

Cornell Anivers	ity L ibrary
THE GIFT Barnegie Institut	•••
A.354700	

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

http://www.archive.org/details/cu31924012300491

PTOLEMY'S CATALOGUE OF STARS

A REVISION OF THE ALMAGEST

BY

CHRISTIAN HEINRICH FRIEDRICH PETERS, PH. D.

Director of Hamilton College Observatory Formerly Litchfield Professor of Astronomy at Hamilton College Foreign Associate of the Royal Astronomical Society Member of the Legion of Honor

AND

Edward Ball Knobel

Treasurer and Past President of the Royal Astronomical Society

THE CARNEGIE INSTITUTION OF WASHINGTON 1915

E.A. F. Tekers

PTOLEMY'S CATALOGUE OF STARS

A REVISION OF THE ALMAGEST

BY

CHRISTIAN HEINRICH FRIEDRICH PETERS, PH. D.

Director of Hamilton College Observatory Formerly Litchfield Professor of Astronomy at Hamilton College Foreign Associate of the Royal Astronomical Society Member of the Legion of Honor

AND

Edward Ball Knobel

Treasurer and Past President of the Royal Astronomical Society

THE CARNEGIE INSTITUTION OF WASHINGTON 1915 5

6T

A.354700

CARNEGIE INSTITUTION OF WASHINGTON Publication No. 86

WASHINGTON

CONTENTS.

1

1

	Page
Preface	I-5
Historical	6-15
Errors of Ptolemy's longitudes	16-17
List of manuscripts collated	18
Notes on the manuscripts.	19-23
Errors in manuscripts	24
The Catalogue	25-26
Catalogue I	27-50
Catalogue II	51-73
Catalogue III	74-95
	96-113
Table of differences of identification	14-119
The star magnitudes	20-143
Notes on the star magnitudes	44-150
Collations of manuscripts-Longitudes 1	52-179
Collations of manuscripts—Latitudes 1	80-207

ILLUSTRATIONS.

Plate	I.	Portrait of C. H. F. Peters	. Frontisp	iece
				AGE.
		Photograph (C) of Paris Codex 2389, IX Century		
	III.	Photograph (C2) of Paris Codex 2389, IX Century	.	24
	IV.	Photograph (D) of Vatican Codex 1594, IX Century	· · · · · · · ·	24
Fig.	I.	Diagram of Errors in Ptolemy's Catalogue	· • • • • •	6
	2.	Facsimiles from Various Manuscripts		24
		Photograph of Venice Codex 313		
		Chart of the position of Ptolemy's Star, 17 Eridani.		

iii

PTOLEMY'S CATALOGUE OF STARS

A REVISION OF THE ALMAGEST

BY

CHRISTIAN HEINRICH FRIEDRICH PETERS, PH. D.

AND

Edward Ball Knobel

100

2.

ž

PREFACE.

The following work embraces the results of the whole of the long and laborious researches of the late Dr. Christian Heinrich Friedrich Peters on the Catalogue of Stars in Ptolemy's Almagest. Some account of this investigation, which he began about the year 1876, will be found in the opening pages. Quite unknown to each other, I had myself taken up the same subject in 1876, but it was not until a few years later that some communications I made to the Royal Astronomical Society brought Dr. Peters into direct correspondence with me, and on learning that he was engaged in the same investigation of Ptolemy's Catalogue of Stars, I offered to place all of my materials at his disposal, and accordingly I sent him, for his free use, the collations of all the manuscripts I had made. These had been prepared with rather an undue amount of labor, as being closely engaged in manufacturing business far from London, it was only on rare days that I could visit the British Museum and other public libraries.

When Dr. Peters and myself met in Paris in April 1887, we had some long conversations on the subject. He told me he did not intend to visit England, and it was agreed that I should investigate all the sources of information possessed in the libraries there, and I particularly undertook to examine the Greek Selden Almagest at Oxford, and several Arabic manuscripts, and send him the results. In this and the following year many letters and discussions passed between us. In a letter dated August 14, 1888, received by Dr. Peters August 25, I asked what steps he had taken towards publication, and considering the contributions I had made from the manuscripts in this country, I asked "How far he would like, and would think it right, that my name should be associated with his as a joint author?" But I assured him "I was quite single-minded in the matter, and that my interest was removed from any idea of a personal character." This letter remained unanswered, probably because no steps had been taken towards preparing any part of the work for publication.

On July 18, 1890, Dr. Peters died. It is unnecessary here to give an account of his life, which has been so fully dealt with in the addresses delivered on that occasion by Dr. Isaac H. Hall and Professor Oren Root, and in the pages of the monthly notices of the Royal Astronomical Society.

On September 3, 1890, I addressed a letter to the executors of Dr. Peters, asking to be informed in what state his work on the Almagest remained with reference to publication, and requesting that the manuscripts might be sent to me to complete, and on November 9, 1891, all of his manuscripts and notes relating to this work, with some important exceptions, were sent to me.

The various subjects and sections of the investigation were each contained in a separate envelope. These were at once marked by letters and have been preserved in that state to the present day. The following is the schedule:

- Cahier A. Ulugh Beg. Collations and notes on various manuscripts by Peters and Knobel. B. Aboul Hhassan. Notes and comparisons of his catalogues, all in pencil.
 - C. Collations of Greek, Latin, and Arabic manuscripts by Knobel.
 - D. Ptolemy's Catalogue of Stars. Final places with variants in 28 authorities, and comparison of the catalogue with modern observations.
 - E. Rough-draft catalogue of which revised copy is contained in D.
 - F. Reductions of the right ascension and declination of all stars to longitude and latitude.
 - G. Collations and notes of 24 manuscripts by Peters and 4 manuscripts by Knobel.
 - H. Translations of 6 chapters of the Almagest from Greek into German, minute German script in pencil.
 - I. Calculations and notes on various catalogues, all in pencil.
 - J. Computation of proper motions; and comparison of the zodiacal stars in the Almagest with modern observations.
 - K. Comparison of Ptolemy's and other magnitudes with Harvard Photometry, all in pencil.

The examination of the manuscripts made it at once apparent that no preparation whatever had been made for publication. All the collations of manuscripts, notes, tables, and computations, were in very minute, close writing, and much of it in pencil, necessitating the copying out of most portions of the work for study, and in form for printer, involving much labor. Many notes were written in minute German script which have been troublesome and unduly expensive to translate. Among others are found several chapters from Books III, V, and VII of the Almagest, written in pencil in minute German script, being translations by Dr. Peters from the Greek into German, which have proved very difficult to decipher. No assistance towards the expense involved was obtainable in this country, and it seemed highly improbable that any society would undertake the publication of the work in the complete form which I considered indispensable. What to do under these circumstances has been a source of great anxiety.

On June 6, 1899, I met Professor Simon Newcomb in London, when he at once said he wished to see me about Dr. Peters' manuscripts. We adjourned to my club and discussed the matter fully for over half an hour. I explained my difficulties about publication and proposed that the work should be published in the United States. Professor Newcomb, referring to the Arabic and Greek, expressed a doubt whether they had the necessary type. No suggestion, however, was made for carrying out my proposal. I need only add that many years ago I made provision in my will that, on my death, the whole of the manuscripts and researches should be sent to the National Academy at Washington.

The present work is limited to the investigation of Ptolemy's Catalogue of Stars, but Dr. Peters also took up the question of Ulugh Beg's Catalogue, and for that purpose he collated several Persian manuscripts. I have added to this by collating all the Persian manuscripts of Ulugh Beg and the Arabic manuscripts of Al Sûfi to be found in this country. This it is hoped to publish in the future as a separate memoir.

It has been my object to make this investigation as exhaustive as possible, but where so much material has had to be examined, analyzed, and checked, and where the whole work has had to be done single-handed, it is hardly possible to avoid some mistakes. The present investigation has shown how prone are all copyists to make mistakes; every care has been taken, and I can only hope that no very serious errors will be found.

I desire to record my obligations to the late Earl of Crawford, for kindly lending me the very valuable manuscript of the Almagest in his library; to the late Mr. Nicholson, Bodley's Librarian at Oxford, for the exceptional favor of sending the Bodleian Arabic Almagest to London for my examination; and to the late Dr. Rieu, Keeper of Oriental Manuscripts in the British Museum, for much valuable assistance.

I am much indebted to Prof. H. H. Turner for his kindness in supervising the reduction of the star places to the epoch B. C. 130.

I desire to express my gratitude to the Hon. Elihu Root, to Professor E. C. Pickering, and to the Executive Committee of the Carnegie Institution of Washington, for their sympathy and interest in the work of the late Dr. Peters, and for the generosity which has now enabled his laborious and exhaustive researches on the most ancient Catalogue of Stars we possess, to be added to astronomical literature.

E. B. KNOBEL.

5

32 TAVISTOCK SQUARE, LONDON, W. C., October 1914.

FIG. 1.—Diagram (referred to on page 8) showing the errors in longitude and latitude of Ptolemy's Zodiacal Stars computed for the Epoch A. D. 100.

6

HISTORICAL.

The Catalogue of Stars contained in the seventh and eighth books of Ptolemy's Meyάλη Σύνταξις, commonly called The Almagest, must always be considered of unique interest. It is the first and most ancient document we possess which gives a description of the heavens of sufficient exactness to admit of comparison with modern observations. For many centuries it was held in the highest repute, and indeed, until the time of Tycho Brahe it was practically the only source of information of the positions of the stars which the world possessed; for though in the fifteenth century Ulugh Beg prepared a much more accurate catalogue of Ptolemy's stars, it never came into general use. Ptolemy's catalogue has accordingly been the subject of many researches and investigations. Up to the present time six editions of the catalogue have been printed in Greek, viz.: Grynæus, Halley, Montignot, Halma, Baily, and Heiberg; also several editions in Latin, particularly those of Trapezuntius, Schreckenfuchs, and Flamsteed, translated from the Greek: those of Liechtenstein and Copernicus, translated from the Arabic by Gerard of Cremona, and the Alfonsine Tables, also translated from the Arabic. The translation into French from the Arabic of Abd Al Rahman Al Sûfi, by Schjellerup, is simply Ptolemy's catalogue for a different epoch; and recently an edition of the Almagest has been published in German by Dr. Karl Manitius.

Dr. Peters began his study of Ptolemy's catalogue probably in 1876 or the early part of 1877. In the latter year he wrote:*

"A close examination of the exactitude of the catalogue of stars by Hipparchus, transmitted to us by Ptolemy, has never yet been made. Flamsteed, Lalande, and Bode have contented themselves with a merely superficial comparison of the separate positions of the stars. By happy conjectures Baily has corrected several of the figures which had been corrupted in the manuscripts; and for this same purpose a comparison will be found useful with the catalogue of Al Sufi, which is formed from the catalogue of Ptolemy by the addition of a constant to the longitudes. Nevertheless, many stars are left, the identification of which has not been possible or is doubtful. But if we wish to compare the condition of the starry sky at the time of the ancients with the present day, if we desire to recognize what has really changed in the sky during the last two thousand years, it is above all things necessary to know in how far a position of Ptolemy could be in all probability faulty."†

Dr. Peters was not content with the wealth of material offered by those editions of Ptolemy's catalogue which up to his time had been printed, and so, about the year 1883, he determined to investigate, as exhaustively as possible, all the various manuscripts containing the catalogue of stars which might exist in the libraries of Europe. In February 1884 he wrote: "During a journey made in Europe within the last few months, an opportunity was given me of examining in various libraries

^{*}Ueber die Fehler des Ptolemäischen Sternverzeichnisses. Vierteljahrsschrift Ast. Gesell. 1877. †Cf. Pliny (A. D. 77) Nat. Hist., Lib. II, cap. 26. "Hipparchus . . . discovered a new star that had appeared in his own age and, by observing its motions on the day on which it shone, he was led to doubt whether it does not often happen that those stars have motion which we suppose to be fixed. And the same individual attempted what might seem presumptuous even in a deity, viz.: to number the stars for posterity and to express their relations by appropriate names; having previously devised instruments by which he might mark the places and the magnitudes of each individual star. In this way it might be easily discovered, not only whether they were destroyed or produced, but whether they changed their relative positions, and likewise whether they were increased or diminished; the heavens being thus left an inheritance to anyone who might be found competent to complete his plan."

the manuscripts of the Almagest which they contained." He began his investigations at Vienna, proceeding thence to Venice, Florence, and Rome. No further examination of manuscripts was made by him till the year 1887, when, taking advantage of a visit to Paris to attend the International Astrographic Congress, he then collated the important Greek manuscripts found in the Bibliothèque Nationale. The manuscripts he examined are given in the Table of Manuscripts Collated.

The investigation of Peters differs from all those hitherto made, for in order to assist in the identification of the stars, and to determine the actual errors of their positions, he began by calculating from modern observations the longitudes and latitudes of all of Ptolemy's stars, using for this purpose Piazzi's catalogue reduced to the epoch he assumed of A. D. 100, rather than to the epoch Ptolemy gives, which is the first year of Antoninus Pius, A. D. 138. These lengthy and laborious computations finally embraced every probable star near Ptolemy's places, corrected as far as possible for proper motion.

In his paper cited above, Peters compares 349 of Ptolemy's zodiacal stars, taken from the printed editions, with their computed positions for A. D. 100, and he arrives at the conclusion that the equinox requires a correction of +34'.9, equal to a precession of 42 years. He also deduces that the errors in longitude as well as in latitude give evidence of considerable periodicity. He illustrates this with a diagram,* and says: "It will be seen that the curve of errors in longitude has its chief maximum close to 180°, and its chief minimum near to 0°: the curve of errors in latitude has a maximum near to 140°, and a minimum near 320°." And he adds that "the conclusions arrived at from this as to the faulty erection of the instrument, and the position of the axes and circles of the armillary sphere which was used, will be seen more clearly when the comparison has been further extended to the stars outside the zodiac," but he did not pursue this interesting inquiry in that direction.

Dr. Peters brought into the whole investigation of Ptolemy's catalogue a rare ability, which it would be difficult to equal. Besides a fluent acquaintance with most European languages, he had an excellent knowledge of Greek, Latin, Hebrew, Arabic, Persian, and Turkish; and to these qualifications he added a high mathematical power and a facility and accuracy in computation which can only be fully appreciated by the examination of his papers. It is truly said that he was wonderfully swift in his perceptions, and this penetrating acumen is visible in the notes he made whilst collating and discussing the various authorities. Every manuscript was studied with scrupulous care, and every point of doubt investigated exhaustively. Nothing escaped his acute examination, and it is to be deplored that he was not spared to complete the publication of labors in which he had shown himself so preeminent.

Of the writer's share in the investigations contained in the present volume, it may be mentioned that in 1876 he first came to the determination of collating as many manuscripts as possible of Ptolemy's catalogue in order to obtain a more correct edition than we possessed. He commenced the work by the publication in 1876 of the Catalogue of Aboul Hhassan, which consists of 240 of Ptolemy's stars reduced to A. D. 622;* followed in 1879 by the collation of a Persian manuscript of Ulugh Beg.† In 1881 he collated three Latin manuscripts of the Almagest and the important Arabic Almagest in the British Museum, followed in 1885 by the collation of the Arabic Almagest contained in the Bodleian Library at Oxford, which Bodley's librarian had kindly sent to London for his investigation. Various other manuscripts were subsequently collated, and the whole of the material thus obtained was sent to Dr. Peters, and was discussed and used by him in the resulting catalogue. The manuscripts collated, together with some examined since Dr. Peters' death, are given in the Table of Manuscripts. One or two manuscripts of the Almagest are said to exist at the Escurial and at Toledo, but it has not been possible to examine them.

It may be safely asserted that no correct copy of Ptolemy's original catalogue exists in any manuscript, and where all codices contain so many errors it is difficult to say which copy is the most reliable. The centuries that elapsed between Ptolemy's period and the oldest manuscripts known have resulted in numerous errors in the longitudes and latitudes of the stars, due to the scribe, who was either careless or ignorant of what he was writing. Errors in the description of the stars would be very rare, as the scribe would understand the words, but in copying the letters signifying the figures of longitude and latitude he would have nothing whatever to guide him as to their correctness.

The original catalogue was doubtless written in the uncial Greek characters of the second century, for it is improbable that such a work would be written in cursive Greek. The form of the early uncial Greek letters suggests an explanation of some errors not so available from consideration of the Paris Codex 2389 and the Vatican Codex 1594, both of the ninth century. The majority of the errors found in the longitudes and latitudes of the stars must be ascribed to the early writing. All other Greek manuscripts are written in minuscule letters which first came into use only in the ninth century, and some errors may be due to this form of writing.

