboard.
direct memory access (DMA) A mechanism 
that provides a device controller the ability to 
transfer data directly to or from the memory 
without involving the processor.
direct-mapped cache A cache structure in 
which each memory location is mapped to 
exactly one location in the cache.
directory A repository for information on 
the state of every block in main memory, in-
cluding which caches have copies of the 
block, whether it is dirty, and so on. Used 
for cache coherence.
dispatch An operation in a micropro-
grammed control unit in which the next mi-
croinstruction is selected on the basis of one or 
more fields of a macroinstruction, usually by 
creating a table containing the addresses of the 
target microinstructions and indexing the ta-
ble using a field of the macroinstruction. The 
dispatch tables are typically implemented in 
ROM or programmable logic array (PLA). 
The term dispatch is also used in dynamically 
scheduled processors to refer to the process of 
sending an instruction to a queue.
distributed memory Physical memory that 
is divided into modules, with some placed 
near each processor in a multiprocessor.
distributed shared memory (DSM) A
memory scheme that uses addresses to access 
remote data when demanded rather than re-
trieving the data in case it might be used.
dividend A number being divided.
divisor A number that the dividend is di-
vided by.

don’t-care term An element of a logical 
function in which the output does not de-
pend on the values of all the inputs. Don’t-
care terms may be specified in different ways.
double precision A floating-point value 
represented in two 32-bit words.
dynamic branch prediction Prediction of 
branches at runtime using runtime infor-
mation.
dynamic multiple issue An approach to 
implementing a multiple-issue processor 
where many decisions are made during exe-
cution by the processor.
dynamic pipeline scheduling Hardware
support for reordering the order of instruc-
tion execution so as to avoid stalls.
dynamic random access memory 
(DRAM) Memory built as an integrated 
circuit, it provides random access to any 
location.
edge-triggered clocking A clocking 
scheme in which all state changes occur on 
a clock edge.
embedded computer A computer inside 
another device used for running one pre-
determined application or collection of 
software.
error-detecting code A code that enables 
the detection of an error in data, but not the 
precise location, and hence correction of the 
error.
Ethernet A computer network whose 
length is limited to about a kilometer. Orig-
inally capable of transferring up to 10 mil-
lion bits per second, newer versions can run 
up to 100 million bits per second and even 
1000 million bits per second. It treats the 
wire like a bus with multiple masters and 
uses collision detection and a back-off 
scheme for handling simultaneous accesses.
exception Also called interrupt. An un-
scheduled event that disrupts program exe-
cution; used to detect overflow.



G-6 Glossary

exception enable Also called interrupt en-
able. A signal or action that controls wheth-
er the process responds to an exception or 
not; necessary for preventing the occur-
rence of exceptions during intervals before 
the processor has safely saved the state 
needed to restart.
executable file A functional program in the 
format of an object file that contains no un-
resolved references, relocation information, 
symbol table, or debugging information.
exponent In the numerical representation 
system of floating-point arithmetic, the val-
ue that is placed in the exponent field.
external label Also called global label. A la-
bel referring to an object that can be refer-
enced from files other than the one in which 
it is defined.
false sharing A sharing situation in which 
two unrelated shared variables are located in 
the same cache block and the full block is ex-
changed between processors even though the 
processors are accessing different variables.
field programmable devices (FPD) An in-
tegrated circuit containing combinational 
logic, and possibly memory devices, that is 
configurable by the end user.
field programmable gate array A config-
urable integrated circuit containing both 
combinational logic blocks and flip-flops.
finite state machine A sequential logic 
function consisting of a set of inputs and 
outputs, a next-state function that maps the 
current state and the inputs to a new state, 
and an output function that maps the 
current state and possibly the inputs to a set 
of asserted outputs.
firmware Microcode implemented in a 
memory structure, typically ROM or RAM.
flat panel display, liquid crystal display A
display technology using a thin layer of liquid 
polymers that can be used to transmit or block 
light according to whether a charge is applied.

flip-flop A memory element for which the 
output is equal to the value of the stored state 
inside the element and for which the internal 
state is changed only on a clock edge.
floating point Computer arithmetic that 
represents numbers in which the binary 
point is not fixed.
floppy disk A portable form of secondary 
memory composed of a rotating mylar plat-
ter coated with a magnetic recording 
material.
flush (instructions) To discard instruc-
tions in a pipeline, usually due to an unex-
pected event.
formal parameter A variable that is the ar-
gument to a procedure or macro; replaced by 
that argument once the macro is expanded.
forward reference A label that is used be-
fore it is defined.
forwarding Also called bypassing. A meth-
od of resolving a data hazard by retrieving the 
missing data element from internal buffers 
rather than waiting for it to arrive from 
programmer-visible registers or memory.
fraction The value, generally between 0 
and 1, placed in the fraction field.
frame pointer A value denoting the loca-
tion of the saved registers and local variables 
for a given procedure.
fully associative cache A cache structure in 
which a block can be placed in any location 
in the cache.
fully connected network A network that 
connects processor-memory nodes by sup-
plying a dedicated communication link be-
tween every node.
gate A device that implements basic logic 
functions, such as AND or OR.
general-purpose register (GPR) A register 
that can be used for addresses or for data 
with virtually any instruction.
global miss rate The fraction of references 
that miss in all levels of a multilevel cache.
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global pointer The register that is reserved 
to point to static data.
guard The first of two extra bits kept on the 
right during intermediate calculations of 
floating-point numbers; used to improve 
rounding accuracy.
handler Name of a software routine in-
voked to “handle” an exception or interrupt.
handshaking protocol A series of steps used 
to coordinate asynchronous bus transfers in 
which the sender and receiver proceed to the 
next step only when both parties agree that 
the current step has been completed.
hardware description language A pro-
gramming language for describing hardware 
used for generating simulations of a hard-
ware design and also as input to synthesis 
tools that can generate actual hardware.
hardware synthesis tools Computer-aided
design software that can generate a gate-lev-
el design based on behavioral descriptions 
of a digital system.
hardwired control An implementation of 
finite state machine control typically using 
programmable logic arrays (PLAs) or col-
lections of PLAs and random logic.
hexadecimal Numbers in base 16.
high-level programming language A por-
table language such as C, Fortran, or Java 
composed of words and algebraic notation 
that can be translated by a compiler into as-
sembly language.
hit rate The fraction of memory accesses 
found in a cache.
hit time The time required to access a level 
of the memory hierarchy, including the 
time needed to determine whether the ac-
cess is a hit or a miss.
hold time The minimum time during 
which the input must be valid after the clock 
edge.
hot swapping Replacing a hardware com-
ponent while the system is running.

I/O instructions A dedicated instruction 
that is used to give a command to an I/O de-
vice and that specifies both the device num-
ber and the command word (or the location 
of the command word in memory).
I/O rate Performance measure of I/Os per 
unit time, such as reads per second.
I/O requests Reads or writes to I/O devices.
implementation Hardware that obeys the 
architecture abstraction.
imprecise interrupt Also called imprecise 
exception. Interrupts or exceptions in pipe-
lined computers that are not associated with 
the exact instruction that was the cause of 
the interrupt or exception.
in-order commit A commit in which the 
results of pipelined execution are written to 
the programmer-visible state in the same 
order that instructions are fetched.
input device A mechanism through which 
the computer is fed information, such as the 
keyboard or mouse.
instruction format A form of representa-
tion of an instruction composed of fields of 
binary numbers.
instruction group In IA-64, a sequence of 
consecutive instructions with no register 
data dependences among them.
instruction latency The inherent execu-
tion time for an instruction.
instruction mix A measure of the dynamic 
frequency of instructions across one or 
many programs.
instruction set architecture Also called ar-
chitecture. An abstract interface between 
the hardware and the lowest level software 
of a machine that encompasses all the infor-
mation necessary to write a machine 
language program that will run correctly, 
including instructions, registers, memory 
access, I/O, and so on.
instruction set The vocabulary of com-
mands understood by a given architecture.
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instruction-level parallelism The parallel-
ism among instructions.
integrated circuit Also called chip. A device 
combining dozens to millions of transistors.
interrupt An exception that comes from 
outside of the processor. (Some architectures 
use the term interrupt for all exceptions.)
interrupt-driven I/O An I/O scheme that 
employs interrupts to indicate to the pro-
cessor that an I/O device needs attention.
interrupt handler A piece of code that is run 
as a result of an exception or an interrupt.
issue packet The set of instructions that is-
sues together in 1 clock cycle; the packet 
may be determined statically by the compil-
er or dynamically by the processor.
issue slots The positions from which in-
structions could issue in a given clock cycle; 
by analogy these correspond to positions at 
the starting blocks for a sprint.
Java bytecode Instruction from an instruc-
tion set designed to interpret Java programs.
Java Virtual Machine (JVM) The program 
that interprets Java bytecodes.
jump address table Also called jump table. 
A table of addresses of alternative instruc-
tion sequences.
jump-and-link instruction An instruction 
that jumps to an address and simultaneous-
ly saves the address of the following instruc-
tion in a register ($ra in MIPS).
Just In Time Compiler (JIT) The name com-
monly given to a compiler that operates at 
runtime, translating the interpreted code seg-
ments into the native code of the computer.
kernel mode Also called supervisor mode.
A mode indicating that a running process is 
an operating system process.
latch A memory element in which the out-
put is equal to the value of the stored state 
inside the element and the state is changed 
whenever the appropriate inputs change 
and the clock is asserted.