The most common error in all manuscripts is that of confounding the uncial Greek letters alpha A=1 and delta $\Delta=4$ (see Facsimiles). In the Table of the Collations of Manuscripts, examples of this error in all codices will be found in the longitudes of 44 stars and the latitudes of 36 stars. As such errors appear also in the Arabic codices, it would seem that they existed in the Greek used by Al Mamon for his translation about A. D. 827. Errors are found also from confusion between the alpha A=1 and the lambda $\Lambda=30$; such errors in Nos. 766 and 767 have been repeated by Grynæus and Halma, also errors of the lambda for the delta. On reference to the photograph of the Paris Codex 2389, the possibility of such confusion will be seen in the longitude and latitude of the twenty-second star of Ursa Major, which is not the case in the photograph of the Paris Codex 1594. Another common error is mistaking the epsilon $\epsilon=5$ for theta $\Theta=9$, of which examples will be found in many manuscripts, in the longitudes of 12 stars, and the

^{*}Chronology of Star Catalogues. Mems. R. A. S., vol. XLIII. †Mon. Nots. R. A. S., vol. XXXIX.

latitudes of 5 stars. In the Greek uncials of the second century these letters were circular in shape, with little difference between thick and fine strokes (see Facsimiles), and the opening in the epsilon for the cross-stroke was narrow; thus confusion between the two letters was very probable.

About the ninth century the kappa K = 20 began to be written with the angular part of the letter removed from the vertical stroke. (See Facsimiles and the photograph of Venice Codex 313.) The effect of this was that the angular part was taken to be the character for $\frac{3}{4}\mu\iota\sigma\nu = \frac{1}{2}$. Thus we find in most Greek manuscripts instances (Nos. 179, 277, 441, 572) where $K\Gamma'$ has been taken to be $20^{\circ}\frac{1}{3} = 20^{\circ} 20'$, instead of $I = 10^{\circ} < = \frac{1}{2} \Gamma' = \frac{1}{3} = 10^{\circ} 50'$. This is the explanation of the two readings of the latitude of No. 572 in the Paris Codex 2389.

Another error found in some manuscripts, particularly the Vatican Codex Reg. 90, and the Bodleian Codex 3374, where the minuscule $\nu = 50$ is written for the $\eta = 8$ or vice versa (which in form are quite dissimilar), is derived from the uncial letters, which sometimes closely resemble each other. This appears in the photograph of the Paris manuscript 2389, in the latitude of the eighteenth star of Ursa Major, where the uncial ν may easily be taken for the uncial $\eta = H$, but not so in Vat. 1594.

The above sources of difficulty in determining the probable original figures apply mainly to the *degrees* of longitude or latitude. As is well known, the minutes are always represented in Greek as fractions of a degree, where the significant letter with an accent expresses the denominator of the fraction. Innumerable errors occur from the omission of the accent, which then converts the letter into a whole number, affecting the degrees. Examples are given in the Facsimiles. The origin of the sign for $\frac{\pi}{2}\mu \sigma v = \frac{1}{2}$ is rather obscure. As is seen in the Facsimiles, it takes various forms, becoming in later manuscripts and in printed Greek a form closely resembling the stigma π . One feature should be mentioned upon which Dr. Peters held a decided opinion, but which the writer finds it difficult to accept: The Greeks usually represented 40' by r_0 or $r_{\beta} = \frac{2}{3}$, the o in the first case being simply a contraction for β . They represented 50' by the combination of $\frac{1}{2} + \frac{1}{8}$. But in several Greek manuscripts is found the combination of $\frac{1}{2} + \frac{1}{10} = 40'$ (see Facsimiles). Dr. Peters thought that this should be read as $\frac{1}{2}$, with variant $\frac{1}{10}$. But in no case is it written as all other variants yet noted, where the variant is always written above, or in the margin, or with some separation; and as this expression is found in so many manuscripts, it seems more probable that the characters should be read as a combination, and so they have been taken in the Table of Collations.

For nearly three centuries the only available edition of the Almagest in Greek was that published at Basel by Grynæus in 1538, but great uncertainty exists as to the manuscript he used. It is stated that the manuscript belonged to Regiomontanus, to whom it was given by Cardinal Bessarion, and that it was deposited at Nürnberg. No Greek manuscript of the Almagest exists at Nürnberg. Dr. Peters investigated the work of Doppelmayer (*Histor. Nachricht. von der Nürenbergischen Mathematicis und Künstlern, Nürnberg, 1730*), on which he made several notes. It appears that Regiomontanus devoted considerable study to the Almagest and to the other works of Ptolemy, and particularly to the commentary of Theon, all of which he found in Rome in the original Greek. Bessarion presented to him the manuscript of Theon, which contained the following inscription in the Cardinal's writing: "Theonis in Ptolemæum liber meus Bessar. Cardin. Tuscul.," under which Regiomontanus wrote "nunc Johannis de Regiomonte." Doppelmayer states that Bessarion valued the Almagest so highly that he would not have exchanged it for a province, and he adds that this is attested by Camerarius in the dedication which he placed at the commencement of the Almagest printed at Basel in 1538 (Grynæus edition). On this point Doppelmayer is in error, for the dedication of Camerarius is to the commentary of Theon, and not to the Almagest. In the year 1450 one or two Greek codices of the Almagest had been found in Greece and brought to Rome. The first translation of them was made by Georgius Trapezuntius about 1460, subsequently published at Venice in 1528; this translation was not considered very correct, and Regiomontanus undertook a new translation, which, however, was never printed. When Regiomontanus died in Rome, July 6, 1476, Walther bought all his library and works and refused to allow any of the manuscripts to be printed or any inspection of the works. After the death of Walther, his library was dispersed, except a portion which was bought by a magistrate at Nürnberg.

The work given by Cardinal Bessarion to Regiomontanus was clearly the commentary of Theon, and there is no reliable evidence that Bessarion gave him a copy of the Almagest, which "he would be unwilling to exchange for a province." Doppelmayer states that Camerarius (real name Liebhard, born 1500, died 1574) caused the Commentary of Theon to be added to the Almagest of Ptolemy in the edition published by Grynæus in 1538, "after the codex of Regiomontanus," presumably the codex of Theon.

The only further material evidence on the question is found in Montignot (Etat des Etoiles Fixes au second siècle par Claude Ptolemée, Nancy, 1786). He says: "The manuscript of the work of Ptolemy is an original document, carefully preserved in the library of Nürnberg. It was brought from Greece by Cardinal Bessarion, after the siege of Constantinople." (A. D. 1453.) "I ought to state that I had requested M. Moers to supply, from the manuscript of Nürnberg, some omissions of the catalogue, and to verify some longitudes which lead me to suspect mistakes of printing. I have followed very exactly the print of the Greek edition Basel 1538." Dr. Peters remarks: "As in the edition of Grynæus the latitudes of 15, 16, and 17 Ophiuchi are missing, and also the longitude and latitude of 21 Tauri, why did not Montignot supply them from the manuscript? The notes of Montignot about the manuscript said to be existing in Nürnberg must be regarded with dis-Who was M. Moers? In the edition of Montignot there are absolutely trust. no sure signs of a correction of the edition of Grynæus after an original manuscript." Delambre considered Montignot's edition "peu exacte."

The M. Moers referred to is no doubt Christophorus Theophilus de Murr, who in 1786 published at Nürnberg a work entitled "*Memorabilia Bibliothecarum pub*. *Norimbergensium*." This work is not in the British Museum, but a copy exists in the Bodleian with manuscript notes by the author. It is quite clear that he mentions no manuscript of the Almagest at Nürnberg. The manuscript of Theon's commentary on the Almagest, which he describes, has the following sentences: "Toù $\Theta\epsilon \hat{\omega}\nu os \epsilon is \tau \eta \nu \mu \epsilon \gamma a \lambda \eta \nu \sigma i \nu \tau a \xi \iota \nu Bi \beta \lambda os \epsilon \mu o \nu \beta \eta \sigma \sigma a \rho \iota \hat{\omega} \nu o \nu a \lambda \iota i \delta \tau \sigma \tilde{\nu} \tau \sigma \nu \sigma \kappa \lambda \hat{\omega} \nu$." "Theonis in ptolemæum liber meus b. Card. Tusculani, nunc Ioannis de regiomonte. Donaverat nimirum Bessarion Regiomontano codicem." From the description by Zanetti (Græca D. Marci Bibliotheca) of the Venice Codex 310, which bears the autograph of Cardinal Bessarion, it has been considered that Grynæus based his edition on this manuscript. This is open to doubt, inasmuch as in this Venice Codex $\frac{2}{3}$ is always represented by gamma over beta, and never by gamma alone or beta alone, as in Grynæus. The oft-repeated statement that Grynæus based his edition on a manuscript given by Bessarion to Regiomontanus and deposited at Nürnberg is due to an erroneous reading of the above Greek sentence, which refers only to Theon's commentary.

In the Grynzeus edition the whole number 3 is given by γ or Γ . The use of the character Γ' is twofold. Throughout the work it represents $\frac{1}{3} = 20'$, but from the commencement to the end of Sagittarius (with the exception of the 15th star in Bootes) it also represents $\frac{2}{3} = 40'$. From Capricornus to the end, $\frac{2}{3} = 40'$ is represented by β' . In the Paris Codex 2389, $\frac{2}{3}$ is represented by $\Gamma'\beta$ or $\Gamma'o$, where o is an abbreviation for β . This is in conformity with the manner of expressing fractions by the Greeks, viz., to write the denominator as an exponent. Thus, for example, in Archimedes, $\frac{9}{11}$ is expressed by $\theta^{\iota a}$, the numerator below the denominator. In our case $\frac{2}{3}$ is conformable to $\overline{\beta}^{\gamma'}$ or in uncials $_{\beta}\Gamma'$ or more simply Γ_{β}' finally Γ_{β}' .

The Paris Codex Græcus 2394 exhibits many points of resemblance to the Grynæus edition. This manuscript is a copy, made in 1733 for the Bibliothèque du Roi, of a thirteenth century manuscript at Constantinople belonging to the Prince of Walachia, apparently afterwards destroyed by fire. The Paris manuscript has all the errors of print in Grynæus, but it has some omissions and it also gives some latitudes (248-250) which are wanting in Grynæus. It is significant that $\frac{2}{3}$ is represented in the first part of the catalogue by γ' , and from Capricornus to the end by β' , precisely as in Grynæus. This offers a strong probability that the manuscript used by Grynæus and the archetype of Paris 2394 had the same origin.

The Latin manuscripts are of less importance, though the translation from the Greek by Trapezuntius elucidates several doubtful points. It is uncertain which was the actual Greek manuscript used by Trapezuntius; it is stated to have been a copy of a Greek manuscript in the Vatican. The remaining Latin manuscripts are all copies of the translation from the Arabic by Gerard of Cremona, and may best be considered in connection with the Oriental codices. The principal error in all Latin manuscripts of the Middle Ages is confounding the figures 1 and 2, which sometimes are identical.

The Arabic manuscripts are especially valuable for comparison with the Greek, as the errors are of a different kind. Unlike the Greeks, who wrote the minutes of longitude and latitude in fractions of a degree, the Arabs wrote the minutes in figures, and thus these two different methods form a valuable check one on the other. In numerous cases where the Greek reading is vitiated by the omission of an accent, the correct value is found in the Arabic sources. Two different and independent Arabic translations from the Greek are known: First, that of the British Museum Codex 7475. This is written in a very cursive character with a lamentable neglect of diacritical points, rendering it difficult to decipher. It is not written in the Maghribi or African character, but clearly it has been derived from a manuscript in that character. Secondly, that of the codices Bodleian 369, Laurentian 156, British Museum Reg. 16, and the manuscripts of Al Sûfi, which are all from the same source, generally recognized as the translation from the Greek made by Al Mamon about A. D. 827. These manuscripts are written in the character called Neskhi, and in considering the probable errors of their texts it should be borne in mind that Neskhi, which is the ordinary form of Arabic writing, was only invented about the beginning of the fourth century of the Hejira = A. D. 912. Consequently the original translation of Al Mamon was probably in Cufic Arabic, and rewriting this into Neskhi would give an opening for very many errors. This adds a further difficulty to the problem of arriving at Ptolemy's original catalogue.

In the year 1887 Dr. Peters thus expressed to the writer his views on the value of the Arabic manuscripts:

"On the whole the Arabic sources agree all pretty well together in the figures of Ptolemy's catalogue. The Arabs were altogether much more accurate than the Greek scribes, so that I am able to reconstruct the version of Al Mamon's copy almost without doubt. We must try to reduce all that has come down to us of the catalogue of the Almagest to two sources: (1) the direct Greek tradition; and (2) the Arabic, which represents the copy of certainly high antiquity that Al Mamon brought home and had translated. We know that there were two translations of the Almagest made at Baghdad,* or that the first reduction was revised and improved upon several years later. This may account for some of the variants that are sustained, from both sides, by more than one of the sources of Arabic origin: I mean variants that do not come from the very frequent mistakes of the diacritical points."

The most common error in Arabic manuscripts is the omission of a diacritical point: thus the numbers 10 and 50 in combination differ only by a point; e. g., c = 18 and c = 58. Many such mistakes will be found in the manuscripts of Gerard of Cremona. Another common error is confusion between the Jeem $\tau = 3$ and the Hā $\tau = 8$, which seems to be due to the omission of a point, but in none of the manuscripts examined is the z=3 written in a form resembling the z=8, and it is more probable that the error may be traced to the Cufic original, where both letters are written exactly alike without any point. The letter Ya z = 10, when signifying ten, is most frequently written in the pure Cufic form. Confusion also occurs between the letters Tā l = 9, and Kaf l = 20, possibly due to the original Cufic letters here shown, which might easily be confounded. In the British Museum Codex 7475 there are several mistakes between 3 and 4, which in some writing might easily be made, and it is clear that the scribe was sometimes doubtful which was correct, as in those cases he has written both letters; and in the same manuscript there are several mistakes of 10, 30, and 50 in combination; the absence of the point making 10 and 50 alike, and writing the Lam J=30 rather short makes it indistinguishable from either. In all manuscripts there is frequently confusion between

^{*}The first by Abu Jafar Almansur (ob. A. D. 775), the predecessor of Harun Al Rashid, and the second by Al Mamon (ob. A. D. 833), who was the son of that celebrated Khalif.

the letters $Z\bar{a}_{j=7}$ written without a point, and Waw,=6. Examples of all these errors will be found in the Table of Collations, and it will be noted that such mistakes are quite different to those that occur in Greek.*

A curious series of mistakes, which appears to have escaped notice, is found in all manuscripts of Gerard of Cremona (A. D. 1114-1187), which were almost certainly made by him, and not by the copyist. The latitudes of I star in Ursa Minor, 5 in Draco, 8 in Cepheus, 9 in Hercules, 6 in Lyra, and 6 in Cygnus-that is to say, all stars of true latitude 60 and odd degrees-were all written as 300 and odd degrees. In some manuscripts a more recent scribe has altered these latitudes by erasure. It is not difficult to find an explanation. In all probability Gerard of Cremona learned his Arabic from the Moors. In the Maghribi or African numerical value of the letters, the letter Sin -300, but in the Neskhi or usual Arabic, that letter = 60. The inference is that Gerard of Cremona used a manuscript from the East; that he was ignorant of the fact that the numerical value of the letters differed from that of the Moors or Western Arabs,[†] and had not sufficient knowledge of the subject to detect the gross mistake in the latitudes.[†] The edition of the Almagest printed by Liechtenstein in 1515 is the translation of Gerard of Cremona in which these errors are corrected.

Baily's investigation of Ptolemy's catalogue (Memoirs Royal Astronomical Society, Vol. XIII) is limited to the printed editions of the Almagest, which he most carefully examined, and his notes on these editions and his identification of the stars are of great value and assistance. All references in the present work are to the ordinal numbers of his catalogue.

Ptolemy's Catalogue of Stars has been very fully discussed by Delambre, who has pointed out the error in the latitude adopted for Alexandria and the defects in the position of the armillary sphere employed, and he has also remarked on the neglect of the influence of refraction; so that it is only necessary to refer to the valuable appendix he contributed to Halma's translation. Colonel Drayson§ has discussed the method of observation adopted by Ptolemy, which he assumes as measuring the difference of longitude, first between the sun and the moon, and then that between the moon and the star. In the case of either of these bodies being near the horizon, he shows how it would be possible to introduce errors in the longitudes of the stars of as much as 1° due to the neglect of the influence of refraction.

One interesting feature was remarked by Dr. Peters, viz.: that the instrument used for the longitudes of the original catalogue was graduated differently to that used for the latitudes. With three exceptions, all in the constellation Virgo,

*Professor Nallino, in his important and exhaustive work on the "Opus		Eastern.	Western.
Astronomicum" of Al Battani, has fully discussed the mistakes he found in	60	س	· · · · · · · · · · · · · · · · · · ·
translating the Arabic manuscripts of that author.		0	
The difference between the numerical value of letters with Eastern and	90	ص	
Western Arabs is as shown in the table at the right.	,	02	00
‡Roger Bacon (A. D. 1214–1292) wrote: "Though we have numerous	300	،شر	····
translations of all the sciences by Gerard of Cremona, Michael Scot, Alfred		-	-
the Englishman, Hermann the German, and William the Fleming, there is	800	ض	ط
such a falsity in their works that none can sufficiently wonder at it.	000	1	
Not one of these translators had any true knowledge of the languages or of	900	ظ	3
the sciences."	1000	غ	<u> </u>
§Monthly Notices, Vol. XXVIII.		3	

the minutes of longitude are either 10', 20', 30', 40', or 50'; whereas in the latitudes there are 144 stars where the minutes are either 15' or 45', clearly indicating a difference in the graduation of the instruments.

It is not, however, at all clear from Ptolemy's description how his instruments were used, and it is needless to inquire very closely into that question, if the views of Delambre, Peters, and the writer are substantiated, that the catalogue is that of Hipparchus transmitted to us by Ptolemy. Dr. Peters made some calculations of the position of stars for B. C. 200, rather before the time of Hipparchus, but quite incomplete. In Catalogue III will be found the whole catalogue reduced to the epoch of Hipparchus B. C. 130, by deducting 2° 40' from Ptolemy's longitudes, being the difference which Ptolemy states he found between the longitudes of Hipparchus and those of his time, and leaving the latitudes unaltered. The catalogue thus reduced is compared with modern observations computed for the epoch of Hipparchus, and a subsidiary table (Table I) is added, showing the average errors in the longitudes for the two epochs A. D. 100 and B. C. 130. In the construction of this table stars of very uncertain identification and those with large errors in longitude or latitude are omitted. Notwithstanding Ptolemv's statement that he "observed as many stars as it was possible to perceive, even to the sixth magnitude," it will be seen that the above evidence confirms the theory that the catalogue is in all probability that of Hipparchus reduced by the addition of a constant to the longitudes, and retaining his original latitudes. The descriptions of the stars were probably amended by Ptolemy.

Reference has been made to Dr. Peters' early paper on the errors of Ptolemy's catalogue, and to the results which he derived from the printed editions of the Almagest. As many of the figures differ from the finally adopted catalogue now submitted, a new table of the mean errors of zodiacal stars has been made (Table II), and for comparison is appended the mean errors of the same stars for the epoch of Hipparchus B. C. 130 (Table III). It will be seen that all the inferences drawn by Dr. Peters in his original paper are not affected. The comparison of the longitudes of zodiacal stars only for A. D. 100 shows a mean error of +34'.9, equivalent to 42 years, making the true epoch of Ptolemy's Catalogue A. D. 58, which is not very dissimilar to A. D. 63 adopted by Bode. The year A. D. 58 is 187 years after the epoch of Hipparchus, which gives a difference of precession of 2° 36', agreeing closely with the difference 2° 40' which Ptolemy states he found between the longitudes of Hipparchus and those of his time. It is clear that his correction to Hipparchus could not represent observed positions in A. D. 138, and the conclusion is obviously in support of the view that the catalogue is simply that of Hipparchus modified by a constant added to the longitudes.

TABLE I.—Comparison of the average errors of the longitudes in Ptolemy's Catalogue for the assumed epoch A. D. 100, and the errors of Ptolemy's longitudes -2° 40' for the epoch of Hipparchus B. C. 130.

			Longitude, Error X and lat				
Constellation.	No. of stars.	Mean latitude.	average error.		Error X cos. lat.		
	scars.		A.D. 100.	B.C.130.	A. D. 100.	B. C. 130.	
Northern.		o /	,	,	1	,	
Ursa Minor	8	+72 35	87.0	88.5	26.0	26.5	
Ursa Major	35	+3736	49.2	28.6	39.0	22.7	
Draco	31	+78 48	143.4	133.9	27.8	26.0	
Cepheus	13	+66 7	49.6	41.5	20. I	16.8	
Bootes	22	+44 16	57.4	35.0	4I.I	25.I	
Corona Borealis	8	+46 56	66.5	35.2	45.4	24.0	
Hercules	27	+56 41	76.5	51.8	42.0	28.4	
Lyra	10	+58 42	97.I	69.I	50.4	35.9	
Cygnus	16	+578	23.3	20.0	12.6	10.8	
Cassiopeia	II	+48 7	67.8	39.I	45.2	26.I	
Perseus		+25 14 +18 28	$43 \cdot 3$	18.1	39.2	16.4	
Auriga Ophiuchus		+18 38 +14 11	33.2	II.O	31.5	10.4 26.8	
Serpens	14 ² /	+14 11 +24 36	57.0 56.5	27.7 36.0	55·3 51.4	32.7	
Sagitta.	5	+3856	53.4	34.0	41.5	26.4	
Aquila	12	+2620	57.5	36.1	51.5	32.3	
Delphinus	8	+30 45	27.2	21.2	23.4	18.2	
Equuleus	4	+23 2	40.5	14.0	37.3	12.9	
Pegasus	20	+252	35.9	19.0	32.5	17.2	
Andromeda		+31 21	26.0	20.7	22.2	17.7	
Triangulum	4	+18 51	18.2	27.7	17.2	26.2	
Zodiacal.	335				Mean 36.65	Mean 22.87	
Aries	17	+532	26.9	I4.4			
Taurus		-2 43	30.8	21.5			
Gemini	20	+0 31	32.I	IO.2			
Cancer	II	00	43 · 4	22.4			
Leo	31	+4 45	41.9	18.0			
Virgo	27	+353	47.7	20.0			
Libra Scorpius		+1 35 -9 24	46.9 46.2	19.0			
Sagittarius	24 25	-2 43	40.2	17.7 17.0			
Capricornus	27	-011	19.3	25.3			
Aquarius	42	-4 26	32.2	14.I			
Pisces	33	+4 39	26.0	14.3		Ì	
Southern.							
Cetus		-18 16	16.0	20.9			
Orion	38	-18 41	26.5	25.6			
Eridanus	26	-3458	13.7	30.0			
Lepus	11 26	-39 36 -48 52	24.8	52.9			
Canis Major Canis Minor		-4852 -1442	30.5 38.5	35.3		•	
Argo Navis.		-54 12	59.5	35.2			
Hydra	29	-2023	40.8	16. I			
Crater	-+	-172	39.4	11.5	8		
Corvus.	7	- 16 29	42.4	13.0			
Centaurus		- 26 55	66.3	38.6			
Lupus		-22 4	51.3	29.3]	1	
Ara						1	
Corona Australis		-17 5	47.0	19.2			
Piscis Austrinus	II	-19 21	22.5	16.4			
· · · · · · · · · · · · · · · · · · ·	1	I	1	1	l	1	

TABLE II.—Zodiacal stars.	Mean errors of Ptolemy's longitudes from
comparison with moder	n observations reduced to A. D. 100.

Longitude,	No. of	Sums.		Mean value.			
Ptolemy.	stars.	Δl	Δb	Δl	Δb	$\Delta l - 34'.9$	
$\begin{array}{c} \circ & \circ \\ \circ - 20 \\ 20 - 40 \\ 40 - 60 \\ 60 - 80 \\ 80 - 100 \\ 100 - 120 \\ 120 - 140 \\ 140 - 160 \\ 160 - 180 \\ 180 - 200 \\ 200 - 220 \\ 220 - 240 \\ 240 - 260 \\ 260 - 280 \\ 280 - 300 \\ 300 - 320 \\ 320 - 340 \\ 340 - 0 \end{array}$	14 16 11 10 9 13 11 9 8 14 13 13 11 14 20 15 7 218	, +318 +446 +277 +257 +427 +336 +566 +481 +499 +386 +608 +619 +546 +432 +237 +608 +433 +144 +7620	$\begin{array}{r} & -137 \\ & -85 \\ & +154 \\ & +168 \\ & +96 \\ & +1257 \\ & +257 \\ & +240 \\ & +71 \\ & +44 \\ & -69 \\ & -251 \\ & -168 \\ & -151 \\ & -168 \\ & -444 \\ & -278 \\ & -66 \end{array}$	+22.7 +27.9 +25.2 +25.7 +42.7 +37.3 +43.5 +43.7 +55.4 +48.2 +43.4 +47.6 +42.0 +39.2 +16.9 +30.4 +28.8 +20.6 +7620 +7600 +7600 +7600 +7600 +7600 +760	$\begin{array}{c} & - & 9.8 \\ - & 5.3 \\ + & 14.0 \\ + & 16.8 \\ + & 9.6 \\ + & 13.9 \\ + & 19.7 \\ + & 21.8 \\ + & 7.9 \\ + & 5.5 \\ - & 4.9 \\ - & 19.3 \\ - & 13.7 \\ - & 12.0 \\ - & 22.2 \\ - & 18.5 \\ - & 9.4 \\ + & 34.9 \end{array}$, -12.2 -7.0 -9.7 -9.2 +7.8 +2.4 +8.6 +8.8 +20.5 +13.3 +8.5 +12.7 +7.1 +4.3 -14.3	

TABLE III.—Mean errors of Ptolemy's longitudes $-2^{\circ} 40'$ from comparison with modern observations reduced to B. C. 130.

Longitude,	No. of	Sur	ns.	Mean	value.	A1 .16
Ptolemy 2° 40'.	stars.	Δl	Δb	Δl	Δb	$\Delta l - 4'.6.$
\circ \circ \circ 20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160-180 180-200 200-220 220-240 240-260 260-280 280-300 300-320 320-340 340-0	14 16 11 10 9 13 11 9 8 14 13 13 13 14 13 13 14 15 7 218	, -102 -34 -52 -43 +127 +66 +163 +150 +228 +127 +160 +239 +145 +110 -183 -23 -66 +1015	, -91 -103 +146 +149 +245 +240 +76 +52 -2255 -91 -134 -154 -278 -71	$, - 7 \cdot 3 - 2 \cdot 1 - 4 \cdot 7 - 4 \cdot 3 + 12 \cdot 7 + 7 \cdot 3 + 12 \cdot 5 + 13 \cdot 6 + 25 \cdot 3 + 15 \cdot 9 + 11 \cdot 4 + 18 \cdot 4 + 11 \cdot 1 + 10 \cdot 0 - 13 \cdot 0 + 0 \cdot 1 - 1 \cdot 5 - 9 \cdot 4 + 1015 - 9 \cdot 4 + 1015 - 218$	$ \begin{array}{r} $	$ \begin{array}{c} & & & \\ & - & 11.9 \\ & - & 6.7 \\ & - & 9.3 \\ & - & 8.9 \\ & + & 2.7 \\ & + & 7.9 \\ & + & 2.7 \\ & + & 7.9 \\ & + & 2.7 \\ & + & 7.9 \\ & + & 2.7 \\ & + & 5.4 \\ & + & 5.4 \\ & - & 17.6 \\ & - & 4.5 \\ & - & 4.5 \\ & - & 14.0 \end{array} $

PTOLEMY'S CATALOGUE OF STARS.

TABLE IV.—List of manuscripts collated. P=Peters. K=Knobel.

NT	77.1	P=Peters. K=Knobel.		0 11 - 11
No.	Title.	Codices.	No.	Collated by
		Greek.		
I		Codex Parisinus, Græcus	2389	P., K.
2		do	2390	P.
3		do	2391	P.
4	I	do	2392	P. P.
5	do	do	2394	P.
	do	Codex Viennæ, Græcus Codex Venitiis, Græcus	14	P.
7			302	P.
9		do	303 310	P.
10		do	311	P.
II	do	do	312	P.
12	do		313	P.
13	do	Codex Laurentianus, Græcus, Plut. 28.	ĩ	P.
14	do	do	39	Ρ.
15	do	do	47	Ρ.
16	do		48	P.
17	do	Codex Vaticanus, Græcus	1038	P.
18	do		1046	P.
19	do	do	I 594	K.
20	do	Codex Vaticanus, Reginensis, Græcus	90	P.
21	do	Codex Bodleian, Selden, Græcus	3374	К.
		Latin.		D
22	Almagest	Codex Viennæ, Trapezuntius	24	P.
23	do	Codex Laurentianus	6	P.
24	do	do	45	P.
25	do	Codex British Museum, Burney	275	K.
26	[do	Codex British Museum, Sloane	2795	K.
27	do	Codex Crawford	148-9	K. K.
28	do	Codex New College, Oxford	281	K.
29	do	Codex All Souls College, Oxford Arabic.	95	IX .
30	Almagest	Codex Laurentianus.	156	P.
31	do	Codex British Museum	7475	K.
32	do	Codex Bodleian, Pocock	369	К.
33	Al Súfi	Codex India Office	2389	K.
34	do	Codex British Museum	7488	K.
35	do	•	1407	K.
36	do	do	5323	K.
37	do		2488	K.
38	do	do	2489	K.
39	do	do	2490	K.
40	do	Codex Bodleian, Pocock	257	K.
41	do	Codex Bodleian, Huntingdon	212	K.
42	do	Codex Bodleian, Marsh	144	K.
43	Nassir Al Din Al Tūsi (Com-	British Museum, Regis	16	К.
	pendium of Almagest).	Persian. Codex Parisinus	366	P.
44	Ulugh Beg	dodo	300 164	
45	do	do	104	P.
46	do	Codex Royal Astronomical Society	1/2	. К.
47	do		16742	
48	do	do	7699	~~
49	do	do	11637	
50	do	Codex Crawford	709	77
51	do	Codex Bodleian	548	
52	do	Codex Bodleian, Marsh	396	
53	do		226	K .
54	do		5	17
33				

NOTES ON THE MANUSCRIPTS OF THE ALMAGEST. GREEK.

1. Paris Codex 2389. This, and No. 19, Codex Vaticanus Græcus 1594, are the oldest manuscripts of the Almagest yet discovered. Codex 2389 was probably originally in the Laurentian library at Florence, and it was bought by Catherine de Medici, who brought it to Paris; on her death it probably came to the library, now the Bibliothèque Nationale. It bears the stamp in gold of Henri IV. The manuscript is assigned to Sæc. IX and is very clearly written in uncial Greek. Halma attributed it to the seventh or eighth centuries, but Dr. Peters was not inclined to this view. He remarks that it can not be older than the end of the ninth century, and says further:

"Besides, it remains to be examined whether the writing is not, at least in parts, perhaps nothing but a copy of the older way of writing, and whether the handwriting itself is not of a considerably later date. To be noted is the transition of the sign for $\eta\mu\mu\sigma\nu$ into a later cursive (minuscule) form. A curious form of delta which occurs a few times was also taken into consideration."

The manuscript of the catalogue is in two forms of uncial Greek, and has apparently been written by two scribes. From the commencement to the end of the constellation Virgo, that is, to the end of Book VII of the Almagest, the writing is in the well-recognized characteristic form of uncial Greek of the ninth century. (Plate II.) The contrast of light and heavy strokes and a decline in regularity are characteristic. From the commencement of Book VIII, with the constellation Libra, to the second star in the constellation Hydra, the writing is in round uncials of a much older type. It is far more regular and is beautifully written. The letters ϵ , Θ , O, and C, which in the first part are oval, are here cir-(Plate III.) It is probably from the consideration of this portion of the cular. manuscript that Halma assigned it to the seventh or eighth centuries, as it certainly resembles writing of an earlier period. The peculiar form of delta noticed by Dr. Peters occurs only in this portion of the manuscript. It is apparently an ancient cursive form of the delta employed as far back as the second century. In the margin also are found a few examples of an old cursive form of the alpha. Dr. Peters remarks upon a variant to the longitude of the twentvsixth star of Capricornus as if it was a small H which had been cancelled, but it is really an old cursive form of the letter η . The later form of the sign for $\eta\mu\mu\sigma\nu$ referred to has not been detected, though this sign is written in several varying forms. From the third star in Hydra to the end, the writing is the same as the first part of the catalogue. M. Omont states that "the manuscript is homogeneous from beginning to end, and is written throughout by one scribe who varied his writing, inasmuch as the two forms of writing referred to are intermixed in various places, or possibly a second scribe was employed." The highest authorities assign the whole manuscript to the ninth century. Variants are in many cases added to the longitudes and latitudes of the stars, which indicate that the scribe copied from more than one manuscript or was doubtful of the exact character. For instance, in some cases where two readings are given of alpha and delta in the usual letters, the scribe has written in the margin an old cursive alpha as explanatory.* The magnitudes are given very correctly. Writing 25 cm. high, 18 cm. wide.