latency (pipeline) The number of stages in 
a pipeline or the number of stages between 
two instructions during execution.
least recently used (LRU) A replacement 
scheme in which the block replaced is the one 
that has been unused for the longest time.
least significant bit The rightmost bit in a 
MIPS word.
level-sensitive clocking A timing method-
ology in which state changes occur at either 
high or low clock levels but are not instanta-
neous, as such changes are in edge-triggered 
designs.
linker Also called link editor. A systems 
program that combines independently as-
sembled machine language programs and 
resolves all undefined labels into an execut-
able file.
loader A systems program that places an 
object program in main memory so that it is 
ready to execute.
load-store machine Also called register-
register machine. An instruction set archi-
tecture in which all operations are between 
registers and data memory may only be ac-
cessed via loads or stores.
load-use data hazard A specific form of 
data hazard in which the data requested by 
a load instruction has not yet become avail-
able when it is requested.
local area network (LAN) A network de-
signed to carry data within a geographically 
confined area, typically within a single 
building.
local label A label referring to an object 
that can be used only within the file in 
which it is defined.
local miss rate The fraction of references to 
one level of a cache that miss; used in multi-
level hierarchies.
lock A synchronization device that allows 
access to data to only one processor at a 
time.
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lookup tables (LUTs) In a field program-
mable device, the name given to the cells be-
cause they consist of a small amount of logic 
and RAM.
loop unrolling A technique to get more 
performance from loops that access arrays, 
in which multiple copies of the loop body 
are made and instructions from different it-
erations are scheduled together.
machine language Binary representation 
used for communication within a computer 
system.
macro A pattern-matching and replace-
ment facility that provides a simple mecha-
nism to name a frequently used sequence of 
instructions.
magnetic disk (also called hard disk) A
form of nonvolatile secondary memory 
composed of rotating platters coated with a 
magnetic recording material.
megabyte Traditionally 1,048,576 (220)
bytes, although some communications and 
secondary storage systems have redefined it 
to mean 1,000,000 (106) bytes.
memory The storage area in which pro-
grams are kept when they are running and 
that contains the data needed by the run-
ning programs.
memory hierarchy A structure that uses 
multiple levels of memories; as the dis-
tance from the CPU increases, the size of 
the memories and the access time both 
increase.
memory-mapped I/O An I/O scheme in 
which portions of address space are as-
signed to I/O devices and reads and writes 
to those addresses are interpreted as com-
mands to the I/O device.
MESI cache coherency protocol A
write-invalidate protocol whose name is 
an acronym for the four states of the pro-
tocol: Modified, Exclusive, Shared, 
Invalid.

message passing Communicating between 
multiple processors by explicitly sending 
and receiving information.
metastability A situation that occurs if a 
signal is sampled when it is not stable for the 
required set-up and hold times, possibly 
causing the sampled value to fall in the inde-
terminate region between a high and low 
value.
microarchitecture The organization of the 
processor, including the major functional 
units, their interconnection, and control.
microcode The set of microinstructions 
that control a processor.
microinstruction A representation of 
control using low-level instructions, each 
of which asserts a set of control signals 
that are active on a given clock cycle as 
well as specifies what microinstruction to 
execute next.
micro-operations The RISC-like instruc-
tions directly executed by the hardware in 
recent Pentium implementations.
microprogram A symbolic representation 
of control in the form of instructions, called 
microinstructions, that are executed on a 
simple micromachine.
microprogrammed control A method of 
specifying control that uses microcode rath-
er than a finite state representation.
million instructions per second (MIPS) A
measurement of program execution speed 
based on the number of millions of instruc-
tions. MIPS is computed as the instruction 
count divided by the product of the execu-
tion time and 106.
minterms Also called product terms. A set 
of logic inputs joined by conjunction (AND 
operations); the product terms form the 
first logic stage of the programmable logic 
array (PLA).
mirroring Writing the identical data to 
multiple disks to increase data availability.
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miss penalty The time required to fetch a 
block into a level of the memory hierarchy 
from the lower level, including the time to 
access the block, transmit it from one level 
to the other, and insert it in the level that ex-
perienced the miss.
miss rate The fraction of memory accesses 
not found in a level of the memory hierarchy.
most significant bit The leftmost bit in a 
MIPS word.
motherboard A plastic board containing 
packages of integrated circuits or chips, in-
cluding processor, cache, memory, and 
connectors for I/O devices such as networks 
and disks.
multicomputer Parallel processors with 
multiple private addresses.
multicycle implementation Also called 
multiple clock cycle implementation. An 
implementation in which an instruction is 
executed in multiple clock cycles.
multilevel cache A memory hierarchy with 
multiple levels of caches, rather than just a 
cache and main memory.
multiple issue A scheme whereby multiple 
instructions are launched in 1 clock cycle.
multiprocessor Parallel processors with a 
single shared address.
multistage network A network that sup-
plies a small switch at each node.
NAND gate An inverted AND gate.
network bandwidth Informally, the peak 
transfer rate of a network; can refer to the 
speed of a single link or the collective trans-
fer rate of all links in the network.
next-state function A combinational func-
tion that, given the inputs and the current 
state, determines the next state of a finite 
state machine.
nonblocking assignment An assignment 
that continues after evaluating the right-hand 
side, assigning the left-hand side the value 
only after all right-hand sides are evaluated.

nonblocking cache A cache that allows the 
processor to make references to the cache 
while the cache is handling an earlier miss.
nonuniform memory access (NUMA) A
type of single-address space multiprocessor 
in which some memory accesses are faster 
than others depending which processor asks 
for which word.
nonvolatile memory A form of memory 
that retains data even in the absence of a 
power source and that is used to store pro-
grams between runs. Magnetic disk is non-
volatile and DRAM is not.
nonvolatile Storage device where data re-
tains its value even when power is removed.
nop An instruction that does no operation 
to change state.
NOR A logical bit-by-bit operation with 
two operands that calculates the NOT of the 
OR of the two operands.
NOR gate An inverted OR gate.
normalized A number in floating-point 
notation that has no leading 0s.
NOT A logical bit-by-bit operation with 
one operand that inverts the bits; that is, 
it replaces every 1 with a 0, and every 0 
with a 1.
object-oriented language A programming 
language that is oriented around objects 
rather than actions, or data versus logic.
opcode The field that denotes the opera-
tion and format of an instruction.
operating system Supervising program 
that manages the resources of a computer 
for the benefit of the programs that run on 
that machine.
out-of-order execution A situation in 
pipelined execution when an instruction 
blocked from executing does not cause the 
following instructions to wait.
output device A mechanism that conveys 
the result of a computation to a user or an-
other computer.
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overflow (floating-point) A situation in 
which a positive exponent becomes too 
large to fit in the exponent field.
package Basically a directory that contains 
a group of related classes.
page fault An event that occurs when an ac-
cessed page is not present in main memory.
page table The table containing the virtual 
to physical address translations in a virtual 
memory system. The table, which is stored in 
memory, is typically indexed by the virtual 
page number; each entry in the table contains 
the physical page number for that virtual 
page if the page is currently in memory.
parallel processing program A single pro-
gram that runs on multiple processors si-
multaneously.
PC-relative addressing An addressing re-
gime in which the address is the sum of the 
program counter (PC) and a constant in the 
instruction.
physical address An address in main 
memory.
physically addressed cache A cache that is 
addressed by a physical address.
pipeline stall Also called bubble. A stall 
initiated in order to resolve a hazard.
pipelining An implementation technique 
in which multiple instructions are over-
lapped in execution, much like to an assem-
bly line.
pixel The smallest individual picture ele-
ment. Screen are composed of hundreds of 
thousands to millions of pixels, organized in 
a matrix.
poison A result generated when a specula-
tive load yields an exception, or an instruc-
tion uses a poisoned operand.
polling The process of periodically check-
ing the status of an I/O device to determine 
the need to service the device.
precise interrupt Also called precise ex-
ception. An interrupt or exception that is 

alway associated with the correct instruc-
tion in pipelined computers.
predication A technique to make instruc-
tions dependent on predicates rather than 
on branches.
prefetching A technique in which data 
blocks needed in the future are brought into 
the cache early by the use of special instruc-
tions that specify the address of the block.
primary memory Also called main memo-
ry. Volatile memory used to hold programs 
while they are running; typically consists of 
DRAM in today’s computers.
procedure A stored subroutine that per-
forms a specific task based on the parame-
ters with which it is provided.
procedure call frame A block of memory 
that is used to hold values passed to a proce-
dure as arguments, to save registers that a pro-
cedure may modify but that the procedure’s 
caller does not want changed, and to provide 
space for variables local to a procedure.
procedure frame Also called activation 
record. The segment of the stack contain-
ing a procedure’s saved registers and local 
variables.
processor-memory bus A bus that con-
nects processor and memory and that is 
short, generally high speed, and matched to 
the memory system so as to maximize 
memory-processor bandwidth.
program counter (PC) The register con-
taining the address of the instruction in the 
program being executed
programmable array logic 
(PAL) Contains a programmable and-
plane followed by a fixed or-plane.
programmable logic array (PLA) A struc-
tured-logic element composed of a set of in-
puts and corresponding input complements 
and two stages of logic: the first generating 
product terms of the inputs and input com-
plements and the second generating sum 
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terms of the product terms. Hence, PLAs im-
plement logic functions as a sum of products.
programmable logic device (PLD) An in-
tegrated circuit containing combinational 
logic whose function is configured by the 
end user.
programmable ROM (PROM) A form of 
read-only memory that can be programmed 
when a designer knows its contents.
propagation time The time required for an 
input to a flip-flop to propagate to the out-
puts of the flip-flop.
protected A Java keyword that restricts in-
vocation of a method to other methods in 
that package.
protection A set of mechanisms for ensur-
ing that multiple processes sharing the pro-
cessor, memory, or I/O devices cannot 
interfere, intentionally or unintentionally, 
with one another by reading or writing each 
other’s data. These mechanisms also isolate 
the operating system from a user process.
protection group The group of data disks 
or blocks that share a common check disk 
or block.
pseudoinstruction A common variation of 
assembly language instructions often treat-
ed as if it were an instruction in its own 
right.
public A Java keyword that allows a meth-
od to be invoked by any other method.
quotient The primary result of a division; a 
number that when multiplied by the divisor 
and added to the remainder produces the 
dividend.
read-only memory (ROM) A memory 
whose contents are designated at creation 
time, after which the contents can only be 
read. ROM is used as structured logic to im-
plement a set of logic functions by using the 
terms in the logic functions as address in-
puts and the outputs as bits in each word of 
the memory.