- 2. Paris Codex 2390. About Sæc. XII. Clearly and neatly written in small characters with many abbreviations. Halma states that he used in his edition the Florence manuscript 2390. There is no manuscript of the Almagest at Florence so numbered. He thus describes it: "Il est au commencement du 12^{me} siècle; charactères très menus; très difficile à lire à cause du grand nombre de ligatures et d'abréviations de l'écriture." The mistakes he found, which are given by Baily, show an identity with Paris 2390, and there can be little doubt that its designation as a Florence manuscript is erroneous.
 - 3. Paris Codex 2391. About Sæc. XV. Complete. Neatly written.
 - 4. Paris Codex 2392. About Sæc. XV. Incomplete. The catalogue terminates with the third star of Corona Borealis. A very bad copy.
 - 5. Paris Codex 2394. "Codex chartaceus Constantinopoli nuper in Bibliothecam Regiam illatus. Is codex descriptus est exemplari sæculo decimo tertio exarato, quod in illustrissima Valachiæ Principio Bibliotheca asservatur." The manuscript is a copy made in 1733 for the Bibliothèque du Roi. This copy shows that the resemblance of the archetype with Grynæus is very close. It contained all the errors of print of Grynæus, but having omissions, it can not be the manuscript used by Grynæus. It also had the latitudes of Baily's stars 248-250, which are wanting in the edition of Grynæus.
 - 6. Vienna Codex 14. About Sæc. XVI. Contains only the longitudes of the stars. It seems a copy of No. 14, the Laurentian Codex 39. The extreme errors seem to be the same as No. 20, the Vatican Codex Reg. 90.
 - 7. Venice Codex 302. About Sæc. XV. In rather small minuscules, but the figures and accents are well and accurately written.
 - 8. Venice Codex 303. About Sæc. XIV. Writing is distinct and some variants are written above the longitude and latitude. Some stars are omitted. The words $\mu \epsilon l \zeta \omega \nu$ and $\epsilon \lambda \Delta \sigma \omega \nu$ are omitted after Bootes and the magnitudes were not compared. It seems to be more correct than No. 10. Venice Codex 311.
- 9. Venice Codex 310. About Sæc. XIV. Written in very clear and neat minuscules. The positions of the stars show much similarity to No. 12, Venice Codex 313, and particularly to No. 16, Laurentian Codex 48.
- 10. Venice Codex 311. Given in Zanetti's catalogue as about Sæc. XII, but in Peters' opinion it is undoubtedly later. It is suggested by Morelli that this manuscript is a copy of Venice 313, or perhaps Venice 303. It is carelessly written, the μείζων and ἐλάσσων being repeatedly omitted, and there is some confusion.
- 11. Venice Codex 312. Zanetti gives the date about Sæc. XII; Morelli as about Sæc. XIII. The longitudes of the catalogue are those of Ptolemy increased by 17°. It is observable that the true longitudes of Ptolemy were first written and then the modified longitudes written over the first figures. Various errors in the zodiacal signs have resulted. In examining the volume Peters discovered some correspondence, dating from the year 1817, between Morelli and the Abbé Halma, from which it appears that Halma never had in his hands the Venice Codex, which he erroneously calls 313 instead of 312. At his request Morelli sent him as a specimen a comparison of the positions of the stars in Ursa Minor and Ursa Major with Grynæus. A list of the positions where these differ is found in the original of one of Morelli's letters, and it is this list which Halma gives in his list of variants (vol. 11, p. 435).

^{*}Photographs of the whole Catalogue in this manuscript are deposited at the Carnegie Institution of Washington.

- 12. Venice Codex 313. Attributed by Zanetti to about Sæc. X, but considered by Morelli as Sæc. XI. This important manuscript is complete for the catalogue. Some few variants are given in the margin by the same hand. The magnitudes are given as correctly as in any other known manuscript. See further under No. 19, Vatican Codex 1594.
- 13. Laurentian Codex. Pluteus 28, 1. About Sæc. XIII. Catalogue complete.
- 14. Laurentian Codex. Pluteus 28, 39. About Sæc. XI. Contains only Books VII and VIII. Catalogue gives descriptions and longitudes only, omitting the latitudes and magnitudes; the writing is large and clear. This seems to originate from the same source as Vienna Codex 14 and the Vatican Codex Reg. 90, the mistakes and omissions being the same, but the Vatican Codex contains the latitudes and is complete.
- 15. Laurentian Codex. Pluteus 28, 47. About Szec. XIV. Badly written, and ink much faded. Seems to have been written by a learned man who paid more attention to the matter than to beauty of style.
- 16. Laurentian Codex. Pluteus 89, 48. About Sæc. XI. Beautifully written with great exactness, and with the additions of μείζων and ελάσσων to the magnitudes. Much similarity between this manuscript and Codex Venetiis 310.
- 17. Vatican Codex 1038. About Sæc. XII. The figures are clearly and plainly written, but sometimes without care. The copyist seems to have written vertically, so that the fractions are often displaced by one line. Halma (Preface, page lii) speaks of a manuscript at the Vatican numbered 560, which contains the Almagest following a manuscript of Euclid. As the first portion of the Vatican Codex 1038 is occupied by a manuscript of Euclid, it is probable that this is the manuscript referred to as 560.
- 18. Vatican Codex 1046. Sæc. XVI. Somewhat carelessly written. Contains the whole Almagest, but in the catalogue the figures for the positions and magnitudes are given only up to the thirteenth star of Draco. In a note the copyist complains of the contractions and illegibility of the archetype. Hence each book terminates with the remark $\Theta \epsilon \tilde{\omega} X \acute{a} \rho \iota s$ (God be thanked). This may perhaps be the manuscript referred to by Halma as No. 184. (Preface, page lii.)
- 19. Vatican Codex 1594. Sæc. IX. The most beautifully written Greek manuscript of the Almagest thus far discovered.* (Plate IV.) This was investigated by Heiberg in his Greek edition of the Almagest, 1898–1903, and by Manitius in his German translation of the Almagest, 1912. The manuscript is written in small uncial characters with great regularity. Some variants are inserted in the margin. Notes in the margin are in very early form of minuscules. The whole of the catalogue appears to be written by one hand. The $\mu \epsilon i \zeta \omega \nu$ and $\epsilon \lambda \delta \sigma \sigma \omega \nu$ are correctly added to the magnitudes, and, with the exception of three stars in Cetus, agree with Codex Venetiis 313. Several errors in the longitudes and latitudes are found equally in Venice Codex 313, indicating a common origin.
- 20. Vatican Codex, Reg. 90. This codex is probably not very old, as the writer has used many contractions (vide Nos. 6 and 14).
- 21. Bodleian Codex, Selden 3374. Early Sæc. XIV. A perfect copy, beautifully written, without variants.

LATIN.

22. Vienna Codex 24 (Trapezuntius). A fine codex written for Matthias Corvinus, but somewhat carelessly done, as the signs and notations of the latitudes are frequently omitted. The title is "Magnæ compositionis Claudii Ptolomæi libri a

^{*}Photographs of the whole Catalogue in this manuscript are deposited at the Carnegie Institution of Washington.

Georgio Trapezuntio traducti." It is the translation from the Greek used for the Trapezuntius Almagest printed in 1528. The codex does not seem to be a copy of No. 23 Codex Laurentianus 6. The date is given at the end, "Finis 17 Marcii, 1467."

- 23. Laurentian Codex 6. Translation from the Greek by Georgius Trapezuntius. This Codex is dedicated to Pope Sixtus IV by Andreas Trapezuntius (son of the translator), which fixes the date between 1471 and 1484. It is carefully and clearly written.
- 24. Laurentian Codex 45. About Sæc. XIV. Beautifully written manuscript. Many variants added, some by the same hand, and others at a subsequent date. This, like the three following manuscripts, is a copy of the translation from the Arabic by Gerard of Cremona. There is a good deal of confusion in places and it does not appear to be a very accurate copy. As is found in other copies of Gerard of Cremona's translation, the $\mu \epsilon l_{J} \omega \nu$ and $\epsilon \lambda \dot{\alpha} \sigma \omega \nu$ are indicated by the letters em and el.
- 25. British Museum Codex. Burney 275. Sæc. XIV. Translation from the Arabic by Gerard of Cremona. Formerly belonged to Pope Gregory XI (1370-1378) and was given by Clement VII to the Duc de Berri in 1387. It is a complete copy of the Almagest, beautifully written throughout, with handsome illuminations. The μείζων and ελάσσων are entirely omitted from the magnitudes.
- 26. British Museum Codex, Sloane 2795. Translation from the Arabic by Gerard of Cremona. The date of this manuscript is placed by Sir Edward Maunde Thompson as "circa 1300, possibly earlier, but hardly before the accession of Edward I, 1272." It is clearly written, but with many mistakes. The letters em and el for μείζων and ελάσσων are only in some cases appended to the magnitudes. The manuscript is imperfect, wanting several books.
- 27. Crawford Codex. A very fine illuminated manuscript of the complete Almagest, belonging to the Earl of Crawford. Sæc. XV. Translation from the Arabic by Gerard of Cremona. The original from which this manuscript was copied was evidently difficult to decipher, for the scribe has left blank spaces for many words, sometimes giving only the initial letters. There is no indication as to latitudes being north or south. The second page begins with the following sentence not found in the Liechtenstein Almagest: "Liber hic præcepto Maimonis regis Arabum qui regnavit in Baldach (Baghdad) ab Alhazen filio Josephi filio Maire, Arithmetici, et Sergio filio Elbe, cristiano, in anno XII et CC sectæ Saracenorum (A. D. 827) translatus est." Weidler describes a manuscript "Peirescianus" of Ptolemy which has this sentence at the end. It is to be noted in the Crawford manuscript that the word "stellam" in the original has been written "terram," which offers an explanation of Liechtenstein's curious description of the second star in Orion; "quæ appropinquat ad terram (? stellam) in humero Orionis."
- 28. New College, Oxford, No. 281. A very imperfect copy of Gerard of Cremona's translation. It contains the catalogue of stars. Descriptions are given to the stars only in the first eight constellations. The manuscript is carelessly written and contains numerous mistakes.
- 29. All Souls College, Oxford, No. 95. Baily quotes a reference to this manuscript by Fabricius. It is clearly the translation of Gerard of Cremona, but the catalogue of stars in Books VII and VIII is omitted, and it is evident that this was intentional, as the text follows on from Book VII, cap. 9, to Book VIII, cap. 2, which is on the Milky Way.

ARABIC.

- 30. Codex Laurentianus 156. A carefully written manuscript in Neskhi or ordinary Arabic characters. Presumably a copy of the translation made by Al Mamon about A. D. 827.
- 31. British Museum 7475. An incomplete copy of the Almagest, wanting the first six books. Dated A. H. 615=A. D. 1218. It is written in rather cursive Arabic, not in the Maghribi characters, but probably derived from an African manuscript; there is a lamentable absence of diacritical points, which makes the decipherment difficult. It is evidently a different translation from the Greek to No. 30 or No. 32. Whereas in these two manuscripts the μείζων and ελάσσων are expressed

by the initials of the Arabic words λ_{max} (Kabir) and λ_{max} (Saghir) signifying "great" and "small," in British Museum 7475, the initials of the Greek words \int (Mim) and \int (Lām) are given. Many of the longitudes and latitudes differ from all other authorities.

- 32. Bodleian Arabic Almagest, Pocock 369. Dated A. H. 799=A. D. 1396. A wellwritten complete copy in Neskhi or ordinary Arabic. It compares with No. 30 in being presumably a copy of Al Mamon's translation.
- 33. British Museum Arabic Manuscript, Reg. 16, A. VIII. A compendium of the Almagest by Nassir Al Din Al Tusi, commonly called "Nassir Eddin." A very beautiful and accurately written codex in Neskhi characters. The most carefully written Arabic manuscript yet examined. Sæc. XV or XVI. On the first page is written, "This booke belonged to Sultan Ahmed ye Turkish Empr. and cost about 100 crownes at ye first." The catalogue is complete, and several resemblances with Bodleian Pocock 369 indicate that these two manuscripts had a common origin, though the copy of Nassir Eddin is more accurate. From the identity in the descriptions of the stars, the catalogue is taken from the translation of Al Mamon.

TABLE V.—Errors in manuscripts.

	Stars.
Longitudes. Latitudes.	3, 281, 305, 354, 439, 508, 685, 716, 777, 861, 1022. 1, 121, 233, 376, 436, 476, 501, 509, 513, 596, 686, 913, 980.
Longitudes. Latitudes.	180, 207, 375, 448, 452, 478, 686, 849, 899, 992. 42, 66, 129, 134, 154, 432, 449, 487, 572, 625, 701, 733, 748, 757, 954, 958, 1000, 1012.
Longitudes. Latitudes.	533. 83, 86, 103, 138, 141, 395, 399, 402, 471, 645, 752, 769.
Longitudes. Latitudes.	19, 75, 90, 329, 341, 458, 524, 569, 570, 604, 605, 973. 281, 558, 755, 810, 855.
Longitudes. Latitudes.	121. 766, 767, 980, 983, 994.
Longitudes.	1013, 1015.
Longitudes. Latitudes.	29, 155, 157, 158, 234, 265, 376, 382, 383, 402, 415, 463, 464, 465, 485, 486, 488, 495, 534, 539, 542, 544, 623, 644, 675, 682, 745, 749, 775, 782, 783, 797, 804, 829, 890, 912, 915, 970, 971, 983, 999, 1008, 1020, 1025. 52, 71, 73, 76, 111, 166, 167, 185, 193, 196, 212, 266, 308, 335, 357, 369, 429, 497, 534, 606, 662, 698, 715, 729, 739, 758, 759, 760, 813, 879, 897, 955, 959, 969, 998, 1028.
	Latitudes. Longitudes. Latitudes. Latitudes. Latitudes. Latitudes. Longitudes. Latitudes. Longitudes. Longitudes. Longitudes. Longitudes.

FIG. 2.—Facsimiles from various manuscripts.