receive message routine A routine used 
by a processor in machines with private 
memories to accept a message from anoth-
er processor.
recursive procedures Procedures that call 
themselves either directly or indirectly 
through a chain of calls.
redundant arrays of inexpensive disks 
(RAID) An organization of disks that uses 
an array of small and inexpensive disks so as 
to increase both performance and reliability.
reference bit Also called use bit. A field 
that is set whenever a page is accessed and 
that is used to implement LRU or other re-
placement schemes.
reg In Verilog, a register.
register file A state element that consists of a 
set of registers that can be read and written by 
supplying a register number to be accessed.
register renaming The renaming of regis-
ters, by the compiler or hardware, to re-
move antidependences.
register-use convention Also called proce-
dure call convention. A software protocol 
governing the use of registers by procedures.
relocation information The segment of a 
UNIX object file that identifies instruc-
tions and data words that depend on abso-
lute addresses.
remainder The secondary result of a divi-
sion; a number that when added to the 
product of the quotient and the divisor pro-
duces the dividend.
reorder buffer The buffer that holds results 
in a dynamically scheduled processor until 
it is safe to store the results to memory or a 
register.
reservation station A buffer within a func-
tional unit that holds the operands and the 
operation.
response time Also called execution time.
The total time required for the computer to 
complete a task, including disk accesses, 
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memory accesses, I/O activities, operating 
system overhead, CPU execution time, and 
so on.
restartable instruction An instruction that 
can resume execution after an exception is 
resolved without the exception’s affecting 
the result of the instruction.
return address A link to the calling site that 
allows a procedure to return to the proper 
address; in MIPS it is stored in register $ra.
rotation latency Also called delay. The 
time required for the desired sector of a disk 
to rotate under the read/write head; usually 
assumed to be half the rotation time.
round Method to make the intermediate 
floating-point result fit the floating-point 
format; the goal is typically to find the near-
est number that can be represented in the 
format.
scientific notation A notation that renders 
numbers with a single digit to the left of the 
decimal point.
secondary memory Nonvolatile memory 
used to store programs and data between 
runs; typically consists of magnetic disks in 
today’s computers.
sector One of the segments that make up a 
track on a magnetic disk; a sector is the 
smallest amount of information that is read 
or written on a disk.
seek The process of positioning a read/write 
head over the proper track on a disk.
segmentation A variable-size address 
mapping scheme in which an address con-
sists of two parts: a segment number, which 
is mapped to a physical address, and a seg-
ment offset.
selector value Also called control value. 
The control signal that is used to select one 
of the input values of a multiplexor as the 
output of the multiplexor.
semiconductor A substance that does not 
conduct electricity well.

send message routine A routine used by a 
processor in machines with private memo-
ries to pass to another processor.
sensitivity list The list of signals that spec-
ifies when an always block should be 
reevaluated.
separate compilation Splitting a program 
across many files, each of which can be 
compiled without knowledge of what is in 
the other files.
sequential logic A group of logic elements 
that contain memory and hence whose val-
ue depends on the inputs as well as the cur-
rent contents of the memory.
Server A computer used for running larger 
programs for multiple users often simulta-
neously and typically accessed only via a 
network.
set-associative cache A cache that has a 
fixed number of locations (at least two) 
where each block can be placed.
set-up time The minimum time that the 
input to a memory device must be valid be-
fore the clock edge.
shared memory A memory for a parallel 
processor with a single address space, im-
plying implicit communication with loads 
and stores.
sign-extend To increase the size of a data 
item by replicating the high-order sign bit 
of the original data item in the high-order 
bits of the larger, destination data item.
silicon A natural element which is a semi-
conductor.
silicon crystal ingot A rod composed of a 
silicon crystal that is between 6 and 12 inch-
es in diameter and about 12 to 24 inches 
long.
simple programmable logic device 
(SPLD) Programmable logic device usually 
containing either a single PAL or PLA.
single precision A floating-point value 
represented in a single 32-bit word.
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single-cycle implementation Also called 
single clock cycle implementation. An im-
plementation in which an instruction is ex-
ecuted in one clock cycle.
small computer systems interface (SCSI) A
bus used as a standard for I/O devices.
snooping cache coherency A method for 
maintaining cache coherency in which all 
cache controllers monitor or snoop on the 
bus to determine whether or not they have a 
copy of the desired block.
source language The high-level language 
in which a program is originally written.
spatial locality The locality principle stat-
ing that if a data location is referenced, data 
locations with nearby addresses will tend to 
be referenced soon.
speculation An approach whereby the 
compiler or processor guesses the outcome 
of an instruction to remove it as a depen-
dence in executing other instructions.
split cache A scheme in which a level of the 
memory hierarchy is composed of two in-
dependent caches that operate in parallel 
with each other with one handling instruc-
tions and one handling data.
split transaction protocol A protocol in 
which the bus is released during a bus trans-
action while the requester is waiting for the 
data to be transmitted, which frees the bus 
for access by another requester.
stack pointer A value denoting the most 
recently allocated address in a stack that 
shows where registers should be spilled or 
where old register values can be found.
stack segment The portion of memory 
used by a program to hold procedure call 
frames.
stack A data structure for spilling registers 
organized as a last-in-first-out queue.
standby spares Reserve hardware resourc-
es that can immediately take the place of a 
failed component.

state element A memory element.
static data The portion of memory that 
contains data whose size is known to the 
compiler and whose lifetime is the pro-
gram’s entire execution.
static method A method that applies to the 
whole class rather to an individual object. It 
is unrelated to static in C.
static multiple issue An approach to im-
plementing a multiple-issue processor 
where many decisions are made by the com-
piler before execution.
static random access memory (SRAM) A
memory where data is stored statically (as in 
flip-flops) rather than dynamically (as in 
DRAM). SRAMs are faster than DRAMs, 
but less dense and more expensive per bit.
sticky bit A bit used in rounding in addi-
tion to guard and round that is set whenever 
there are nonzero bits to the right of the 
round bit.
stop In IA-64, an explicit indicator of a 
break between independent and dependent 
instructions.
stored-program concept The idea that in-
structions and data of many types can be 
stored in memory as numbers, leading to 
the stored program computer.
striping Allocation of logically sequential 
blocks to separate disks to allow higher per-
formance than a single disk can deliver.
structural hazard An occurrence in which a 
planned instruction cannot execute in the 
proper clock cycle because the hardware can-
not support the combination of instructions 
that are set to execute in the given clock cycle.
structural specification Describes how a 
digital system is organized in terms of a hi-
erarchical connection of elements.
sum of products A form of logical repre-
sentation that employs a logical sum (OR) 
of products (terms joined using the AND 
operator).
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supercomputer A class of computers with 
the highest performance and cost; they are 
configured as servers and typically cost mil-
lions of dollars.
superscalar An advanced pipelining tech-
nique that enables the processor to execute 
more than one instruction per clock cycle.
swap space The space on the disk reserved 
for the full virtual memory space of a process.
switched network A network of dedicated 
point-to-point links that are connected to 
each other with a switch.
symbol table A table that matches names 
of labels to the addresses of the memory 
words that instructions occupy.
symmetric multiprocessor (SMP) or
uniform memory access (UMA) A multi-
processor in which accesses to main memo-
ry take the same amount of time no matter 
which processor requests the access and no 
matter which word is asked.
synchronization The process of coordi-
nating the behavior of two or more process-
es, which may be running on different 
processors.
synchronizer failure A situation in which a 
flip-flop enters a metastable state and where 
some logic blocks reading the output of the 
flip-flop see a 0 while others see a 1.
synchronous bus A bus that includes a clock 
in the control lines and a fixed protocol for 
communicating that is relative to the clock.
synchronous system A memory system 
that employs clocks and where data signals 
are read only when the clock indicates that 
the signal values are stable.
system call A special instruction that trans-
fers control from user mode to a dedicated 
location in supervisor code space, invoking 
the exception mechanism in the process.
system CPU time The CPU time spent in 
the operating system performing tasks on 
behalf of the program.

system performance evaluation coopera-
tive (SPEC) benchmark A set of standard 
CPU-intensive, integer and floating point 
benchmarks based on real programs.
systems software Software that provides 
services that are commonly useful, includ-
ing operating systems, compilers, and as-
semblers.
tag A field in a table used for a memory hi-
erarchy that contains the address informa-
tion required to identify whether the 
associated block in the hierarchy corre-
sponds to a requested word.
temporal locality The principle stating 
that if a data location is referenced then it 
will tend to be referenced again soon.
terabyte Originally 1,099,511,627,776 (240)
bytes, although some communications and 
secondary storage systems have redefined it to 
mean 1,000,000,000,000 (1012) bytes.
text segment The segment of a UNIX ob-
ject file that contains the machine language 
code for routines in the source file.
three Cs model A cache model in which all 
cache misses are classified into one of three 
categories: compulsory misses, capacity 
misses, and conflict misses.
tournament branch predictor A branch pre-
dictor with multiple predictions for each 
branch and a selection mechanism that chooses 
which predictor to enable for a given branch.
trace cache An instruction cache that 
holds a sequence of instructions with a given 
starting address; in recent Pentium imple-
mentations the trace cache holds microoper-
ations rather than IA-32 instructions.
track One of thousands of concentric cir-
cles that makes up the surface of a magnetic 
disk.
transaction processing A type of applica-
tion that involves handling small short op-
erations (called transactions) that typically 
require both I/O and computation. Trans-
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action processing applications typically 
have both response time requirements and a 
performance measurement based on the 
throughput of transactions.
transistor An on/off switch controlled by 
an electric  signal.
translation-lookaside buffer (TLB) A
cache that keeps track of recently used ad-
dress mappings to avoid an access to the 
page table.
underflow (floating-point) A situation in 
which a negative exponent becomes too 
large to fit in the exponent field.
units in the last place (ulp) The number of 
bits in error in the least significant bits of the 
significand between the actual number and 
the number that can be prepresented.
unmapped A portion of the address space 
that cannot have page faults.
unresolved reference A reference that re-
quires more information from an outside 
source in order to be complete.
untaken branch One that falls through to 
the successive instruction. A taken branch is 
one that causes transfer to the branch target.
user CPU time The CPU time spent in a 
program itself.
vacuum tube An electronic component, 
predecessor of the transistor, that consists 
of a hollow glass tube about 5 to 10 cm long 
from which as much air has been removed 
as possible and which uses an electron beam 
to transfer data.
valid bit A field in the tables of a memory 
hierarchy that indicates that the associated 
block in the hierarchy contains valid data.
vector processor An architecture and com-
piler model that was popularized by super-
computers in which high-level operations 
work on linear arrays of numbers.
vectored interrupt An interrupt for which 
the address to which control is transferred is 

determined by the cause of the exception.
verilog One of the two most common 
hardware description languages.
very large scale integrated (VLSI) 
circuit A device containing hundreds of 
thousands to millions of transistors.
VHDL One of the two most common 
hardware description languages.
virtual address An address that corre-
sponds to a location in virtual space and is 
translated by address mapping to a physical 
address when memory is accessed.
virtual machine A virtual computer that 
appears to have nondelayed branches and 
loads and a richer instruction set than the 
actual hardware.
virtual memory A technique that uses 
main memory as a “cache” for secondary 
storage.
virtually addressed cache A cache that is 
accessed with a virtual address rather than a 
physical address.
volatile memory Storage, such as DRAM, 
that only retains data only if it is receiving 
power.
wafer A slice from a silicon ingot no more 
than 0.1 inch thick, used to create chips.
weighted arithmetic mean An  average of
the execution time of a workload with 
weighting factors designed to reflect the 
presence of the programs in a workload; 
computed as the sum of the products of 
weighting factors and execution times.
wide area network A network extended 
over hundreds of kilometers which can span 
a continent.
wire In Verilog, specifies a combinational 
signal.
word The natural unit of access in a com-
puter, usually a group of 32 bits; corre-
sponds to the size of a register in the MIPS 
architecture.