		· A · · · · · · · · · · · ·	1
		KIP & WCEIC :	· · · · ·
I = I = I = I = I = I = I = I = I = I =	1	4	440.
$ \begin{array}{c} \begin{array}{c} \left[\begin{array}{c} \text{Alter symmer introducts} \\ Alter symmer introduct for the transmitter of the transm$	LPKTE: LIKE		
$ \begin{array}{c} The approximation of the transmitter of the$			ATA OOS BOP 3S
$ \begin{array}{c} The Avy The Real Vy Avis Refer to the set of th$			AIL IS BOPOAT A
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	s.	THEAV THETA ENTRES BOPELOS	KAP T TO 600 020 X
		TWHENTHERIKIEIHRAEYPAHATIC:	KA 125 69 066 5
$\frac{1}{2} \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $			KAP KSS BIP ALT B
$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^$		EALAINENINVTHHAMI OUTIC	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		THEENTHEREALENHINKEVIALENALIKKAIHILUT	FIGAL IT BOLINS A
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) \left($	APKTOE META	VIII VITHIN METER A :	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \left $	•	DERAKIN TIVINTNIN: :	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \left[$		י אויישוויווידוונגענויסאאאאוניוויוודועאוווינ	LILY KELT BIT MT E
$ \begin{array}{c} \begin{array}{c} \left $		DEROMENOLAVTON:	LIAVKST BILMT C.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\frac{1}{1} \frac{1}{1} 1$			ALAYKSE BOP MAY E
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			KAP OK ROP MILTI
T WHERT WETHARING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal;DELITING OF SORTEGAL;Ich of Star Sortegal;Ich of Star Sortegal;Ich of Star Sortegal; <td></td> <td></td> <td></td>			
$ \begin{array}{c} 0 \in \Pi(T) \{YA \} (T) \in P(YT) (T) \in T(T) \in V(T) \in V(T$		TWHENTWETHAILLYCOBOPEISTEPSC;	ICAP - BIP AIG S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			KAY IN BIT MA LEX
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		DETIITIVALICTERIVEDINTIC:	KAL IN BULAE
$\begin{aligned} \begin{cases} \frac{1}{2} \left\{ \frac{1}{$		III WHEN TWENT PILA IN A PILTE WAR PILL O BIT	KATEL BOJK+T
$ \delta \nabla \Pi + i \lambda \lambda T W T + i \lambda \lambda T + i \lambda J + i \lambda T + i \lambda J + $			
$T \omega H e H T \omega T e T A T A E V p w e I T T T V H w T a V : KAP IZ E 60 MAL E 0 e T T T I LAT E N E Z V T W H : 1 e T T T U H E V P (E V T H E V P K E ; 0 A H T E KAP KES B B P MAL E 1 e T T T V H E M S I E T I V M E T S I P MAL E T W H E M W M I H I T E WAK (I T A L I A P KEF B I KAS I E T W H E M W M I I T E WAK (I T A L I A P KEF B I KAS I E T W H E M T M I T E V A (I T E WAK (I T A L I A P KEF B I KAS I E 1 E M T W H I T E V A (I T E V A H I ; 1 E M T W A E I M A H I C I V A H I ; 1 E M T W A E I M I T E V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI T I C V A H I ; 1 E M T W A E Z WI M I ; 1 E M T W A Y T W H : 1 E M T W H I M K E Z Y T W H : 1 E M T W H I M K E Z Y T W H : 1 E M H H B E Z H E E 1 T W H W Y T A Y T H X M I P W T W H : 1 E M H H B E Z H E E 1 T W H W Y T A Y T H X M I P W T W H : 1 E M R Z Y T W H Y A H A T H E C H E E 1 T W H M Y T A Y T H Y M E H E I M T H H I ; 1 E M K E Z Y T W H M M I P E H W W W W H H I ; 1 E M K E Z Y T W H M M I P E H W W W W W H H I ; 1 E M K E Z Y T W H M M I P E H W W W W H T H I ; 1 C M M E T Z Y T W H M M I P E H W W W T H I ; 1 C M M E T Z Y T W H M M I P E H W H I H I I T E B I I H E S I K E S I H E S $			
$ \begin{array}{c} 0 \in \Pi : \Pi : \Pi : X = \Pi : \Pi : X = \Pi : \Pi : I : E : X = I : I : E : X = I $		TWHENTWTETPARAEVEWILTITIVHWTIV	KAP 12 TO BIT MAT B
$\frac{16}{0} \frac{11}{10} \frac{11}$			ICAP ICES BOP MAL E
TWHEHTWINIGHUMAPIETERWARPITICALISTICHT I KAP (KEF BIP 1647 F ET 19 TWETTIMAEHIE; $VTI Y TWETTIMAEHIE;VTI Y TWETTIMAEHIEHIEHIEHIEHIEHIEHIEHIEHIEHIEHIEHIEHIE$		IEnimiteic Pytewernery pat;	ATTIC S LET HA II F. I
$ \begin{aligned} \begin{bmatrix} i T_i y T W \in \Pi i M \in H_1(z) \\ i T_i y T W \in \Pi i M \in H_1(z) \\ i E H T W A E J W i T E P A (A T E Y A H :) \\ I E H T W A E J W i T E P A (A T E Y A H :) \\ I E H T W A E J W i T E P A $		ONITOERALETITEVALUETEPIVITIE-UVAHPIV	
$ \frac{1}{2} $		TWHEHICWINICATWARITE WARIANIA IST CHIT?	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		ATINTWERINAENIC;	ICAS PILLE
$ \begin{aligned} & \begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$			
Тинепітні і у і і ї і метатині к ϕ усинприти: Леін ІБ S Віенгі Б едесні дутин : отрітні кліє пакераїтні і урас ; χ еін ІН Верне Б χ еіні кані Берна Берна Б χ еіні кані С χ еіні кані Берна Берн		ANAT ATTENE XX TWN ;	AUN IT BILKE F
$\begin{array}{c} \left[\begin{array}{c} \left[A \in \mathcal{U} \in \mathcal{V} \times \mathcal{V} \to \mathcal{V} + \mathcal{V} \\ \left[\left[\begin{array}{c} \left[\mathcal{U} \times \mathcal{V} \times \mathcal{V} \to \mathcal{V} + \mathcal$		TWHENITH (14/1 CT IMETATHHE KOY (IN NOWT	IL ANH ISS BIL HEL B
οτριτεικλιεπακεριτητουγρε: <u>λετιβικζωμημερεφ 55 τη με μεε</u> <u>πωμύπλυτιμημοφ</u> ωτωη; <u>υπιστημιγραμαπωφ</u> ειμειου <u>υπιστημιγραματοφ</u> ειειου <u>υπιστημομειγμειοιλημυστιριε</u> ; <u>νειμικζ</u> <u>τωμμεταξυτωμισιλημυστιριε</u> ; <u>νειμικζ</u> <u>τωμμεταξυτωμισιλημο</u> ; <u>τωμμεταξυτωμικ</u> <u>τωμμεταξυτωμικό</u> ; <u>νειμικζ</u> <u>τωμμεταξυτωμικό</u> ; <u>τωμμεταξυτωμικό</u> ; <u>νειμικ</u> <u>τωμμεταξυτωμικό</u> ; <u>τωμμεταξυτωμικό</u> ; <u>νειμικ</u> <u>τωμμεταξυτωμικό</u> ; <u>νειμικ</u> <u>τωμμεταξυτωμικό</u> ; <u>νειμικ</u> <u>τωμμεταξυτωμικό</u> ; <u>νειμικ</u> <u>τωμμεταξυτωμικό</u> ; <u>νειμικ</u> <u>τωμμεταξυτωμικό</u> ; <u>νειμικό</u> ; <u>νειμικό</u> ; <u>νειμικό</u> ; <u>τωμμεταξυτωμικό</u> ; <u>νειμικό</u> ; <u>τωμμεταξυτωμικό</u> ; <u>νειμικό</u> ; <u>νειμικό</u> ; <u>τωμμεταξυτωμικό</u> ; <u>νειμικό</u> ; <u>τωμμεταξυτωμικό</u> ; <u>νειμικό</u> ; <u>νειμικό</u> ; <u>τωμμεταξυτωμικό</u> ; <u>νειμικό</u> ; <u>τωμμεταξυτωμικό</u> ; <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξ</u> <u>τωμμεταξυτωμικό;</u> <u>τωμμεταξυτωμικό;</u> <u></u>			
$\frac{\chi(T)(I(KZWHMETEAFBSTHETEEE)}{TWHYTAYTIHAMIPWWTWH;}$ $\frac{\chi(T)(I(KZWHMETEAFBSTHEEEE)}{TWHYTAYTIHAMIPWWTWH;}$ $\chi(T)(T)(T)(T)(T)(T)(T)(T)(T)(T)(T)(T)(T)($	•		
		LITIIIKZWHMITE+ BSTHLHEE!	
OTIVTIV TIOHTIYMENICAMAY POTIPEC; KEINICS BIT MAN C TWHMETAZYTWHIMT PICHIWITIAWHTHE KAP 16 BIT IZA A Apictiyikaithekepaktiyaeiohitioter i OTIVTIY BIPELOTERIC; KAP IT F BIR 146 A			
TWHMETAZYTWHIMAAPICHIWIIALWHTHE ICAL IS 511 172 2			A EIN RZUT BIT ATT
Apieriy KAITHIK (AXTOYA CONTOTIOT OF ILAP IT F BIR 1+6 X			
OTIVTIVB IPELITEPIC:	,		
	1.		TOTALE FRANCE
	1.	OTIVTIVBIPELOTTEREC:	
		#	
	and the second s	* • •	

PHOTOGRAPH C. PARIS, 2389. IX CENTURY.

. .

	••					
OGICICOINPIGTE PARIONICOOMILPOL	YAP0		10	Cig	C:	
тонентахрістерлікными в онота терос	ŸAfo		HO	1	C	
οβορειωτισροαλγτιών Υποτοιοήγ	Y.LPO	<u>ሃ</u> ርቦ	10	0	C.	
τ΄ σπιτέργοσως τογ Ϋμλτος λποτχέιρος στιρ	YAPO	1C	8.0	5	A .	Kints.
оехоменосекнотоутоупроегрименоу	YAPO		Ro	0.9	,N	
отоут ехоменосыетатынкышин	YA.PO		110	NS .	N. 2	
OGTUPOYTAIENOMENOC	VAPO		H0	4,	~ ~	CIK -
OTOYT ENICANTHATIONECHMBPIAG	YA.PO		N0 N0	λ16 (14.	10 12	
TAHOMECHMEPINCAYTOY BOBOPEILITEPOC.	ማዲዮ የትርጉ		NO	AS	Λ.	
ονοτιώτεροάτωνλγο	ŸAPO		но	HA.	<i>с</i> ,	
OALE CTUCA TUNIPOCMECHMEP MONANOC	YAPO YAPO		H0	1.2	G	
тинметлутон в сунехимопронгоумение	үлро		но	nr'	6´	
TENTHEXOMENHCYCTPOCHTOKOPEIOC	Υ A Po		N0	11	G	
OMECOCIUNTPIUN	YAP		но	IALA.	C:	
OEHOMENOCXYTUN:	Удро	_	но	IEI.	Ġ	
омонистинесредноговоренос		17.	NO,	IAS	· A.	
ONOTIWTEPOCTTPICON	¥ YAPO	· •	10	riguí	· A.	
ONECOCAYTON	5 YAPO		NO	16	: N	
TRENTHINOITHICYCTPOCHIFOHRUYMenoc		INCE	NO	IND	Ъ,	
TUNNOINWNBONOTIWTEPOC	¥л.ро	18 17	NO!	161	۸,	
OBODEIWTEPOCAVTUN		11.2	NO	10	A	
OECXATOCT YANT ICALGUITCTOMATOCTNIXOYO	с ўдро	7	NO	ĸi	X 4	•
οεσχ ΑΤΟΟΤ ΥΑΑΥΓΙ (ΑΙ GΗΤΟΤΟΜΑΤΟΟΤΝΙΧΟΥΟ Αστερός Μά ΟΗ ΑΝΕΓΕΟΆ ΓΟΑ ΠΕΙΓS Α	рс ўдро 2	7,	NO	IC I	X ª	•
Ασπεράς ΜΚ (DH ΑΝΙΕΓΕΟΑΓΟΑ Η ΘΙΓ 5 Α	r			•		
Αστερός ΜΚ ΌΗ ΑΝΕΓΕΟΑΓΟΑ ΙΗΘΙΓΣΑ ΟΙΠΕΡΙΤΟΝΫΑΡΟΧΟΟΝΑΜΟΡΦωτοι. Τ ΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΝ	- VAPO	เเรเฮ	но	١٩٢	λ.,	Ş.
Ασπερός ΜΚ ΟΗ ΑΝΕΓΕΟΑΓΘΑ ΗΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝΫΑΡΟΧΟΟΝΑΜΟΡΦωΤΟΙ. Τ ΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΝ Τ'ΛΟΙΠΩΝΒΟ ΒΟΡΕΙΩΤΕΡΟΟ	PAPO VAPO	16510°	140 140	i GĽ IAIG	۲. ۲	
Астербсми ин амегеолгод нет 5 А оперитон удрохоонаморфштов тепомятникампнтоу удатост онгоумен" Таоппший о ворещитерос онотиштероскутши	- VAPO	16510°	140 140	١٩٢	λ.,	Ş.
Ασπερός ΜΚ ΌΗ ΑΝΕΓΕΟΑΓΘΑ ΙΗΘΙΓ΄ 5 Α ΟΙΠΕΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡ Φωτοι. Τ ΕΠΟΜ ΤΗΙ (ΑΜΠΗΤΟΥ ΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΗ Τ ΛΟΙΠΩΝΒΟ ΒΟΡΕΙ (ΟΤΕΡΟΟ ΟΗΟΤΙ (ΟΤΕΡΟΟΛΥΤΩΝ Ας περε Γ Μεγεολ Μ	PAPO VAPO	16510°	140 140	i GĽ IAIG	۲. ۲	Ş.
Αςπερός ΜΚ ΌΗ ΑΝΕΓΕΟΑΓΘΑ ΙΗΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡ Φωτοι Τ ΕΠΟΜ ΤΗΙ (ΑΜΠΗΤΟΥ ΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΗ Τ ΛΟΙΠШΝΒΟ ΒΟΡΕΙ ШΤΕΡΟς ΟΝΟΤΙ ШΤΕΡΟCΑΥΤШΝ Ας περε Γ Μεγεολ Μ Ϊ ΧΟΥ ШΗ Ας ΤΕΡΙΟΜΙΟς		1(51.) 1(81.) 1(0	140 140	і сі ідіб . і нід	۸. ۸.	-2.54
Ας ΤΕΡΟΟΜΚ ΟΗ ΑΝΕΓΕΟΑΓΟΑ ΙΗΘΙΓΣΑ ΟΙΠΕΡΙΤΟΝΫΑΡΟΧΟΟΝΑΜΟΡΦωΤΟΙ. ΤΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥΫΑΑΤΟΟΓΟΗΓΟΥΜΕΝ΄ ΤΛΟΙΠΩΝΕΟ 50 ΡΕΙΨΤΕΡΟΟ ΟΗΟΤΙΨΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕΓΜΕΓΕΟΑ Μ ΙΧΟΥΨΗΑ CTEΡΙΟΜΟC ΌΕΝ ΤΨΙΟ ΤΟΜΑΤΙΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ	- Удро Удро Удро	1851 1801 180 180	140 140	і сі ідіб інд інд	۲. ۲	-2.54
Ας ΤΕΡΟΟΜΕ ΟΝΑΝΕΓΕΟΑΓΟΑΙΗΘΙΓΣΑ ΟΙΠΕΡΙΤΟΝΫΑΡΟΧΟΟΝΑΜΟΡΦωΤΟΙ. ΤΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥΫΑΑΤΟΟΓΟΗΓΟΥΜΕΝ΄ Τ'ΛΟΙΠΟΝΒΟ ΒΟΡΕΙΟΤΕΡΟΟ ΟΝΟΤΙΟΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕΓΜΕΓΕΟΑ Μ ΪΧΟΥΨΗΑς ΤΕΡΙΟΜΟς Ό ΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥ ΒΟΝΟΤΙΩΤΟΡΟΟ		1(51.) 1(81.) 1(0	в 0 Но Но	і сі ідіб . і нід	A A A	
Ας ΤΕΡΟΟΜΚΟΗ ΑΝΕΓΕΟΑΓΟΑ ΙΗΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡΦωΤΟΙ. ΤΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥ ΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΝ Τ'ΛΟΙΠΩΝΕ Ο ΒΟΡΕΙΩΤΕΡΟΟ ΟΝΟΤΙΩΤΕΡΟΟΛΥΤΩΝ Ας ΤΕΡΕΓ ΜΕΓΕΟΑ Μ ΙΧΟΥΩΝΑ ΟΤΕΡΙΕΜΟΟ ΤΟ ΕΝΤΩΙΟΤΟΜΑΤΙΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ ΤΕΝΤΩΙΙ (ΡΑΝΙΩΙΑΥΤΟΥ ΒΟΝΟΤΙΩΤΕΡΟΟ ΟΒΟΡΕΙΩΤΕΡΟΟΑΥΤΩΝ	οφΑΥ φΑΥ οφΑΥ οφΑΥ οφΑΥ οφΑΥ οφΑΥ	10510 10010 100 100 1010 1010 1015	но 140 140 8.0	тес ідіб . інд од. 	A A A A	
Ας ΤΕΡΟΟΜΚΟΗ ΑΝΕΓΕΟΑΓΘΑ ΙΗΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝΥ ΆΡΟΧΟΟΝΑΜΟΡΦωΤΟΙ. ΤΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥ ΥΑΑΤΟΟΓ ΟΗΓΟΥΜΕΗ ΤΑΟΙΠΩΝΕ Ο ΒΟΡΕΙΩΤΕΡΟΟ ΟΝΟΤΙΩΤΕΡΟΟΛΥΤΩΝ Ας ΤΕΡΕΓΜΕΓΕΟΑ Μ ΙΧΟΥΩΝΑ ΟΤΕΡΙΟΜΟΟ ΌΕΗ ΤΩΙ Ο ΤΟΥΠΟΗΓΟΥΜΙΧΟΥΟΟ ΤΕΝΤΩΙΙ (ΡΑΝΙΩΙΑΥΤΟΥ ΕΟΝΟΤΙΩΤΕΡΟΟ ΟΒΟΡΕΙΩΤΕΡΟΟΑΥΤΩΝ ΤΩΝΕΝΤΩΙΝΩΤΩ ΕΟΠΡΟΗΓ	чаро Чаро Чаро Харо	1651 1601 160 160 160 160 165 165 165 165	R0 R0 R0 R0 R0 R0 R0 R0	IGL IAI6 IIIA 0А. С. 01 0L 2L	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Ας ΤΕΡΟΟΜΚΟΗ ΑΝΕΓΕΟΑΓΘΑ ΙΗΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝΫΑΡΟΧΟΟΝΑΜΟΡΦωΤΟΙ. Τ ΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΝ΄ Τ ΛΟΙΠΩΝΕ Ο ΒΟΡΕΙΟΤΕΡΟΟ ΟΗΟΤΙΟΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕΓ ΜΕΓΕΟΑ Μ ΙΧΘΥΨΗΑΟΤΕΡΙΟΜΟΟ ΤΟ ΕΗΤΟΙΟΤΟΜΑΤΙΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ ΤΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ ΟΒΟΡΕΙ ΟΤΕΡΟΟΑΥΤΩΝ ΤΟ ΜΕΝΤΟΙΝΟΤΟ ΒΟΠΡΟΗΓ΄ ΟΕΠΟΛΛΕΝΟΟΑΥΤΩΝ		1(51. 1(01.) 1(0 1(1.) 1	ко ко ко ко ко ко ко ко	IGL IAG IIIA 07. L 01. L 04. L 44.		->
Ας ΤΕΡΟΟΜΚ ΟΝ ΑΝΕΓΕΟΑΓΘΑ ΙΗΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝΥ ΆΡΟΧΟΟΝΑΜΟΡ ΦωΤΟΙ. ΤΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥΥ ΆΑΤΟΟ ΤΟΗΓΟΥΜΕΗ ΤΑΟΙΠΩΝΕΟ ΒΟΡΕΙ Ο ΤΕΡΟΟ ΟΝΟΤΙ Ο ΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕΓΜΕΓΕΟΑ Μ ΙΧΟΥ ΟΝΑ ΚΟΤΕΡΙΟΜΟ Ο ΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟς ΤΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟς Ο ΒΟΡΕΙ Ο ΤΕΡΟΟΛΥΤΟΝ ΤΟ ΜΑΤΟΙΝΟΤΟ ΒΟΠΡΟΗΓ ΟΕΠΟΜΕΝΟ Ο ΑΥΤΙΟΝ	0447 0447 0447 0447 0447 0447 0447 0447	1051 100 100 100 101 101 101 105 105 105 105 105 105 105 105 105 105	P0 P0 P0 P0 P0 P0 P0 P10 P10 P10 P10 P10	165 HA		->
Ας ΤΕΡΟΟΜΚ ΟΝ ΑΝΕΓΕΟΑΓΘΑ ΙΗΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝΥ ΆΡΟΧΟΟΝΑΜΟΡΦωΤΟΙ. ΤΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥΥ ΆΑΤΟΟ ΤΟΗΓΟΥΜΕΗ ΤΑΟΙΠΩΝΕ Ο ΒΟΡΕΙ Ο ΤΕΡΟΟ ΟΝΟΤΙ Ο ΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕ Γ ΜΕΓΕΟΑ Μ Ι ΧΟΥ ΟΝΑ Ο ΤΕΡΙΟΜΟΟ Ό ΕΝ ΤΟΙ Ο ΤΟ ΤΟΥΠΟΝΓΟΥΜΙΧΟΥΟΟ ΤΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΟΝΓΟΥΜΙΧΟΥΟΟ Ο ΕΟΡΕΙ Ο ΤΕΡΟΟΛΥΤΟΝ ΤΟ Η ΤΟΙ ΝΟΥΤΟΝΟ Ο ΕΠΟΜΕΝΟΟ ΑΥΤΟΝ ΟΕΠΟΜΕΝΟΟ ΑΥΤΟΝ	οφΑΥ οφΑΥ	100 100 100 100 100 100 100 100 100 100	<u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u>			2.5% X. K.
Ας ΤΕΡΟΟΜΚ ΟΗ ΑΝΕΓΕΟΑΓ ΘΑ ΙΗ ΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡ ΦΟΟΤΟΙ. Τ ΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥ ΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΗ Τ ΛΟΙΠΟΝΕ Ο ΒΟΡΕΙΟ ΤΕΡΟΟ ΟΝΟΤΙΟ ΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕ Γ ΜΕΓΕΟΑ Μ Ι ΧΟΥΟΝΑ ΟΤΕΡΙΕΜΟΟ Ο ΕΝΤΟΙΟ ΤΟ ΜΑΤΙΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Τ ΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Ο ΒΟΡΕΙΟ ΤΕΡΟΟΑΥΤΟΝ ΤΟ Η ΤΗ ΤΟΙΑΙΑ ΚΟΙΡΟΗΓ ΟΕΠΟΜΕΝΟ ΑΥΤΟΝ ΟΕ ΠΟΜΕΝΟ ΑΥΤΟΥΑΥΤΟΥΙΧΟΥΟΟ	0447 0447 0447 0447 0447 0447 0447 0447	100 100 100 100 100 100 100 100 100 100	P0 P0 P0 P0 P0 P0 P0 P10 P10 P10 P10 P10			->
Ας ΤΕΡΟΟΜΚ ΟΝΑΝΕΓΕΟΛΓΟΛΙΝΕΙΤΟ Α ΟΙΠΕΡΙΤΟΝΥΆΡΟΧΟΟΝΑΜΟΡΦωΤΟΙ. Τ ΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥΎΑΑΤΟΟΓ ΟΗΓΟΥΜΕΗ΄ Τ ΛΟΙΠШΝΕ Ο ΒΟΡΕΙШΤΕΡΟΟ ΟΗΟΤΙШΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕΓΜΕΓΕΟΑ Μ ΪΧΟΥΨΝΑ ΟΤΕΡΙΕΝΙΟΟ ΟΕΝΤΕΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΡΟΗΓΟΥΜΪΧΟΥΟΟ ΤΈ ΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΡΟΗΓΟΥΜΪΧΟΥΟΟ ΟΒΟΡΕΙ ΜΤΕΡΟΟΑΥΤΟΝ Τωμε Η ΤΟΙ Η ΜΟΤΑ ΒΟΠΡΟΗΓ΄ ΟΕΠΟΜΕΝΟΟΑΥΤΟΝ ΟΕΝΤΗΟΥΡΑΤΟΥΑΥΤΟΥΙΧΟΥΟΟ ΤΙ (ΑΤΑΤΟΛΙΗΟΗ ΑΥΤΟΥΟΠΡΟΤΟ ΔΑΠΟΤΟΥΡΑΟ	οφΑΥ οφΑΥ	100 100 100 100 100 100 100 100 100 100	<u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u> <u>Ро</u>			2.5% X. K.
Ας ΤΕΡΟΟΜΚ ΟΝ ΑΝΕΓΕΟΑΓ ΘΑ ΙΗ ΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡ ΦωΤΟΙ. Τ ΕΠΟΜ ΤΗΙ (ΑΜΠΗΤΟΥ ΫΑΑΤΟΟ ΤΟΗΓΟΥΜΕΗ Τ ΛΟΙΠΟΝ ΒΟ ΒΟΡΕΙΟ ΤΕΡΟΟ ΟΗΟΤΙΟ ΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕΓΜΕΓΕΟΑ Μ Ι ΧΟΥ ΟΝΑ ΚΟΤΕΡΙΟΚΙΟΟ Ο ΕΝ ΤΟΙ Ο ΤΟ ΜΑΤΙΤΟΥ ΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Τ ΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥ ΒΟΝΟΤΙ ΟυΤΟΡΟΟ Ο ΒΟΡΕΙΟ ΤΕΡΟΟ ΑΥ ΤΟΝ ΤΟΗ ΕΝΤΟΙΝΟ ΤΟ ΥΤΟΝ ΤΟ ΕΠΟΜΕΝΟΟ ΑΥΤΟΝ ΟΕΝΤΗΟΥΡΑΤΟΥ ΑΥΤΟΥΙΧΟΥΟΟ ΤΙ (ΑΤΑΤΟΛΙΗΟΗ ΑΥΤΟΥΟΙ ΓΟΟΛΠΟΤΟΥΡΑC		100 100 100 100 100 100 100 100 100 100	НО 110 110 110 110 110 110 110 110 110 11		NAA XAAAAAA SA	2.5% X. K.
Αςπερός ΜΚ ΌΗ ΑΝΕΓΕΟ ΑΓ ΘΑ ΙΗ ΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡ Φωτοι. Τ ΕΠΟΜΤΗΙ (ΑΜΠΗΤΟ Υ ΫΑΑΤΟΟ Γ ΟΗΓΟΥΜΕΝ΄ Τ' ΛΟΙΠШΝ ΒΟ ΒΟΡΕΙ ШΤΕΡΟΟ ΟΗΟΤΙ ШΤΕΡΟΟΛΥΤШΝ Ας περε Γ ΜεΓΕΟΑ Μ Ι ΧΘΥШΗ Ας ΤΕΡΙΕΜΟΟ Ό ΕΗ Τωι Ο ΤΟ ΤΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Τ΄ ΕΝΤΟΙΙ (ΡΑΝΙ ΟΙ ΑΥΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Ο ΕΟΡΕΙ Ο ΤΟ ΜΑΤΙΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Ο ΒΟΡΕΙ Ο ΤΟ ΜΑΤΙΤΟΥΠΡΟΗΓ ΟΕΠΟΜΕΝΟ ΑΥΤΟΥ ΟΕ ΠΟΜΕΝΟ ΑΥΤΟΥ ΟΕΝΤΗΟΥΡΑΤΟΥ ΑΥΤΟΥΙΧΟΥΟΟ ΤΙ (ΑΤΑΤΟΛΙΗΟ Η ΑΥΤΟΥΟΙ ΓΙΟ ΤΟ CΑΠΟΤΌΥΡΑΟ ΟΕΠΟΜΕΝΟ CAYTON ΤΕ ΑΤΤΗΤΟΛΙΗΟ Η ΑΥΤΟΥΟΙ ΓΙΟ ΤΟ CΑΠΟΤΌΥΡΑΟ ΟΕΠΟΜΕΝΟ CAYTON ΤΕ ΑΤΤΑΤΟΛΙΗΟ Η ΑΥΤΟΥΟΙ ΓΙΟ ΤΟ CΑΠΟΤΌΥΡΑΟ	οφ	100 100 100 100 100 100 100 100 100 100	но но во во во во во во во во во во во во во		AAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2.5% X. K.
Αςπερός ΜΚ ΌΗ ΑΝΕΓΕΟ ΑΓ ΘΑ ΙΗ ΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡ Φωτοι. Τ ΕΠΟΜΤΗΙ (ΑΜΠΗΤΟ ΥΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΗ Τ ΛΟΙΠШΝ ΒΟ ΒΟΡΕΙ ШΤΕΡΟΟ ΟΗΟΤΙ ШΤΕΡΟΟΛΥΤШΝ Ας περε Γ ΜεΓΕΟΑ Μ Ι ΧΘΥШΗ Ας ΤΕΡΙΕΜΟΟ ΌΕΗ ΤωΙ Ο ΤΟ ΜΑΤΙΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ ΤΈΝΤΟΙΙ (ΡΑΝΙ ΜΙΑΥΤΟΥ ΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Ο ΚΟΡΕΙ ШΤΕΡΟ Ο ΑΥΤШΗ Τω Η ΕΝΤΟΙ Η ΜΤΟΥ Η ΟΥΤΟΥΠΥΟΥΠΟΟ Ο ΒΟΡΕΙ ΜΤΕΡΟ Ο ΑΥΤШΗ Τω Η ΕΝΤΟΙ Η ΜΟΤΗ ΒΟΠΡΟΗΓ ΟΕΠΟΜΕΝΟ Ο ΑΥΤΩΗ ΟΕΝΤΗΟΥΡΑΤΟΥ ΑΥΤΟΥΙΧΟΥΟΟ ΤΙ (ΑΤΑΤΟΛΙΗΟΗ ΑΥΤΟΥ ΟΙ ΡΙΟΤΟ Ο ΑΠΟΤΟΥΡΑΟ Ο ΒΟΡΕΙ ΜΤΟΙΗΟΝΑΥΤΟΥΙΚΟΥΟΟ ΤΙ (ΑΤΑΤΟΛΙΗΟΗ ΑΥΤΟΥ ΟΙ ΡΙΟΤΟ Ο ΑΠΟΤΟΥΡΑΟ ΟΕΠΟΜΕΝΟ Ο ΑΥΤΩΗ ΟΕΝΤΗΟΥΡΑΤΟΥ ΑΥΤΟΥΙΚΟΥΟΟ ΤΕΙ ΑΤΑΤΟΛΙΗΟΗ ΑΥΤΟΥ ΟΙ ΡΙΟΤΟ Ο ΑΠΟΤΟΥΡΑΟ	oqay oqay oqay oqay oqay oqay oqay ixoy ixoy ixoy ixoy ixoy ixoy ixoy ixo	KSI KO KAI KA	но но но но но		N.A.A. N.A.N.A.A.A.A.A.A.A.A.A.A.A.A.A.A	2.5% X. K.
Αςτερός ΜΚ ΌΗ Α ΜΕΓΕΟ Α Γ ΘΑ ΙΗ ΘΙΓ 5 Α ΟΙΠΕ ΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡ Φωτοι. Τ ΕΠΟΜ ΤΗΙ (ΑΜΠΗΤΟΥ ΫΑΑΤΟΟ Γ ΟΗΓΟΥΜΕΗ Τ ΛΟΙΠШΗ ΒΟ ΒΟΡΕΙ ШΤΕΡΟΟ ΟΗΟΤΙ ШΤΕΡΟΟ ΑΥΤώΝ Ας τερε Γ ΜεΓΕΟΑ Μ Ι ΧΟΥ ШΝΑ Ο ΤΕΡΙΟΜΟ Ο ΕΗ Τ ШΙ Ο ΤΟ ΜΑΤΙΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Τ ΈΝΤΙ ΜΙ Ο ΤΟ ΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Τ ΈΝΤΙ ΜΙ ΤΟ ΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Ο ΕΟ ΡΕΙ ШΤΕΡΟ Ο ΑΥΤώΝ Τ ΨΗΕ Η ΤΩΙΝ ΜΤΟΥ ΒΟΠΡΟΗΓ Ο ΕΠΟΜΕΝΟ Ο ΑΥΤώΝ Ο ΕΠΟΜΕΝΟ Ο ΑΥΤώΝ ΤΕΙ Ο ΤΟ ΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ ΤΙ (ΑΤΑΤΑΤΟΛΙΗΟ Η ΑΥΤΟΥΙΤΟΙΟΑΠΟΤΟΥΡΑΟ Ο ΕΠΟΜΕΝΟ Ο ΑΥΤώΝ ΤΟ ΠΟΜΕΝΟ Ο ΑΥΤώΝ ΤΟ ΠΟΜΕΝΟ Ο ΑΥΤώΝ ΤΟ ΠΟΜΕΝΟ Ο ΑΥΤώΝ Ο ΕΠΟΜΕΝΟ Ο ΑΥΤΏΝ Ο ΕΠΟΛΟΥΥΛΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΝΟΥΥΜΟΥΥΜ		100 100 100 100 100 100 100 100 100 100	но но ко ко ко ко ко ко ко ко ко ко ко ко ко		N. N	2.5% X. K.
Ας ΤΕΡΟΟΜΚ ΟΗ ΑΝΕΓΕΟΑΓ ΘΑ ΙΗ ΘΙΓ 5 Α ΟΙΠΕΡΙΤΟΝ ΫΑΡΟΧΟΟΝΑΜΟΡ ΦΟΟΤΟΙ. Τ ΕΠΟΜΤΗΙ (ΑΜΠΗΤΟΥ ΫΑΑΤΟΟΓ ΟΗΓΟΥΜΕΗ Τ ΛΟΙΠΟΝΗ Ο ΒΟΡΕΙΟ ΤΕΡΟΟ ΟΗΟΤΙΟ ΤΕΡΟΟΛΥΤΟΝ Ας ΤΕΡΕ Γ ΜΕΓΕΟΑ Μ Ι ΧΟΥ ΟΗ Ας ΤΕΡΙΟΜΟΟ Ο ΕΗ ΤΟΙ Ο ΤΟ ΤΟΥΠΟΗΓΟΥΜΙΧΟΥΟΟ Τ΄ ΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Τ΄ ΕΝΤΟΙΙ (ΡΑΝΙΟΙΑΥΤΟΥΠΡΟΗΓΟΥΜΙΧΟΥΟΟ Ο ΕΠΟΜΕΝΟΟΑΥΤΟΗ ΤΟ ΕΠΟΜΕΝΟΟΑΥΤΟΗ Ο ΕΠΟΜΕΝΟΟΑΥΤΟΗ Ο ΕΠΟΜΕΝΟΟΑΥΤΟΗ ΤΕ ΦΕ 2 Η Ο ΛΑΜΠΡΟΗΓΙΟΙΙΡΟΗΓ ΟΜΕ Ο Ο ΔΥΤΟΗ		1051.0 1001.0 100 101.0 100 100 100	но но ко ко ко ко ко ко ко ко ко ко ко ко ко		N.A.A. N.A.N.A.A.A.A.A.A.A.A.A.A.A.A.A.A	2.5% X. K.