Glossary G-17

workload A set of programs run on a com-
puter that is either the actual collection of 
applications run by a user or is constructed 
from real programs to approximate such a 
mix. A typical workload specifies both the 
programs as well as the relative frequencies.
write buffer A queue that holds data while 
the data are waiting to be written to memory.
write-back A scheme that handles writes 
by updating values only to the block in the 
cache, then writing the modified block to 
the lower level of the hierarchy when the 
block is replaced.

write-invalidate A type of snooping proto-
col in which the writing processor causes all 
copies in other caches to be invalidated be-
fore changing its local copy, which allows it 
to update the local data until another pro-
cessor asks for it.
write-through A scheme in which writes 
always update both the cache and the mem-
ory, ensuring that data is always consistent 
between the two.
yield The percentage of good dies from the 
total number of dies on the wafer.
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576–577
BINAC, CD1.7:4
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ASCII versus, 162
converting to decimal floating 
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converting to decimals, 164
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table, 62
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Block-interleaved parity (RAID 4), 
577–578

Blocks
defined, 470
finding, 540–541
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reducing cache misses with, 496–502
replacing, 504, 541–542

Bonding, 30
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Booth’s algorithm, IMD3:5–9
Bounds check shortcut, 168
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addressing in, 97–99, 294–295
delayed, 297, 382, 418–419, A41
delay slot, 423
history table, 421
loop, 421–422
multiple-cycle implementation, 

327–328, 336
not taken, 295, 418
prediction, 382, 421–423
prediction buffer, 421
taken, 295
target address, 294–296
target buffer, 423

Branch equal (beq), 294, 297, 300–318
Branch/control hazards, 379–382, 

416–424
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asynchronous, 582–583
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master, 594
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processor-memory or I/O, 582
shared, 322–324
synchronous, 582–583
transaction, 582

Bypassing, 376–377
Byte addressing, 56
Byte order, A43 

C

C
bit fields, IMD2:13–14
converting floating points to MIPS 

assembly code, 209–213
development of, CD2.19:7
logical operations, 68–71
overflows, 172
procedures, 81–88
sort example, 121–129
strings, 92–93
translating hierarchy, 106–111
while loop in, 74–75

Cache coherency
multiprocessor, CD9.3:12–20
protocols, CD9.3:13, 16–18
snooping, CD9.3:13
synchronization using, CD9.3:18–20

Cache-coherent nonuniform memory 
access (CC-NUMA), CD9.4:22

Caches
accessing, 476–482
associativity, 499–502
basics of, 473–491
bits in, 479
blocks, locating in, 502–504
blocks used to reduce misses, 

496–502
defined, 473
direct-mapped, 474–475, 497
example of simple, 474–476
fully associative, 497
Intrinsity FastMATH processor 

example, 485–487
mapping address to multiword 

block, 480

memory, 20
memory system design to support, 

487–491
misses, handling, 482–483, 496–502
multilevel, 492, 505–510
nonblocking, 445, 548
performance, measuring and 

improving, 492–511
performance with increased clock 

rate, 495–496
reducing miss penalty using multi-

level, 505–509
set associative, 497, 504
split, 487
tags, 475, 504
three Cs model, 543–545
valid bit, 476
writes, handling, 483–485
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Cal TSS, CD7.9:8
Capacity misses, 543
Carnegie Mellon University, CD6.13:5
Carrier signal, CD8.3:8
Carry lookahead, B38–47
Carry save adders, 181, IMD3:17–18
Case statement, 76
Cathode ray tubes (CRTs), 18
Cause register, 342
CauseWrite, 342
Central processor unit (CPU), 20

execution time, 244–245
performance, 245, 246–253
time, 244–245

Cerf, Vint, CD8.11:7
Chamberlin, Donald, CD8.11:5
Characters, Java, 93–95
Chavín de Huántar, 236–237
Chips, 20, 30
Clearing words in memory

arrays and, 130–132
comparing both methods, 133–134
pointers and, 132–133

Clock cycles, 245, B47
finite state machines, 332

multicycle implementation, 318–340
single-cycle implementation, 

300–318
Clock cycles, breaking execution into

arithmetic-logical instruction, 
327, 329

branches, 327–328
decode instruction and register fetch, 

326–327
fetch instruction, 325–326
jump, 328
memory read, 329
memory reference, 327, 328

Clock cycles per instruction (CPI), 
248–251

in multicycle CPU, 330–331
Clocking methodology, 290–292, B47

edge-triggered, 290–291, B47
level-sensitive, B74–75
timing methodologies, B72–77

Clock period, 245, B47
Clock rate, 245
Clocks, B47–49
Clock skew, B73–74
CLU, CD2.19:7
Clusters, CD9.1:4, CD9.5:25–26
CMOS (Complementary Metal Oxide 

Semiconductor), 31, 264
Coarse-grained multithreading, 
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Cobol, CD2.19:6, CD8.11:4
Cocke, John, CD2.19:8, CD6.13:2, 4
Codd, Ted, CD8.11:4, 5
Code generation, CD2.12:9
Code motion, 119
Code size, fallacy of using, IMD4:18–19
Coherence problem, 595
Cold-start misses, 543
Collision misses, 543
Color, 292
Colossus, CD1.7:3
Combinational control units, C4–8
Combinational elements, 289
Combinational logic, B5, 8–20, 23–25
Compact disks (CDs), 25
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Compaq Computers, CD8.11:6
Comments, 50
Commit unit, 443
Common subexpression 

elimination, 117
Compilers

C, 107
functions of, 11–12
historical development of, 

CD2.19:7–8
how they work, CD2.12:1–9
Java, 114–115
optimization, 116–121
structure of, 116
translating high-level language into 

instructions that hardware can 
execute, 12–15, A5–6

Compulsory misses, 543
Computers

applications, 5–7
components of, 15–16
historical development of, 

CD1.7:1–10
organization of, 16
what it looks like inside, 18–22

Computer technology, advances in, 4
Conditional branches, 72–73
Condition codes, 140
Conflict misses, 543
Constant folding, 118
Constant propagation, 118
Constants, 57, 58

loading 32-bit, 96
Constellations, CD9.5:26
Context switch, 530
Control, 20

hardwired, 348, CD5.12:2
pipelined, 399–402

Control Data Corp. (CDC), CD1.7:5, 
CD6.13:2

Control hazards. See Branch hazards
Controller time, 570
Control signals

list of, 306, 324
write, 290, 294

Control unit
adding, 299
combinational, C4–8
designing main, 303–312
exceptions, 340–346
fallacies and pitfalls, 350–352
finite state machines, 330, 331–340, 

C8–20
interrupts, 340–341
jumps, 313–314
microprogramming, 330, 

CD5.7:4–10
multicycle implementation, 318–340
single-cycle implementation, 

300–318
Coonen, Jerome T., CD3.10:7
Copy back, 521
Copy propagation, 118
Corbato, John, CD7.9:7, 11
Correlating predictors, 423
Cosmic Cube, CD9.11:52
C++, CD2.19:7
CPU. See Central processor unit
Cray, Seymour, CD1.7:5, CD3.10:4, 

CD6.13:2
Cray Research, Inc., CD1.7:5, 

CD3.10:4–5, CD6.13:5
Critical word first, 482
Crossbar network, CD9.6:30
CTSS (Compatible Time-Sharing Sys-

tem), CD7.9:7–11
Culler, David, 157
Culler Scientific, CD6.13:4
Cutler, David, CD7.9:9
Cydrome Co., CD6.13:4, 5
Cylinder, use of term, 569

D

Dahl, Ole-Johan, CD2.19:7
Databases, history of, CD8.11:4–5
Data General, CD8.11:6
Data hazards

defined, 376–379
forwarding, 402–412

load-use, 377
stalls, 413–416

Data parallelism, CD9.11:48
Datapath, 20

building a, 292–300
elements, 292
fallacies and pitfalls, 350–352
jumps, 313–314
logic design conventions, 289–292
multicycle implementation, 318–340
operation of, 306–312
pipelined, 384–399
single-cycle implementation, 

300–318
Data rate, 598
Data segment, A13, 20
Data selector, 286
Data transfer instructions, 54–55
Data types, Verilog, B21–22
Dawson, Todd, 157
Dead code elimination, 118
Dead store elimination, 118
Deasserted signal, 290, B4
Deassert signal, 290
Debugging information, A13
DEC (Digital Equipment Corp.), 

CD1.7:5, CD4.7:2, CD7.9:9, 
CD8.11:11

Decimal numbers, 60, 161
converting binary numbers to, 164
converting binary to decimal floating 

point, 196
dividing, 183
multiplying, 176–177
scientific notation, 189

Decision-making instructions, 72–74
Decoders, B8–9
Decoding, 333
Dedicated register, CD2.19:2
Defects, 30
Delayed branch, 297, 382, 418–419, A41
Dell Computer Corp.

SPEC CPU benchmarks, 254–255, 
259–266

SPECweb99 benchmark, 262–266
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DeMorgan’s laws, B6
DeMorgan’s theorems, B11
Dependability, disk, 569–580
Dependence detection, 406
Dependent instructions, 403
Desktop computers, 5

performance benchmarks, 255
Destination register, 64
Deutsch, Peter, CD7.9:8
D flip-flop, B51–53
Dhrystone synthetic benchmark, 

CD4.7:2, IMD4:11–12
Dies, 30
Digital cameras, 236–237, 603–606
Digital signal-processing extensions, D19
DIMMs. See Dual inline memory modules
Directives, data layout, A14–15
Direct-mapped cache, 474–475, 497
Direct memory access (DMA), 594–596
Directories, CD9.4:24
Dirty bit, 521
Disabled people, technology for, 366–367
Disk(s)

arrays, IMD8:2
controller, 570, 571
drives, 19, 20
fallacies and pitfalls, 606–609
read time, 570–571
storage and dependability, 569–580, 

CD8.11:1–4
Dispatch, 350
Displacement addressing, 100
Distributed block-interleaved parity 

(RAID 5), 578
Distributed memory, CD9.4:22
Distributed shared memory (DSM), 

CD9.4:24
divide, 188–189
Dividend, 183
divide unsigned, 188–189
Division, 183–189
Divisor, 183
Don’t-care terms, 303, B16–18
Double, 192
Double extended precision, 218

Double precision, 192
Double data rate synchronous DRAMs 

(DDD SDRAMs), 490–491
DRAM. See Dynamic random access 

memory
Dual inline memory modules 

(DIMMs), 22
DVD drive, 19, 20
DVDs (digital video disks), 25
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112–114
Dynamic branch prediction, 382, 

421–423
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Dynamic multiple issue, 433, 442–445
Dynamic pipeline scheduling, 443–445
Dynamic random access memory 

(DRAM), 20, 469, 487–488, 
490–491, 513, B60, 63–65
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Early restart, 481–482
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Eckert-Mauchly Computer Corp., CD1.7:4
Edge-triggered clocking methodology, 
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CD5.12:1

EDVAC (Electronic Discrete Variable 
Automatic Computer), CD1.7:1–2

EEMBC benchmarks, 255, IMD4:17–18
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Eispack, CD3.10:3
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Ellison, Larry, CD8.11:5
Embedded computers, 6–8, CD1.7:8–9, A7

performance benchmarks, 255, 
IMD4:17–18

EMC, CD8.11:6
Emulation, CD5.12:1–2
Encoder, B9

Energy efficiency problems, 263–265
Engelbart, Doug, 16
ENIAC (Electronic Numerical Integrator 

and Calculator), CD1.7:1–2, 3, 
CD7.9:1

Environmental problems, technology 
and, 156–157

EPCWrite, 342
Error-correcting codes, B65 
Error-detecting codes, B65–67 
Ethernet, 26, CD8.3:5, CD8.11:7–8, 

IMD8:1–2
Evolution versus revolution, 

CD9.10:45–47
Exception enable, 532
Exception program counter (EPC), 173, 

341–342, 429–431
Exceptions, 173, A33–38

address, 342–343
control checking of, 343–346
defined, 340–341
handling of, 341–343, A35, 36–38
imprecise, 432
pipeline, 427–432

Executable file, 109
Execution time, 242, 244–245

use of total, 257–259
Executive process, 529
Exponent, 191
Extended accumulator, CD2.19:2
External labels, A11

F

Failures
mean time between failures 

(MTBF), 573
mean time to failure (MTTF), 573, 574
mean time to repair (MTTR), 573, 574
reasons for, 574
synchronizer, B76

Fallacies, 33
False sharing, CD9.3:14
Fanout, 32
Fast carry, B38–47
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Fetch-on-miss/write, 484
Field programmable devices (FPDs), 

B77–78
Field programmable gate arrays 

(FPGAs), B77
Fields

defined, 61
MIPS, 63–64

File system benchmarks, 598–599
Fine-grained multithreading, 

CD9.7:31–33
Finite state machines, 330, 331–340, 

B47–72, C8–20
Firewire, 582, 583
Firmware, CD5.12:2
Fisher, Josh, CD6.13:4
Fishman, Harvey, 366–367
Flags, 140
FLASH, 23, 25
Flat-panel display, 18
Flip-flops, 290, B50–53
Floating point, 189, 191–220

addition, 197–201
converting binary to decimal floating 

point, 196
defined, 191
historical development of, 

CD3.10:1–9
IA-32, 217–220
MIPS, 206–213
multiplication, 202–205
representation, 191–197
rounding, 214–215

Floating Point Systems, CD6.13:4, 5
Floating vectors, CD3.10:2
Floppy disks, 25, CD1.7:6
Floppy drives, 25
Flush instructions, 418
Flynn, Michael, CD6.13:3
Formal parameter, A16
Forrester, J., CD7.9:1
FORTRAN, CD2.19:6, 7–8

overflows, 172, 173
Forwarding, 376–377, 402–412, CD6.7:3
Forward reference, A11

Fraction, 191, 193
Frame buffer, 18
Frame pointer, 86
Front end of compiles, CD2.12:1–9
Fully associative cache, 497
Fully connected network, CD9.6:28
Function code, 63

G

Gates, B7–8, C4–8
Gateways, CD8.3:6
General-purpose register (GPR), 135, 

138, CD2.19:2–3
Generate, carry lookahead, B39–47
Geometric mean, IMD4:9–11
Gibson, Garth, CD8.11:6
Global common subexpression elimina-

tion, 118
Global labels, A11
Global miss rate, 509
Global optimization, 117–121, 

CD2.12:4–6
Global pointer, 85
Goldstine, Herman H., 48, CD1.7:1–2, 3, 

CD3.10:1
Google, CD9.8:34–39

News, 465
Gosling, James, CD2.19:7
Graph coloring, CD2.12:7–8
Graphics display, 18
Gray, Jim, CD8.11:5
Gray-scale display, 18
Guard, 214–215

H

Half words, 94
Hamming code, B67
Handler, 533
Handshaking protocol, 583–584
Hard disk, magnetic, 23
Hard drive, 19, 20
Hardware

description language, B20–25

functions of, 15
performance affected by, 10
synthesis tools, B21

Hardwired control, 348, CD5.12:2
Harvard architecture, CD1.7:3
Hazards

See also Pipelining hazards
detection unit, 413–415

Heap,allocating space for data on, 87–88
Heat sink, 22
Held, Gerald, CD8.11:5
Hewlett-Packard, CD2.19:5, 

CD3.10:6–7, CD4.7:2
PA-RISC 2.0, D34–36

Hexadecimal-binary conversion table, 62
Hi, 181
High-level optimization, 116–117
High-level programming languages

advantages of, 14 –15
architectures, CD2.19:4
defined, 13
translating into instructions that 

hardware can execute, 12–15
Hit(s)

Average Memory Access Time 
(AMAT), IMD7:1

defined, 470
rate/ratio, 470–471
time, 471

Hitachi, SuperH, D39–40
Hold time, B53
Hot swapping, 579
Hubs, CD8.3:7

I

IBM
disk storage, CD8.11:1–4
early computers, CD1.7:5
floating points, CD3.10:2, 3–4
floppy disks, CD1.7:6, CD8.11:2
history of programming languages, 

CD2.19:6
microprogramming, CD5.12:1–2
multiple issue, CD6.13:4
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PowrPC, D32–33, IMD2:17–20, 
IMD3:10

RAID, CD8.11:6
Stretch computer, CD6.13:1–2
virtual memory, CD7.9:5–7, 10
Winchester disks, CD8.11:2, 4

IEEE 754 floation-point standard, 
193–196, CD3.10:7–9

If-then-else statements, compiling into 
conditional branches, 72–73

Immediate addressing, 100
Implementation, 22, 24
Imprecise interrupts/exceptions, 432, 

CD6.13:3
IMS, CD8.11:4
Induction variable elimination, 119–120
Infinity, 193
Ingres, CD8.11:5
In-order commit, 445
In-order completion, 445
Input devices, 15, 566, A38–40
Input don’t cares, B16
Input operation, 582
Inputs, asynchronous, B75–77
Instruction decode, 385, 390, 392, 402
Instruction encoding, MIPS floating-

point, 208
Instruction group, 440
Instruction fetch, 385, 388–389, 392, 400
Instruction format, 61
Instruction latency, 452
Instruction-level parallelism (ILP), 

CD9.7:33, 433, CD6.13:5
Instruction mix, 253
Instruction register (IR), 319, 321
Instruction sets

addressing, 95–105
architecture, 22, 24
compiler optimization, 116–121
decision-making instructions, 72–74
defined, 48
designing, for pipelining, 374–375
historical development of, 

CD2.19:1–9
logical operations, 68–71

operands of hardware, 52–60
operations of hardware, 49–52
to process text, 90–95
representing instructions to com-

puter, 60–68
styles, IMD2:7–9
supporting procedures, 79–90
translating and starting a program, 

106–115
Integers, signed versus unsigned, 165
Integrated circuits (ICs)

costs, IMD1:1–2
defined, 20, 27–28
how they are manufactured, 28–33

Integrated Data Store (IDS), CD8.11:4
Intel, CD1.7:5, 6, CD8.11:8

See also Pentium 4
8086, 135, CD2.19:2, 4, 5
8087, 135, CD3.10:7
80286, 135, CD2.19:5
80386, CD2.19:5
80486, 135, CD2.19:5
iSC 860 and Paragon, CD9.11:52
Pentium and Pentium Pro, 135, 

CD2.19:5, 448–450
SPEC CPU benchmarks, 254–255, 

259–266
SPECweb99 benchmark, 262–266

Intel IA-32, 59
addressing modes, 138
complexity of, 347–348
conclusions, 142–143
fallacies and pitfalls, 143–144
floating point, 217–220
historical development of, 134–137, 

CD2.19:4–5
instruction encoding, 140–142
integer operations, 138–140
registers, 137–138

Intel IA-64, 435, CD5.12:3
architecture, 440–442, CD6.13:4–5

Intel Streaming SIMD Extensions (SSE), 
135–136

Intel Streaming SIMD Extension 2 
(SSE2), 136

floating points, 220
Interface message processor (IMP), 

CD8.3:5
Interference graph, CD2.12:7
Interleaving, 489
Intermediate representation, 

CD2.12:2–3
Internet, CD8.11:7

news services, 464–465
Internetworking, CD8.3:1–4
Interrupt-driven I/O, 590–591
Interrupts, 173, A33–38

handler, A33
imprecise, 432, CD6.13:3
priority levels, 591–593
use of term, 340–341

Intrinsity FastMATH processor example, 
485–487, 524

Invalid operations, 193
I/O

buses, 582
communicating with processor, 

590–591
designing a system, 600–603 
devices, 15, 566, A38–40
digital camera example, 603–606
diversity of, 568
fallacies and pitfalls, 606–609
giving commands to devices, 589–590
historical development of, 

CD8.11:1–9
instructions, 590
interfacing devices to processor, mem-

ory, and operating system, 588–596
interrupt-driven, 590–591
interrupt priority levels, 591–593
measuring performance, 567
memory-mapped, 589–590
performance, 597–600
rate, 598
requests, 568
transferring data between devices and 

memory, 593–595
Issue packet, 435
Issue slots, 434
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J

Java
bytecode, 114, CD2.14:1, 2
characters and strings, 93–95
compiling, CD2.14:4–6
development of, CD2.19:7
interpreting, CD2.14:1–3
invoking methods, CD2.14:6
logical operations, 68–71
translating hierarchy, 114–115
sort and swap, CD2.14:6–13
while loop, CD2.14:3–4, 5–6

Java Virtual Machine (JVM), 115, 
CD2.14:3

Jhai Foundation, PC network, 44–45
Jobs, Steven, CD1.7:5
Johnson, Reynold B., CD8.11:1
Joy, Bill, CD7.9:9
J-type, 97
jump, 73, 77, 80, 89, 296

addressing in, 97–99
datapath and control and, 313–314, 

321, 328, 336
Jump address table, 76, 77, 

IMD2:15–16
jump-and-link, 79–80, 89
jump register, 76
Just-in-Time (JIT) compiler, 115