Juc 2 389

PHOTOGRAPH C2. PARIS, 2389. IX CENTURY,

 $P_{\text{LATE}} \ IV$

E EXBELLERANENINHTEV KATATEBELEIEN Meldweele	in the art.	A the man - style	~ ~ ~	L'ener	· - 米	an a	17.10
in the first second	(NA	Ni Ni	Th	X NA	(IT.)		
iitikupatritiypät		1 i i i			<u>VM</u>	T	
EMETAYTETITHETYPAC			R.	1 6	ŕ	APRT B(B MIKPAC)	A.
intrave neo Thiekoviewe Theorphe	╟틆	84.	R.	0 2		Acrept	
THEOHTOYMEN TOYNAIN MINY DA SWALLAND		1 5΄ 1+0 το		0 7	A .		
THEAVTHETIAEVPLE & Ropelar	1 24	100 TG	R Ř	01 10	×		
TENTHIERIOMENHIRAEYPALANAMIA	2	12 5	Å	08.5]]	
THEAVTHETIAEYPOROPEIOC	1 20	ns ś	Ř	04(-	B B'	41	
OTENTHIEROM RAEVPAIENEV delig Nort	×~	117	B	IA S	1	- otiavtamóp du	
OFTAKPONTONPYTXONG		KE É	Ř	A+1 F	Ă		
TENTAVCING & SAAM OTIPOHTOVMEN	=	Ket +	Å	ME	l í	Aput	
+ triomenocay?		us ŕ	-	ME	l t	H(METAA))	
TGYTWIMETWIWI BORPOHTOWN	=	us ś	B	MZ S	É	là rrepi	
DERÓMENOLAVT ,		us to	Ř	MZ	έ		
0 ERLICOVTH FORMUTION		นท ร์	i	NС	É		
TENTTPAXHAWI BOILPONTOVMEN	201	٦٢	B	Mryf	A.		
I ETIOMENOLAYT	×	BC	B	MAT	Á		
TENTUILT HAEL So Lopel & Topoe		+	i	MB	L.		
ONOTLWTEPOLAVT OETLITSKAPILTEPOLTONATOL	× ×	14	0	MA AE	Ř Ť		
TENTEMAPOLATAPICTEPUI ARPónoaj o BoperoT		1 1	B		r f		
I NOTIWTEPECAVT		e c s t	B B	14 ŕ	ŕ		
DERANUTAGIOVENAT	~	t To	B	A S	x		
ÓVIIOKÁTTÖVAEZIÖVTÓNAŤ	X	ورخ	B		×		
TENTTETPATIAEVPWIDENITNOTION	x	12 10	Ê	mie	í		
ÖETITHEAAFÓNOEÁYTŰN	201	KB Ś	B	MAC	R'		
SERITHIEROVIENTOVERC	- 9	тś	ŝ	NA I	f		
ADIRACIÈ ERITOVAPICTEPOVORIC-dievmapov	9	f	Ř	MSS	6		
לנאלסחונאן גפונדנפשוג אנפטחסגן סחפטארטעא	~	16 1 10	B	114 É	ŕ		
TOYTWIEROMENOE	> ~	KA É	B	KH A	Ť		
ויד אףונדנף גרוניאאנ	2	A To	8	AF A	ÁM		
וֹנ אידאר קישוי וחוני אישו גונף והסאן Bopel וידדף	2	+ < ÷	В	ادور بر	ŕ ŕ	e.	
ואסדושידנאסנוגעיד קנחול לעף גנ ד ל אלד ניג לענוא הף שידו	9 9	1 F 18 Š	B	KE	- ť		
ORAÉCOCAYTÜN	9	14		Kr C NE TO	ŝ		
סדףוֹדוּסניץ בּוֹוֹגוֹנְףַיִדְיּהְנְסַׁעְּףְגֵר	$\frac{1}{2}$	white		NA			
OVHOTOVPANATIW-SENEILNOT	9	1421 +	B	A+1 6	ŕ	TUNAVTAMOR	
ÖTÖVTSV TIPONT ÖVNAENSEÄRA AVEÖTEPOL	2	14 5	B	MAF	-è	- AMT	
זא זעידו אחףונ לוחים לא pretistice לאיץ ואידוש	×	16	i	17 A	À	+	
örövrev Begezőrepet	×	IT É	B	1+ S	A		
FROSTIFY AMAYP FOETOMENOS	×.	is ś	B	ĸ	quarte		
TTEVTOV TPONTEVMENOL	• 700	11 Ś	8	KBC	iquans .		
0 ETITEVTAY REDALEVMENSE	**	1A 5	Ě	ĸŕ	quant		
סאא זע ד באאדו פולו הסב שא ולדבו בעיה	\sim	ō ō	ŝ	148 .	àqueug		
0 FRITTAWCENCTOVAPARONTOL	~	KS TO	B	055	1	T	
TERITONATI	وس	ing t	8	046	Á 1 Å	(non+i)	
DERLANDTOVOQOALMOV	~	11 5	<u> </u>	06 15	ŕ	(TEPIT)	
0 E TLIT H LTE 12 VOL	~	ĸζŧ	B	n ŕ	Ă		,
DERANWTHERE PARHE	~	14 1	8	230	ŕ		1.2
לנא חוש וכאיו חוזיד PAXHEnevetiv Forberet	1 1 1 1	KA 10	3	n1 é	A		142
i Nómocavt	4	8 T	- 2	IN A		•-	1
I MELOLANT	소 ~	1<81 (*	6 8	T É	ъ Т		
TOYTWIEROMENANANATOANE	× ?(1+(n		TLA S		F	
דנאנצ נחונדףסטאו בחאניא לחפטאדא האניף סאטה	25	14.4		na #	Â.	. efinition	
<u> </u>	\sim	2 10	Å	NIT ONIT		1.	
THEETOMENHETAL VAL BEPETOL	25	KBLT	i	12(1	121	÷ 1 .	* P.

IX CENTURY. PHOTOGRAPH D. VATICAN, 1594.

THE CATALOGUE.

The longitudes, latitudes, and identifications of the stars in the following catalogue are almost entirely those decided on by Dr. Peters from a full consideration of all the materials. In selecting from the different readings in the manuscripts, he took into consideration not only the agreement with the computed position, but also the fair accordance with the general errors in Ptolemy's longitudes of the particular constellation. From this it is inferred that the original observations of the stars were made by constellations, and not indiscriminately. As has already been mentioned, he computed from Piazzi the positions of all stars which might possibly be those observed by Ptolemy, reduced from A. D. 1800 to A. D. 100, which he assumed as the epoch of Ptolemy's longitudes.

The formula employed was

or

or

or

or

$$l' = l - 23^{\circ} 30! I + 13! 6 \cos l \tan b - 0! 7 \sin l \tan b$$
 $b' = b - 13! 6 \sin l - 0! 7 \cos l$

The computed positions are corrected as far as possible for proper motion from the following considerations:

For computing the influence of Proper Motions.

Generally $dl = \frac{\sin \eta}{\cos h} \cdot d\delta + \frac{\cos \eta}{\cos h} \cdot \cos \delta da$ $db = \cos \eta . d\delta - \sin \eta . \cos \delta da$ where $\cos b \cos \eta = \cos \epsilon \cos \delta + \sin \epsilon \sin \delta \sin a$ $\cos b \sin \eta = \sin \epsilon \cos a$ $\cot \eta = \frac{\cos \delta}{\cos q} \cot \epsilon + \tan a \sin \delta$ $\sin \eta = \frac{\cos a}{\cos b} \cdot \sin \epsilon$ $\cos \delta \cos \eta = \cos \epsilon \cos b - \sin \epsilon \sin b \sin l$ $\cos \delta \sin \eta = \sin \epsilon \cos l$ $\cot \eta = \frac{\cos b}{\cos l} \cot \epsilon - \tan l \sin b$ $\sin \eta = \frac{\cos l}{\cos \delta} \cdot \sin \epsilon$ Put (S and φ from Mädler's Bradley.) $S\cos\varphi = d\delta$ $S \sin \varphi = \cos \delta da$ then $\Delta b = S \cos \left(\eta + \boldsymbol{\varphi} \right)$ $\cos b\Delta l = S \sin (\eta + \varphi)$ $\Delta l = \frac{S \sin{(\eta + \varphi)}}{\cos{h}}$ For computing η , put $\frac{m \sin M = \sin \epsilon \sin a}{m \cos M = \cos \epsilon}$ tan $M = \sin a \tan \epsilon$. (cos M always positive). $n \sin N = \sin \epsilon \sin l \\ n \cos N = \cos \epsilon$ $tan N = \sin l \tan \epsilon. \quad (\cos N \text{ always positive}).$ 25

then

$$\cos b \sin \eta = \cos a \sin \epsilon \qquad \qquad \cos \delta \sin \eta = \cos l \sin \epsilon$$
$$\cos b \cos \eta = \frac{\cos (M - \delta)}{\cos M} \cdot \cos \epsilon \qquad \qquad \cos \delta \cos \eta = \frac{\cos (N + b)}{\cos N} \cdot \cos \epsilon$$

If S is given in seconds for 1 century (as in Mädler), Δb and Δl are desired in minutes for the time of *n* centuries *before* the epoch; S is to be multiplied by the factor $-\frac{n}{60}$. For example, if n=20 (which is about the time of Hipparchus), S is to be multiplied by $-\frac{20}{60} = -\frac{1}{3}$.

Usually η is between 0° and $\pm 90^{\circ}$, and may be computed simply from

$$\sin\eta = \frac{\cos l}{\cos \delta} \sin \epsilon$$

But when $\cos (N+b)$, *i. e.*, $\cos \eta$ negative, η is between $\pm 90^{\circ}$ and 180° . Computing (roughly) N from $\tan N = \sin l \tan \epsilon$, it is easily seen, when $N+b > \pm 90^{\circ}$ —which will be only for stars near the pole of the ecliptic.

The following table gives N from 10° to 10° computed with tan $\epsilon = 9.6376$ (for 1800):

l	N	l	N	l	N
o	0 /	0	o /	o	o /
± 0	± 0 0	± 70	±22 II	= 130	±18 23
10	4 19	80	23 9	140	15 35
20	4 19 8 27	90	23 28	150	12 15
30	12 15	100	23 9	160	8 27
40	15 35 18 23	110	22 II	170	4 I 9
40 50 60	18 23	120	20 36	180	0 0
60	20 36				

 $\tan N = \sin l \, \tan \epsilon$

CATALOGUE I.

The first column gives the number of the star in Baily's edition of Ptolemy's catalogue; the second gives Ptolemy's number and the description of the star in Latin, the text being taken from the Trapezuntius Almagest 1528, and revised from the Greek; the third gives the modern name; the fourth gives the longitude in signs, degrees, and minutes; the fifth the latitude; and the sixth the magnitude.

An asterisk (*) is appended to those longitudes and latitudes which differ from Baily.

No. in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Northern Constellations.				
	URSA MINOR.		o /		
-	I. Quæ est in extremitate caudæ	T a			
I 2	2. Qué post ipsam in cauda est		Д 0 10 Д 0 10	+66 0	3
_	3. Quæ post istam prope radicem caudæ	$23 \epsilon \dots$	2 30 *10 10	70 O	4
3	4. Australis stella præcedentis lateris figuræ quadrilateræ	<u>16</u> ζ	29 40	74 20	4
4	5. Borealis ejusdem lateris	$2I \eta \dots$	29 40 10 3 40	75 40 77 40	4
5	6. Australis earum quæ in sequenti latere sunt	$7 \beta \dots$	*17 10	72 50	4
7	7. Borealis ejusdem lateris	$13 \gamma \dots$	26 10	+74 50	2
	INFORMATA.				
8	1. Australissima extra figuram in recta sequentis lateris	5 A	⊗ 13 0	+71 10	4
	URSA MAJOR.				
9	1. Quæ est in extremitate rictus	Ι ο	X 25 20	+39 50	4
IÓ	2. Præcedens earum quæ in duobus oculis sunt	2 A	25 50	43 0	5
II	3. Sequens earum	$4 \pi^2 \cdots$	26 20	43 0	5
I2	4. Præcedens earum quæ in fronte sunt		*26 10	47 10	5
13	5. Sequens earum	$13 \sigma^2 \dots$	*27 40	47 0	5
14	6. Quæ in extremitate præcedentis auris est	$24 d \dots$	28 10	50 30	5
15	7. Præcedens earum quæ in collo sunt	$14 \tau \dots$	ଡ o 30 ∣	43 50	4
16	8. Sequens earum	23 h	2 30	44 20	4
17	9. Borealior de duabus quæ in pectore sunt	29 v	90	<u>4</u> 2 0	4
18	10. Australior ipsarum		II O	*37 15	4-5
19 20	11. Quæ in genu sinistro est 12. Borealis earum quæ in anterioris extremitate pedis	$25 \theta \ldots$	10 40	35 O	3
20	sinistri sunt.	91	5 30	29 20	2
21	13. Australior ipsarum	12 κ	6 20	28 20	
22	14. Quæ supra genu dextrum est.	18 e	5 40	36 0	4
23	15. Quæ infra genu dextrum est	15 <i>f</i>	5 50	33 0	4
24	16. Éarum quæ sunt in quadrilatera figura, illa in dorso est	50 a	17 40	49 O	2
25	17. Quæ de istis in ursæ latere est	48β	*22 10	44 30	2
26	18. Quæ in radice caudæ	69δ	Ω *3 10	51 0	3
27	19. Reliqua quæ est in posteriori sinistra coxa	$64 \gamma \dots$	30	46 30	2
28	20. Præcedens earum quæ in extremitate posteriorum		8		
	sinistri pedis sunt	<u>33</u> λ		29 20	3
29	21. Quæ istam sequitur	$34 \mu \dots$ $52 \psi \dots$	24 IO	28 15	
30	23. Borealium earum quæ in extremitate posterioris dextri	54 ¥ · · · ·	Ω 140	35 15	4-3
31	23. Boreanum earum quæ in extremitate posterioris dextri pedis sunt	54 v	9 50	25 50	3
32	24. Australior earum	53ξ		25 0	
33	25. De tribus in cauda locatarum, prima post caudæ			5	1
55	radicem	77 €	12 10	53 30	2
34	26. Media ipsarum	 79ζ		55 40	
35	27. Tertia, et in ipsa extremitate caudæ	85 η		+54 0	

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Northern Constellations—continued.				
	INFORMATÆ.		o /	0 /	
36	1. Quæ sub cauda procul ad austrum est	12 Can Ven	Q 27 50	+39 45	2
	 Quæ sub cauda procur au austrum est Quæ istam præcedit obscurior 		20 10	41 20	3
37 38	3. Australior quæ inter anteriores ursæ pedes et		20 10	41 20	5
30	caput Leonis est	40 Lyncis	9 15 0	17 15	4
39	4. Borealior hac		13 20	19 10	4
40	5. Sequens reliquarum trium obscurarum	Io Leo Min	1Ğ 10	20 0	obs.
41	6. Præcedens istam		*15 10	*22 45	obs.
42	7. Hanc etiam præcedens	<u>536 Lyncis</u>	1	*20 20	obs.
42		(VIII 245	,		
43	8. Quæ inter anteriores pedes et Geminos est	31 Lyncis	0 0	+22 15	obs.
	DRACO.				
44	1. Quæ in lingua draconis est			+76 30	4
45	2. Quæ in ore est	${24 \\ 25}$ ν	M II 50	78 30	4-3
46	3. Quæ supra oculum 4. Quæ in maxilla	$23 \beta \dots \dots \dots$ $32 \xi \dots \dots \dots$	13 10	75 40 80 20	3
47	 Quæ in maxina Quæ supra caput 	$32 \xi \dots \dots$ $33 \gamma \dots$	•	80 20 75 30	4
48 49	6. Borealis de tribus quæ sunt in recta linea et in	33 7	29 40	/5 50	3
49	prima flexione colli	39 b	₹ 24 40	82 20	4
50	7. Australis ipsarum	46 c	万 2 20	78 15	4
51	8. Media ipsarum	$45 d \dots$	₹ 28 50 ×	80 20	4
52	9. Sequens istas versus ortum	47 0	万 19 30	81 IO	4
53	10. Quæ in sequenti fluxu est, australior earum quæ				
	sunt in præcedente latere quadrilateræ	58π	X 8 0	81 40	4
54	11. Borealior earum quæ sunt in antecedente latere	$57 \delta \dots \dots$	20 30	83 0	4
55	12. Borealis earum quæ sunt in latere sequente 13. Australis lateris sequentis	63 ε 67 ρ	Υ 7 40)(22 50	78 50 77 50	4
56	13. Australis sequenti fluxu, trianguli	6ι σ	Υ 10 40	80 30	4 5
57 58	15. Præcedens de reliquis duabus trianguli	52 v	21 40	*81 40	5
59 59	16. Sequens de ipsis	δο τ	26 io	80 15	5
60	17. Sequens de tribus quæ in antecedente dein-				
	ceps triangulo sunt	$31 \psi \dots$	Ц 13 20	84 30	4
61	18. Australis de reliquis duabus trianguli		ර 20 20	83 30	4
62	19. Borealior reliquis duabus	43 φ · · · · · · · · · ·	11 50	84 50	4
63	20. Quæ de duabus parvis ad occidentalem par-	27 f	6 18 10	87 30	6
6.	tem trianguli sequitur	27 <i>J</i>	∞ 28 40 21 40	86 50	6
64 65	21. Præcedens de ipsis 22. Australior de tribus quæ deinceps per rectam		40		Ŭ
65	lineam sunt	18 g	1179 O	81 15	5
66	23. Media ipsarum	$19 \tilde{h} \dots \dots$	9 20	83 O	5
67	24. Borealior ipsarum	22 5	8 20	84 50	3
68	25. Borealior duarum quæ deinceps ad occasum sunt.	$14 \eta \dots$	10 0	78 O	3
69	26. Australior ipsarum	13 θ	13 0	74 40	4-3
70	27. Quæ de istis in flexu caudæ ad occasum est	12ι	12 40	70 0	3
71	28. Præcedens de duabus satis ab ista distantibus	$10 i \dots \dots$	Ω 7 20	64 40 65 20	4
72	29. Quæ ipsas sequitur 30. Quæ istis prope caudam adhæret	II α 5 κ	11 IO 69 IO IO	65 30 61 15	3
73	30. Quæ istis prope candalli adhæret 31. Reliqua quæ in extremitate caudæ est	Ιλ	13 IO	+56 15	3
74			- ,	- JJ	5
	CEPHEUS.	.	\ *≠ ~		
75	1. Quæ in pede dextro est	I K	8*5 0 2 0	+75 40	4
76	 Quæ in pede sinistro Quæ ad cingulum est in dextro latere 	$\begin{array}{c} 35 \ \gamma \dots \\ 8 \ \beta \dots \end{array}$	30 17720	64 15 71 10	4
77	 Quæ au cingulum est in dextro latere	5 α	H 16 40	69 O	43
78	 Quæ supra dextrum numerum est tangens ipsum Quæ supra dextrum cubitum tangens ipsum	3η	9 20	+72 0	4
79	J. San onbin acutiani capitani tangono ibaniti		, =-		۲ (