K

Kahan, William, CD3.10:5–7, 8, 9
Kahn, Robert, CD8.11:7
Karnaugh maps, B18
Katz, Randy, CD8.11:6
Kay, Alan, CD2.19:7
Kernel benchmarks, CD4.7:2, IMD4:7–8
Kernel process, 529
Knuth, Donald, CD2.19:8

L

Labels, external/global and local, A11
Lampson, Butler, CD7.9:8, 11

Laptop computers, performance versus 
power versus energy efficiency, 
263–265

Latches, B59–53
Latency

instruction, 452
pipeline, 383

Leaf procedures, 83, 93
Least recently used (LRU), 504, 

518, 519
Least significant bit, 161
Level-sensitive clocking, B74–75
Link editor, 109
Linkers, 108–111, A4, 18–19
Linpack, CD3.10:3, CD4.7:2
Linux, 11, CD7.9:11
Liquid crystal displays (LCDs), 18
Lisp, CD2.19:6
Little Endian, 56, A43
Live range, CD2.12:7
Livermore Loops, CD4.7:2
Lo, 181
Load, 54, 57

advanced, 442
byte, 91, 164
byte unsigned, 164
half, 94, 164
halfword unsigned, 164
linked, CD9.3:19
locked, CD9.3:19
upper immediate, 95
word, 54, 57, 59, 294, 300–318

Loader, 112
Loading, A19–20
Loading 32-bit constant, 96
Load-use data hazard, 377
Local area networks (LANs), 26, 

CD8.3:5–8, CD8.11:7–8
Locality, principle of, 468–469
Local labels, A11
Local miss rate, 509
Local optimization, 117–121, 

CD2.12:3–4
Lock, CD9.1:5
Lock variables, CD9.3:18

Logic
arrays of logic elements, B18–19
combinational, B5, 8–20, 23–25
equations, B6–7, C12–13
sequential, B5, 55–57
two-level, B10–14

Logical operations, 68–71, B6, 
IMD2:21–22

Logic design conventions, 289–292
Long-haul networks, CD8.3:5
Long instruction word (LIW), 

CD6.13:4
Lookup tables (LUTs), B78
Loops, 74–75

branch, 421–422
unrolling, 117, 438–440

Lorie, Raymond, CD8.11:5

M

Machine code, 61
Machine language, 61, A3

decoding, 100–104
MIPS floating-point, 207
object file and, 108

MacOS, 11
Macros, A4, 15–17
Magnetic disks, 23, 569

differences between main memory 
and, 24

memory hierarchies and, 469, 513
Magnetic resonance imaging (MRI), 

622–623
Magnetic tape, 25
Main memory, 23

differences between magnetic disks 
and, 24

Make the common case fast, 267, 285
Mark machines, CD1.7:3
Mask, 70
Mauchly, John, CD1.7:1, 2, 4
McCarthy, John, CD2.19:6, CD7.9:7, 11
McKeeman, William, CD2.19:8
Mealy, George, 338
Mealy machine, 338, 340, B68
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Mean time between failures (MTBF), 573
Mean time to failure (MTTF), 573, 

574, 606
Mean time to repair (MTTR), 573, 574
Megabyte, 23
Memories, 290
Memory, 8

access, 385, 390, 392, 402
allocation, 87–88
Average Memory Access Time 

(AMAT), IMD7:1
board, 20
cache, 20
cards, 25
consistency model, CD9.3:15
defined, 20, 23
direct memory access (DMA), 

594–596
distributed, CD9.4:22, 24
dynamic random access (DRAM), 20, 

469, 487–488, 490–491, 513, B60, 
63–65

historical development of, CD7.9:1–12
main, 23
mapping, 512
nonvolatile, 23
operands, 54–55
primary, 23
random access (RAM), 20
read only (ROM), B14, 16, C13–19
secondary, 23
shared, CD9.1:4–5, CD9.4:22, 24
static random access (SRAM), 20, 

469, B57–60
transferring data between devices 

and, 593–595
unit, 292
usage, A20–22
virtual, 511–538
volatile, 23

Memory data register (MDR), 319, 328
Memory elements

latches, flip-flops, and register files, 
B49–57

SRAMs and DRAMs, B57–67

Memory hierarchy
caches, 473–511
defined, 469
fallacies and pitfalls, 550–552
framework for, 538–545
historical development of, CD7.9:5–7
levels, 470–471
methods for building, 469–470
overall operation of, 527–528
Pentium P4 and AMD Opteron, 

546–550
trends for, 553–555
virtual, 511–538

Memory-mapped I/O, 589–590
Memory-memory instructions, IMD2:8
Memory reference, 327, 328, 334–335
MESI cache coherency protocol, 

CD9.3:16, 18
Message passing, CD9.1:6, CD9.4:22–23
Metastability, B75–76
MFLOPS (million floating-point opera-

tions per second), IMD4:15–17
Microarchitecture, 448
Microcode, 348
Microinstructions, 348–349, CD5.7:1

fields, CD5.7:3, 5–9
format, CD5.7:2–4

Microoperations, 348
Microprocessors

first, CD1.7:5
future of, CD9.10:44–45

Microprogramming
controller, 348, CD5.12:2
creating a program, CD5.7:4–10
defined, 330, 346
fallacies and pitfalls, 350–352
historical development of, 

CD5.12:1–4
implementing the program, 

CD5.7:10–12
microinstruction format defined, 

CD5.7:2–4
simplifying design with, CD5.7:1–13

Microsoft Corp., CD1.7:5, CD7.9:10, 
CD8.11:5, 6

Minicomputers, first, CD1.7:5
Minterms, B12
MIPS, 49

addressing, 95–105
allocation of memory, 87
arithmetic logic unit (ALU), B32–38
compiling statements into, 50–51
decision-making instructions, 72–73
exception code, 535
fields, 63–64
floating point, 206–213
implementation, 285–289
instruction encoding table, 64, 103
instruction set, 49
logical operations, 68–71
machine language, summary of, 67, 

78, 90
mapping registers into numbers, 60–68
operands, summary of, 59, 67, 71, 89, 

105, 169
registers, 52–53, 79–80, 85, 88, 532
RISC core subset, D9–16, 20–24
RISC instructions for MIPS16, D41–43
RISC instructions for MIPS64, D25–27
translating assembly into machine 

language, 65–66
MIPS assembly language

add, 49–51
add immediate, 58, 59
add immediate unsigned, 172
add unsigned, 172
AND, 69, 70
and immediate, 71, 89
conditional and unconditional 

branches, 72–73
divide, 188–189
divide unsigned, 188–189
floating point, 207
jump, 73, 80
jump address table, 76
jump-and-link, 79–80
load word, 54–59, 294
move from hi, 181
move from lo, 181
multiply, 181
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multiply unsigned, 181
nor (NOR), 69, 70
or (OR), 69, 70
or immediate, 71, 89
set on less than, 75
set on less than immediate, 77, 165
set on less than immediate 

unsigned, 165
set on less than unsigned, 165
shifts, 69
store word, 54–59, 294
subtract, 49–51
subtract unsigned, 172
summary of, 51, 59, 67, 71, 77, 89, 

105, 169, 175, 190, 207, 226–228
xor, IMD2:21–22

MIPS assembly language, R2000
addressing modes, A45–47
arithmetic and logical instructions, 

A51–57
assembler syntax, A47–49
branch instructions, A59–63
comparison instructions, A57–59
constant manipulating instructions, A57
data movement instructions, 

A70–73
encoding instructions, A49
exception and interrupt instructions, 

A80–81
floating-point instructions, A73–80
instruction format, A49–51
jump instructions, A63–64
load instructions, A66–68
store instructions, A68–70
trap instructions, A64–66

MIPS (million instructions per second)
equation, 268
peak versus relative, IMD4:13–14
problem with using as a performance 

measure, 268–270
Mirroring, 575
Miss, 470
Misses

Average Memory Access Time 
(AMAT), IMD7:1

cache, 482–483, 496–502
capacity, 543
cold-start, 543
collision, 543
compulsory, 543
conflict, 543
TBL, 531

Miss penalty, 471
reducing, using multilevel caches, 

505–509
Miss rate/ratio, 471

global, 509
local, 509

Mitsubishi, M32R, D40–41
Moore, Edward, 338
Moore, Gordon, 28
Moore machine, 338, B68
Moore’s law, 28, 181
Mosaic, CD8.11:7
Most significant bit, 161
Motherboard, 19, 20
Motorola

PowrPC, D32–33, IMD2:17–20, 
IMD3:10

68881, CD3.10:8
Mouse, 16–17
move from hi, 181
move from lo, 181
Move from system control, 173
M32R, D40–41
Multicomputers, CD9.11:52
MULTICS (Multiplexed Information 

and Computing Service), CD7.9:8
Multicycle implementation, 318–340
Multiflow Co., CD6.13:4
Multilevel caching, 492, 505–510
Multimedia extensions of desk-

top/server RISCs, D16–19
Multiple instruction multiple data 

(MIMD), CD9.11:51–53
Multiple instruction single data (MISD), 

CD9.11:51
Multiple issue

defined, 433
dynamic, 433, 442–445

IBM’s work on, CD6.13:4
static, 433, 435–442

Multiplexors, 286, B9–10
Multiplicand, 176
Multiplication, 176–182

floating point, 202–205
Multiplier, 176
multiply, 181
multiply unsigned, 181
Multiprocessors

connected by a network, 
CD9.4:20–25

connected by a single bus, 
CD9.3:11–20

defined, CD9.1:4, CD9.11:52
future of, CD9.10:43–44
history development of, 

CD9.11:47–55
inside a chip and multithreading, 

CD9.7:30–34
networks, CD9.4:20–25, 

CD9.6:27–30
programming, CD9.2:8–10
types of, CD9.1:4–8

Multistage network, CD9.6:29–30
Multithreading, CD9.7:30–34

N

Name dependence, 439
NaN (Not a Number), 193
NAND gate, B8
NCR, CD8.11:6
Negation shortcut, 166
Nested procedures, 83–85
Netscape, CD8.11:7
Network bandwidth

defined, CD9.6:27
fully connected, CD9.6:28
total, CD9.6:27–28

Networks, 25–27
characteristics of, CD8.3:1
crossbar, CD9.6:30
internetworking, CD8.3:1–4
local area, CD8.3:5–8
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long-haul, CD8.3:5
multiprocessors connected by, 

CD9.4:20–25, CD9.6:27–30
multistaged, CD9.6:29–30
Pentium 4, 585–587
wireless local area, CD8.3:8–10

Next-state function, 331, B67, C12–13, 
21–27

No-allocate-on-write, 484
No-fetch-on-write, 484
Nonblocking assignment, B24
Nonblocking caches, 445, 548
Nonuniform memory access (NUMA) 

multiprocessors, CD9.1:6, 
CD9.4:22

Nonvolatile memory, 23
Nonvolatile storage device, 569
Nop, 413–414
nor (NOR), 70, 301, B8
Normalized number, 189
Northrop, CD1.7:4
NOT, 70, B6
Numbers

ASCII versus binary, 162
base to represent, 160–161
converting binary to decimal, 164
loads, 164
negative and positive, 165
shortcuts, 166–168
sign and magnitude, 162
sign bit, 163
signed and unsigned, 160–170
two’s complement representation, 163

Nygaard, Kristen, CD2.19:7

O

Oak, CD2.19:7
Object files

defined, 108, A10
format, A13–14
linking, 109–111

Object-oriented language
defined, 130, CD2.14:1
Javas, CD2.14:1–13

Offset, 55, 56

Opcode, 63, 303, 305, 306
Open Source Foundation, CD7.9:9
Open Systems Interconnect (OSI) 

CD8.3:2
Operands

for computer hardware, 52–60
constant or immediate, 57
memory, 54–55
MIPS, summary of, 59, 67, 71, 89, 

105, 169
MIPS floating point, 207

Operating systems
examples of, 11
functions of, 11–12, 588–589
historical development of, 

CD7.9:7–11
Operations, for computer hardware, 

49–52
Operators, Verilog, B21–22
Optical disks, 25
Optimizations

high-level, 116–117
local and global, 117–120, 

CD2.12:3–6
summary of, 120–121

or (OR), 70, 301, 321, B6
Oracle, CD8.11:5
or immediate, 71
Out-of-order execution, 445
Output devices, 15, A38–40
Output don’t cares, B16
Output operation, 582
Overflow, CD3.10:5

adding and subtracting and, 171–174
division and, 189
exceptions, detection of, 343
floating point and, 192
multiplying and, 181

Overlays, 511–512

P

Packets, CD8.3:5
Page, 512

placing and find, 515–516
Page faults, 512, 514, 516–521, 531

Page offset, 513, 514
Page table, 515–516
Palmer, John F., CD3.10:7
Parallel processing program, CD9.1:4, 

CD9.2:8–10, CD9.4:22–23
addressing, CD9.4:23–25
fallacies and pitfalls, CD9.9:39–42

PA-RISC 2.0, D34–36
Parity

big-interleaved (RAID 3), 576–577
block-interleaved (RAID 4), 577–578
distributed block-interleaved 

(RAID 5), 578
Parsing, CD2.12:1
Pascal, CD2.19:6–7
Patterson, David, CD8.11:6
PC-relative addressing, 98, 100
PCSpim, A42, CDA:1–3
PCSrc control and signal, 305
PCWrite, 321
PCWriteCond, 321
Peer-to-peer architecture, CD8.3:9–10
Pentium 4

buses and networks of, 585–587
implementation of, 348–350
manufacturing of, 28–33
memory hierarchies, 546–550
pipeline, 448–450

Pentium processors
SPEC CPU benchmarks, 254–255, 

259–266
SPECweb99 benchmark, 262–266

Performance
See also Pipelining
benchmarks, 254–255, IMD4:7–8, 

11–18
of caches, 253
of caches, measuring and improving, 

492–511
comparing, 252–253, 256–259, 

425–426
CPU, 245, 246–253
defined, 241–244
equation, 248–249
evaluating, 254–259
factors affecting, 251
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fallacies and pitfalls, 266–270
historical review, CD4.7:1–4
how hardware and software affect, 10
I/O, 597–600
measuring, 244–246
per unit cost of technologies, 27
of the pipeline, 253
relative, 243–244
reports, 255–256
single-cycle machines and, 315–318
SPEC CPU benchmarks, 254–255, 

259–266, CD4.7:2–3, IMD4:7–8
SPECweb99 benchmark, 262–266
system, 245
versus power and energy efficiency, 

263–265
Personal computers, early, CD1.7:5–8
Peterman, Mark, 366–367
Physical addresses, 511, 512, 513–514
Physically addressed cache, 528
Physical page number, 513
Pipeline stalls, 377–379, 413–416, 

CD6.7:5–7
Pipelining

advanced methods for extracting 
more performance, 432–445

control, 399–402
datapath, 384–399
defined, 370
designing instruction sets for, 

374–375
exceptions, 427–432
fallacies and pitfalls, 451–384
forwarding, 376–377, 402–412, 

CD6.7:3
graphic representation, 395–399
historical development of, 

CD6.13:1–13
instruction execution sped up by, 

372–374
latency, 383
overview of, 370
Pentium 4 example, 448
stalls, 377–379, 413–416, CD6.7:5–7
Verilog used to describe and model, 

CD6.7:1–9

Pipelining hazards, branch/control, 
379–382, 416–424, CD6.7:8–9

Pipelining hazards data
defined, 376–379
forwarding, 402–412
load-use, 377
stalls, 413–416
structural, 375

Pitfalls, 33–34
Pixels, 18
Pointers, arrays versus, 130–134
Poison, 442
Polling, 590
Pop, 80
Pop-up satellite archival tags (PSATs), 

156–157
Positive numbers, multiplying, 176–180
Power, 30–32

consumption, problems with, 
263–265

PowerPC
addressing, IMD2:17–20
instructions, D32–33
multiply-add instruction, IMD3:10

Prediction, 382, 421–423
IA-64, 441

Primary memory, 23
Procedure call conventions, A22–33
Procedure call frame, A23
Procedures

allocating space for data on heap, 87–88
allocating space for data on stack, 86
C, 81–88
defined, 79
frame, 86
inlining, 116
leaf, 83, 93
nested, 83–85
preserved versus not preserved, 85
recursive, A26, 29
steps, 70

Processor, 20
communicating with, 590–591
cores, 6–7
-memory buses, 582

Process switch, 530

Product of sums, B10–12
Product terms, B12
Program counter (PC), 80, 292
Programmable logic arrays (PLAs), 

B12–14, C7, 19–20
Programmable logic devices (PLDs), B77
Programmable read only memory 

(PROM), B14, 16
Programming languages, history of, 

CD2.19:6–7
Propagate, carry lookahead, B39–47
Propagation time, B77
Protection group, 576
Protocol families/suites, CD8.3:1–2
Protocol stack, CD8.3:3
Pseudodirect addressing, 100
Pseudoinstructions, 107, A17
Push, 80
Putzolu, Gianfranco, CD8.11:5

Q

Quicksort, 129, 507–508
Quotient, 183

R

Radio communication, CD8.3:8–9
Radix Sort, 507–508
RAID (redundant arrays of inexpensive 

disks)
big-interleaved parity (RAID 3), 

576–577
block-interleaved parity (RAID 4), 

577–578
distributed block-interleaved parity 

(RAID 5), 578
error detecting and correcting code 

(RAID 2), 575
historical development of, 

CD8.11:5–6
mirroring (RAID 1), 575
no redundancy (RAID 0), 575
P + Q redundancy (RAID 6), 578
summary of, 578–579
use of term, 574–574
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Random access memory (RAM), 20
Raster cathode ray tubes (CRTs), 18
Raster refresh buffer, 18
Rau, Bob, CD6.13:4
Read only memory (ROM), B14, 16, 

C13–19
Read/write head, 23
Reals, 189
Receive message routine, CD9.1:6
Recursive procedures, A26, 29
Reduced instruction set computer 

(RISC), CD2.19:4
addressing modes and instruction 

formats, D5–9
Alpha, D27–28
architecture, CD5.12:3
ARM, D36–38
desktop versus embedded, D3–5
digital signal-processing extensions, 

D19
MIPS, D9–16, 20–24
MIPS16, D41–43
MIPS64, D25–27
M32R, D40–41
multimedia extensions, D16–19
PA-RISC 2.0, D34–36
PowrPC, D32–33
SPARCv.9, D29–32
SuperH, D39–40
Thumb, D38–39

Redundancy. See RAID (redundant 
arrays of inexpensive disks)

Reference bit, 519
Refresh rate, 18
reg, B21–22
Register addressing, 100
Register file, 293–294, B49, 53–55

read, 385, 390, 392, 402
Registers, 52–53, 59, 88, 290, 532

allocation, CD2.12:7–9
architectural, 448
dedicated, CD2.19:2
destination, 64
general-purpose, 135, 138, 

CD2.19:2–3

global pointer, 85
IA-32, 137–138
jump, 76, 80
mapping into numbers, 60–68
number, 294
renaming, 439
special-purpose, CD2.19:2
spilling, 58, 80

Register use conventions, A22–33
Relational databases, CD8.11:4–5
Reliability, 573
Relocation, 513
Relocation information, A13
Remainder, 183
Remington-Rand, CD1.7:4
Remote access times, CD9.1:7
Reorder buffer, 443
Reproducibility, 255–256
Requested word first, 482
Reservation stations, 443
Response time, 242, 244
Restartable instruction, 533
Restorations, 572
Return address, 80
Rings, CD7.9:7
Ring topology, CD9.6:27
Ripple carry, B39, 44–45
RISC. See Reduced instruction set computer 
Ritchie, Dennis, CD2.19:7, CD7.9:8, 11
Rotational delay, 570
Rotational latency, 570
Rounding, 214–215, CD3.10:2–4
Routers, CD8.3:6
R-type instructions, 292–293, 298

S

Sandisk Corp., 605
Scanning, CD2.12:1
Scientific notation, 189, 191
Secondary memory, 23
Sectors, 569
Seek, 569
Seek time, 569–570
Segmentation, 514–515

Selector value, B9
Selinger, Patricia, CD8.11:5
Semantic analysis, CD2.12:1
Semaphores, CD9.3:18
Semiconductor, 29
Send message routine, CD9.1:6
Sensitivity list, B24
Separate compilation, A18
Sequential elements, 290
Sequential logic, B5, 55–57
Servers, 5
Set associative cache, 497, 504
set on less than, 75, 77, 165, 301
set on less than immediate, 77, 165
set on less than immediate unsigned, 

165, 169
set on less than unsigned, 165, 169
Set-up time, B53
Shadowing, 575
Shared memory, CD9.4:22, 24
Shared-memory processors, CD9.1:4–5
Shared virtual memory, CD9.4:24
Shift amount, 69
Shifts, 69
Sign and magnitude, 162, 191
Sign bit, 163
Signed division, 187–188
Signed multiplication, 180
Signed numbers, 160–170
Sign extension, 164, 167–168, 294, 296
Significand, 193
Silicon, 29
Silicon crystal ingot, 29
Silicon Graphics. See MIPS
Simple programmable logic devices 

(SPLDs), B77
Simplicity, 285
Simputer, 45
Simula-67, CD2.19:7
Simultaneous multithreading (SMT), 

CD9.7:31–34
Single address space multiprocessors, 

CD9.1:4–6
Single bus, multiprocessors connected by 

a, CD9.3:11–20
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Single-cycle implementation scheme, 
300–318

pipelined performance versus, 
372–374

Single instruction multiple data (SIMD), 
CD9.11:47–49, 51

Single instruction single data (SISD), 
IMD 2.12, CD9.11:47

Single precision, 192
Small computer systems interface 

(SCSI), 573
Smalltalk, CD2.19:7
Smith, Jim, CD6.13:2
Snooping cache coherency, CD9.3:13
Software

applications, 11–12
performance affected by, 10
systems, 11
third-party of shrink-wrap, 5

sort
body for for loop, 126–127
code for the body of, 124–126
full procedure, 127–128
Java, CD2.14:6–14
passing parameters, 127
preserving registers, 127
register allocation, 123

Source language, A6
SPARCv.9, D29–32
Spatial locality, 468–469
SPEC (System Performance Evaluation 

Corp.)
CPU benchmarks, 254–255, 259–266, 

CD4.7:2–3, IMD4:7–8
file server benchmarks, 599
Web server benchmarks, 599

SPEC ratio, 259
Speculation, 434–435
SPECweb99 benchmark, 262–266
Speedup, IMD4:5
Spilling registers, 58, 80
Spilt caches, 487
SPIM, A40–45, CDA:1–2

command-line options, A42, CDA:1–3
Spin waiting, CD9.3:19, 20

Split transaction protocol, 585
SRAM. See Static random access memory
SRT division, 188
Stack, 80

allocating space for data on, 86
instructions, CD2.19:3–4, 

IMD2:8–9
pointer, 80
segment, A22

Stale data problem, 595
Stallman, Richard, CD2.19:8
Standby spares, 579
Stanford DASH multiprocessor, 

CD9.11:52
State elements, 289–290, B47–48
Static data segment, 87, A20–22
Static multiple issue, 433, 435–442, 

CD6.13:4
Static random access memory (SRAM), 

20, 469, B57–60
Static storage class, 85
Stewart, Robert G., CD3.10:7
Sticky bit, 215
Stone, Harold S., CD3.10:7
Stonebraker, Mike, CD8.11:5
Stop, 440
Storage

for digital cameras, 603–606
disk, 569–580, CD8.11:1–4

Storage classes, types of, 85
store, 57
Store buffer, 445, 485
store byte, 91
store conditional, CD9.3:19–20
Stored-program concept, 49, 215
store half, 94
store word, 57–59, 294, 300–318
Strength reduction, 118
Stretch computer, CD6.13:1–2
Strings

C, 92–93
Java, 93–95

Striping, 575
Stroustrup, Bjarne, CD2.19:7
Structural hazards, 375

Structural specification, B21
Structured Query Language (SQL), 

CD8.11:4–5
Subroutines, CD5.7:2
subtract, 49–51, 301
Subtraction, 170–176
subtract unsigned, 172
Sum of products, B10–12
Sun Microsystems, CD4.7:2, CD7.9:9

SPARCv.9, D29–32
Supercomputers

defined, 5
first CD1.7:5

SuperH, D39–40
Superscalar processors, 348, 442–445, 

CD6.13:4
Supervisor process, 529
swap

code for the body of, 122–123
full procedure, 123
Java, CD2.14:6–14
register allocation, 122
space, 517

Switched networks, CD8.3:5
Switches, CD8.3:7
Switch statement, 76
Sybase, CD8.11:5
Symbol table, 108, A12, 13
Symmetric multiprocessors (SMPs), 

CD9.1:6
Synchronization

barrier, CD9.3:15
coherency and, CD9.3:18–20
defined, CD9.1:5
failure, B76

Synchronizers, B75–77
Synchronous bus, 582–583
Synchronous system, B48
Synthetic benchmarks, CD4.7:1–2, 

IMD4:11–12
System call, 529, A43–45
System CPU time, 245
System performance, 245
System R, CD8.11:4, 5
Systems software, 11
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Tags, cache, 475, 504
Tail recursion, IMD2:10–11
Target language, A6
Taylor, George S., CD3.10:8–9
Taylor, Robert, CD7.9:9–10
TCP/IP, CD8.3:4, CD8.11:7
Temporal locality, 468
Terabytes, 5
Text segment, 87, A13, 20
Thacker, Chuck, CD7.9:8
Thinking Machines, CD9.11:52
Thompson, Ken, CD7.9:8, 11
Thornton, J. E., CD6.13:2
Thrashing, 537
Thread-level parallelism (TLP), 

CD9.7:33
Three Cs model, 543–545
Throughput, 242
Thumb, D38–39
Time, definitions of, 244
Time-sharing systems, CD7.9:7–11
Timing methodologies, B72–77
Tomasulo, Robert, CD6.13:2, 3
Tomasulo’s algorithm, CD6.13:2
Torvald, Linus, CD7.9:10
Tournament branch predictors, 423
Trace cache, 349
Tracks, 569
Traiger, Irving, CD8.11:5
Trains, computer controlled, 280–281
Transaction processing (TP), 598
Transaction Processing Council (TPC), 598
Transfer time, 570
Transistors, 27, 29
Translating microprogram to hardware, 

C27–31
Translation hierarchy for C, 106

assembler, 107–108
compiler, 107
linker, 108–111
loader, 112

Translation hierarchy for Java, 114
compiler, 114–115
Java Virtual Machine, 115
Just in Time compiler, 115

Translation-lookaside buffer (TLB), 
522–534, CD7.9:5

Transportation, technology and, 280–281
Truth tables, 302–303, B5, C5, 14, 15, 16
Tucker, Stewart, CD5.12:1–2
Turing, Alan, CD1.7:3
TVM (transmission voie-machine), 

280–281
Two-level logic, B10–14
Two’s complement representation, 163
Types

checking, CD2.12:1
examples of, 85

U

Ullman, Jeff, CD2.19:8
Unconditional branches, 73
Undefined instruction, exception detec-

tion of, 343
Underflow, 192, CD3.10:5
Unicode, 93–94
Uniform memory access (UMA) multi-

processors, CD9.1:6, CD9.4:22
Units in the last place (ulp), 215
UNIVAC I (Universal Automatic Com-

puter), CD1.7:4
UNIX

development of, CD2.19:7, 
CD7.9:8–11

loader, 112
object file for, 108

Unmapped, 536
Unresolved references, A4
Unsigned numbers, 160–170
Untaken branch hazards, 381
USB, 582, 583
Use bit, 519
User CPU time, 245

V

Valid bit, cache, 476
VAX, CD5.12:2–3, CD7.9:9
Vectored interrupts, 342
Vector processing, CD9.11:49–51
Verilog, CD5.8:1–7

combinational logic in, B23–25
data types and operators, B21–22
description of, B20–25
MIPS arithmetic logic unit (ALU), 

B36–38
program structure, B23
sequential logic, B55–57
used to describe and model a pipe-

line, CD6.7:1–9
Very large scale integrated (VLSIs) cir-

cuits, 20, 27–28, 29
Very long instruction word (VLIW), 

CD6.13:4
VHDL, B20, 21
Virtual address, 512
Virtually addressed cache, 527
Virtual machine, simulation of, A41–42
Virtual memory

address translation, 512, 521–524
defined, 511
design, 514–521
implementing protection with, 

528–530
overlays, 511–512
page, 512
page, placing and find, 515–516
page faults, 512, 514, 516–521
page offset, 513, 514
page table, 515–516
reasons for, 511–512
translation-lookaside buffer (TLB), 

522–534
write-backs, 521

Virtual page number, 513
Volatile memory, 23
von Neumann, John, 48, CD1.7:1–2, 3, 
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Wall-clock time, 244
WARP, CD6.13:5
Web server benchmarks, 599
Weighted arithmetic mean, 258
Whetstone synthetic benchmarks, 

CD4.7:1–2, IMD4:11–12
while loop, 74–75, 98–99

in Java, CD2.14:3–4, 5–6
Whirlwind project, CD1.7:4, CD7.9:1
Wide area networks (WANs), 26, 

CD8.11:11
WiFi, 44–45, CD8.3:8
Wilkes, Maurice, CD1.7:2, CD5.12:1, 

CD7.9:6
Wilkinson, James H., CD3.10:2

Windows, 11
wire, B21–22
Wired Equivalent Privacy, CD8.3:10
Wireless local area networks (WLANs), 

CD8.3:8–10
Wireless technology, 27, 156–157
Wirth, Niklaus, CD2.19:6
Wong, Gene, CD8.11:5
Word, in MIPS architecture, 52
Working set, 537
Workload, 254
World Wide Web, CD8.11:7
Wozniak, Stephen, CD1.7:5
Write-around, 484
Write-back, 385, 392, 402, 484–485, 521, 

542
Write buffer, 483–484
Write control signal, 290, 294
Write invalidate, CD9.3:14, 17
Writes

handling cache, 483–485

handling virtual memory, 521
Write-through, 483, 542

X

Xerox Palo Alto Research Center 
(PARC), 16, CD1.7:7–8, 
CD7.9:9–10, CD8.11:7, 8

xor, IMD2:21–22
xspim, A42, CDA:1–4

Y

Yield, 30

Z

Zip drive, 19, 20, 25
Zone bit recording (ZBR), 569
Zuse, Konrad, CD1.7:3
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Two historians chronicle the dramatic story. The New York Times calls it well written and authoritative.

Ceruzzi, P. F. [1998] A History of Modern Computing. MIT Press, Cambridge, MA. 
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The Motorola 680x0 is the main focus of the book, but it covers the Intel 8086, Motorola 6809, TI 9900, and
Zilog Z8000.



Further Reading FR-3

Chapter 3

Burks, A. W., H. H. Goldstine, and J. von Neumann [1946].   “Preliminary discussion of the logical design of
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This survey is a source of stories on the importance of accurate arithmetic.

Kahan, W. [1983]. “Mathematics written in sand,” Proc. Amer. Stat. Assoc. Joint Summer Meetings of 1983,
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Describes the SPEC benchmark suite. For up-to-date information, see the SPEC Web page via a link at
www.mkp.com/books_catalog/cod/links.htm.
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Patterson, D. A. [1983]. “Microprogramming,” Scientific American 248:3 (March) 36–43.
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