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Northern Constellations-continued.				-
	CEPHEUS—continued.				
0			0 /	0 /	
80	6. Quæ sub hoc cubito ipsum quoque tangens	2 θ)(10 O	+74 0	4
81	7. Quæ in pectore	$17 \xi \dots$	28 30	65 30	5
82	8. Quæ in sinistro brachio	32 1	Υ 7 30	62 30	4-
83	9. Australis de tribus quæ in tiara sunt	23 ε)(16 20	60 15	5
84	10. Media ipsarum 11. Borealis ipsarum	21 ζ 22 λ	17 20	61 15 +61 20	4
85	11. Boreans ipsarum	22 K	19 0	T01 20	5
	INFORMATÆ.				
86	1. Præcedens tiaram	μ	<u> </u>		5
87	2. Sequens tiaram	27 δ	21 20	59 30	4
	BOOTES.				
88	1. Præcedens de tribus quæ sunt in manu sinistra	17 κ		+58 40	5
89	2. Media et australior de tribus	21 1	4 10	58 20	5
90	3. Sequens de tribus	23 θ	5 40	60 10	5
91	4. Quæ in sinistro cubito est	19 λ	9 40	54 40	5
92	5. Quæ est in humero sinistro	$27 \gamma \dots$		49 O	3
93	6. Quæ est in capite	$42 \beta \ldots$	26 40	53 50	4-
94	7. Quæ in humero dextro	49 δ · · · · · · · ·		48 40	4-
95	8. Borealior ipsarum et in collorobo	$51 \mu \dots \dots \\ (52 \nu^1 \dots \dots \dots)$	<u> </u>	53 15	4
96	9. Adhuc borealior ista et in extremitate collorobi	$\begin{cases} 52 & \nu^2 \\ 53 & \nu^2 \\ \end{cases}$		57 30	4
97	10. Borealior duarum quæ sunt in clava sub humero.	2η Coronæ	7 4º	*46 30	4-
98	11. Australior ipsarum	I o Coronæ	8 30	45 30	5
99	12. Quæ in extremitate dextræ manus est	45 c	8 10	41 40	5
100	13. Præcedens de duabus quæ in vola manus sunt	$43 \psi \cdots \cdots$	6 40	41 40	5
101	14. Sequens ipsarum	4 6 <i>b</i>	7 0	42 30	5
102	15. Quæ in extremitate capuli collorobi	4Ι ω	7 40	40 20	5
103	16. Quæ in crure dextro juxta cingulum	36 e	0 0	40 15	3
104	17. Sequens de duabus quæ in cingulo sunt	28 σ	MP 25 40	4 I 40	4
105	18. Præcedens ipsarum	2 5 ρ	25 O	42 10	
106	19. Quæ est in dextro calcaneo	305	≏ 5 20	28 0	0
107	20. Borealis de tribus quæ sunt in sinistra tibia	$8 \eta \ldots \ldots$	₩ 21 20	28 0	3
108	21. Media ipsarum	$4 \tau \cdots$	20 30	26 30	
109	22. Australis ipsarum	5υ	21 20	+25 0	4
	INFORMATA.				
110	1. Quæ est inter crura et vocatur Arcturus subrufa.	16 a	11/27 0	+31 30	I
	CORONA BOREALIS.				
111	1. Fulgens earum quæ sunt in corona	5 a	≏ 14 40	+44 30	2-
II2	2. Quæ omnes istas præcedit	$\frac{3}{3}\beta$		*46 10	
113	3. Borealior quæ istam sequitur	4θ	11 50	48 0	
114	4. Sequens istam et borealior ista	9π	13 40		£
115	5. Quæ fulgentem a meridie sequitur	8γ	17 10		
116	6. Quæ istam propius sequitur	10δ			
117	7. Quæ post istas rursus sequitur	Ι3 ε	21 20		
118	8. Sequens cunctas quæ in corona sunt	14	21 40	+49 20	4
	HERCULES.	6	m	1	
119	1. Quæ in capite	64 a	11 17 40		
120	2. Quæ in humero dextro penes axillam seu scapulam	27 p	3 40		
121	3. Quæ in brachio dextro	20 γ	I 40		
122	Que in cubito dextro	7 K	$\simeq 28$ o		
	\tilde{O} uze in humero sitistro.	65 8	III IO 40		
123	6. Quæ in brachio sinistro		22 0	+49 30	4-

Catalogue	<i>I</i> —continued.
-----------	----------------------

No. in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Northern Constellations—continued.				
	HERCULES—continued.				
		0(o /	0 /	
125	7. Quæ in sinistro cubito.	86 μ	M 27 40	+52 0	4-3
126	8. De tribus quæ sunt in sinistra manus vola illa	101.0	7 7 80	50 50	
107	quæ sequitur	103 o	₹ 530 140	52 50	4-3
127 128	10. Australior ipsarum	$94 \not \dots \dots \dots$ $92 \xi \dots \dots \dots$		54 O 53 O	4-3
120	11. Quæ in dextro latere	40 ζ		53 O *53 IO	4-3
129	12. Quæ in latere sinistro	$58 \epsilon \dots \dots$	10 10	53 30	4-3
131	13. Borealior ista in vertebro sinistræ coxæ	$59 d \dots$	10 0	*56 10	5
132	14. Quæ in capite cruris ejusdem	6 i <i>c</i>	11 10	58 30	5
133	15. Præcedens de tribus quæ sunt in sinistro crure	67π	14 0	59 50	4
134	16. Sequens istam	69 e	15 20	60 20	4
135	17. Quæ adhuc istam sequitur	75 ρ	1Ğ 20	61 15	4-3
136	18. Quæ in genu sinistro	9Ι θ	<i>₹</i> 0 50	61 õ	4
137	19. Quæ in sinistra sura	851	M 22 IO	69 20	4
138	20. Præcedens de tribus quæ sunt in extremitate				
	pedis sinistri	74 · · · · · · · ·	15 20	70 15	6
139	21. Media de tribus	77 <i>×</i> · · · · · · · ·	16 50	71 15	6
140	22. Sequens ipsarum	82 y	19 40	*72 0	6
141	23. Quæ in vertebro coxæ dextræ	$44 \eta \cdots \cdots$	0 40	60 15	4-3
142	24. Borealior ista in eodem crure	$35 \sigma \dots$	$\simeq 25 20$	63 0	4
143	25. Quæ in genu dextro	$22 \tau \dots$	15 40	65 30	4-3
144	26. Australior duarum quæ in genu dextro sunt	ΙΙ φ	13 40 IO IO	63 40	4
145	27. Borealior ipsarum 28. Quæ in tibia dextra	6υ ιχ	10 IO II IO	64 15 60 0	4
146	20. Quæ in extremitate devtri pedis est insa eadem	$([2] y^1) =$			4
147	29. Quæ in extremitate dextri pedis est ipsa eadem in extremitate collorobi	$\begin{cases} 52 \\ 53 \\ \nu^2 \end{cases}$ Bootis.	50	+57 30	4
	INFORMATA.				
148	1. Australior illa quæ est in brachio dextro	24 ω	M 2 40	+38 10	5
	LYRA.				
1 49	1. Fulgens quæ in testa est et vocatur Lyra	() d	₹ 17 20	+62 O	I
150	2. Borealis de duabus quæ isti adhærent	5 5 C	<pre>{ 20 20</pre>	62 40	4-3
151	3. Australior ipsarum	$\begin{cases} \check{6}\check{\boldsymbol{\zeta}}^1,\ldots,\\ 7\check{\boldsymbol{\zeta}}^2,\ldots,\ldots\end{cases}$	20 20	61 O	4-3
-	4. Quæ istas sequitur et media inter ortum cornuum.	$12 \delta^2 \dots$	23 40	60 O	4
152 153	5. Borealior de duabus contiguis quæ sunt ad orien-				4
	talem testæ partem	$20 \eta \ldots \ldots$	♂2 0 *	61 20	4
154	6. Australior ipsarum	2Ιθ	(*2 40	60 20	4-5
155	7. Borealior duarum præcedentium quæ in jugo lyræ	10.0	7	-6	
(sunt	$10 \beta \dots \dots$		56 10	3
156	8. Australior ipsarum 9. Borealior duarum sequentium quæ in jugo lyræ	$9 v^2 \cdots \cdots$	20 50	55 O	4-5
157	9. Boreanor duarum sequentium quæ in jugo lyræ	14 γ	24 <u>10</u>	55 20	2
T = Q	10. Australior ipsarum	15 λ		+54 45	3 4-5
158	-		\ -T	• 54 45	4 5
	CYGNUS.	60	X (10	1 * 10 00	
159	I. Quæ est in ore	6β	で 4 30	+*49 20	3
160	2. Quæ istam sequitur et est in capite	$12 \varphi \dots \dots$	90 1620	50 30	5
161	3. Quæ in medio collo	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		54 30	4-3
162	4. Quæ in pectore 5. Fulgens quæ in cauda est	37 γ··· ···· 50 α ·····	∞ 28 30 ∞ 9 IO	57 20 60 0	32
163	6. Quæ in cubito alæ dextræ est	18δ	が910 で*1940	64 40	
164 165	7. Australis de tribus quæ sunt in pectine dextræ alæ	13 θ	22 30	69 40	3
165 166	8. Media de tribus.	ΙΟι	21 10	+71 30	4-3
100	OF THORE OF CHEROCOLL CONTRACTOR CONTRACTOR				1 7 9

14.1

24 10

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Northern Constellations-continued.				* *** * *
	CYGNUS—continued.		0		1
		_	~ /	0 /	
167	9. Borealis ipsarum quæ est in extremitate pectinis.	Ι κ		+74 0	4-3
168	10. Quæ in cubito alæ sinistræ.	$53 \epsilon \ldots$		49 30	3
169	11. Borealior ipsarum et in medio ejusdem alæ	54 λ	3 50 6 40	52 10	4-3
170	12. Quæ in extremitate pectinis alæ sinistræ	$64 \zeta \dots \dots$ $58 \nu \dots \dots$		44 0	3
171	13. Quæ in pede sinistro 14. Quæ in genu sinistro	$62 \xi \dots$		55 IO 57 O	4-3
172		$30 o^1 \dots \dots$			4-3
173	15. Præcedens de duabus quæ sunt in pede dextro	31	<i>j</i> 110	64 0	4
174	16. Sequens ipsarum	$32 o^2 \dots \dots$ $45 \omega^1 \dots \dots$	2 40	64 30	4
175	17. Quæ in genu dextro nubi similis	$46 \boldsymbol{\omega}^2 \dots \dots$	} 12 10	+*63 45	5
	INFORMATÆ.	65 -			
176	1. Australior duarum quæ sunt sub ala sinistra	$65 \tau \dots \dots $ $66 v \dots \dots \dots$	} ≈ 10 40	+49 40	4-3
177	2. Borealior ipsarum	67 σ	13 50	51 40	4-3
	-	070	19 30	5- 40	4 5
178	CASSIOPEIA.	17 2	m # **	Larac	
179	1. Quæ in capite	$17 \zeta \dots$	Υ 7 50	+45 20	4-3
180	2. Quæ in pectore.	18 a	10 50	46 45	3
181	3. Borealior ipsa et est in cingulo	$24 \eta \dots$	13 0	47 50	4
182	4. Quæ supra sedem in cruribus est	$27 \gamma \ldots \ldots$	16 40	49 0	3-2
183	5. Quæ in genibus	$37 \delta \ldots \ldots$	20 40 27 0	45 30	3
184	6. Quæ in tibia	45 ε 35 Hev. ι	27 0 8 1 40	47 45	4
185	7. Quæ in extremitate pedis 8. Quæ in sinistro brachio	$33 \theta \dots$	ግ 140 ግ 14 40	47 20	4
186	9. Quæ sub cubito sinistro	$34 \varphi \dots$		44 20	4
187	10. Quæ in brachio dextro	34 φ 8 σ	17 40 2 20	45 O 50 O	
188	11. Quæ supra pedem sedis est	15 к		52 40	
189	12. Quæ in media sede seu cathedra.	$11 \beta \dots$		51 40	
190	13. Quæ in extremitate sedis	7 ρ	*3 40	+51 40	
	PERSEUS.				
191	1. Quæ in dextræ manus extremitate et est nebulosa.	7 χ (cum)		+40 30	Neb
192	2. Ouæ in dextro cubito	15η	К I IO	37 30	4
193	3. Quæ in humero dextro	$23 \gamma \ldots \ldots$	2 40	34 30	3-4
194	4. Ouæ in humero sinistro	13 θ		32 20	4
195	5. Quæ in capite	18 τ		34 30	4
196	6. Ouæ in occipite	18 Hev		31 10	
197	7. Fulgens quæ est in dextro latere Persei.	33 a	4 50	30 0	2
198	8. Præcedens de tribus quæ sunt post illam quæ est				
-	in latere	35 o	5 20	27 50	
199	9. Media de tribus	$37 \psi \dots$	7 0	27 40	
200	10. Sequens ipsarum	39δ		27 20	5
201	11. Quze in cubito sinistro	27 κ	0 30	27 0	•
202	12. Fulgens quæ est in Gorgoneo	$26 \beta \ldots \ldots$		23 0	
203	13. Quæ istam sequitur	28 ω		2I O	
204	14. Quæ splendidam præcedit	25 ρ		2I O	
205	15. Reliqua quæ istam adhuc præcedit	$22 \pi \dots$	26 50	22 15	
20Ğ	16. Quæ in genu dextro	72 b (21 Hev.)		*28 15	
207	17. Præcedens ipsam et est supra genu	47 λ	13 0	28 10	
208	18. Præcedens de duabus quæ supra poplitem	48 <i>c</i>		25 0	
209	to. Sequens quæ in ipso poplite est	$5I\mu$		26 15	
210	20. Quæ in dextra sura	$53 d \ldots \ldots$		24 30	
211	21. Ouæ in talo dextro	58 e		18 45	
	22. Quæ in crure sinistro	4I V	6 50	21 50	4-:
212	23. Quæ in genu sinistro	45 ε		+19 15	

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Northern Constellations—continued.				
	PERSEUS—continued.		0 /	• •	
214	24. Quæ in tibia sinistra			+14 45	1
215	25. Quæ in sinistro calcaneo			12 0	
216	26. Quæistam sequitur et est in extremitate pedis sinistri	44 5	6 20	+11 0	3-2
	INFORMATÆ.				
217	1. Quæad ortum respectu ejus quæin genu sinistro est	$52f\ldots\ldots$	8 11 50	+18 o	5
218	2. Quæ ad septentrionem respectu earum quæ in genu				5
	dextro est	14 Hev. Camel	15 0	31 0	5
219	3. Præcedens earum quæ in Gorgoneo sunt	$1\dot{6} p^1 \dots$	Υ 24 40	+20 40	obs.
-	AURIGA.				
220	1. Australior de tribus quæ sunt in capite	33 δ	其 2 30	+30 O	
220	2. Borealior et est supra caput	30 ξ	2 20	31 50	4
222	3. Quæ in humero sinistro et vocatur Capella	13 a	8 25 0	22 30	I
223	4. Quæ in humero dextro	34 β	<u>д</u> 2 50	20 0	2
224	5. Quæ in cubito dextro	$32 \nu \ldots$	I 10	15 15	4
225	6. Quæ in vola dextra	$37 \theta \ldots \ldots$		13 20	
22Ğ	7. Quæ in cubito sinistro	7 ε	∀ 22 [ັ] 0	20 40	4-3
227	8. Sequens de duabus quæ sunt in vola sinistra			•	
	et vocantur hœdi	ΙΟ η	22 IO	18 O	4-3
228	9. Præcedens ipsas	85	22 O	18 O	4
229	10. Quæ in talo sinistro	3 6	19 50	10 10	3-4
230	11. Quæ in talo dextro communis cum Tauri cornu	23 $\gamma = \beta$ Taur.	25 40	50	3-2
231	12. Quæad septentrionem respectu ejus est in extremi-				
	tate pedis	$25 \chi \dots$	26 O	8 30	5
232	13. Adhuc borealior ista et est in vertebro	$24 \ \varphi \dots \dots$	<u>26</u> 20	12 10	56
233	14. Parva quæ est supra sinistrum pedem	14	*23 0	+*10 20	6
	OPHIUCHUS.				
234	1. Quæ in capite	55 a	M 24 50	+36 o	3-2
235	2. Præcedens de duabus quæ sunt in humero dextro.	6οβ	28 O	27 15	4-3
236	3. Sequens ipsarum	$62 \gamma \ldots$	29 O	26 30	4
237	4. Præcedens de duabus quæ sunt in humero sinistro	25 ι	13 20	33 0	4
238	5. Sequens ipsarum	27 κ	14 40	<u>_</u> 31 50	4
239	6. Quæ in cubito sinistro	10 λ	8 20	*23 45	4
240	7. Præcedens de duabus quæ sunt in extremitate manus sinistræ	Ιδ			
241	8. Sequens ipsarum	2 <i>e</i>	5 O 6 O	17 0	3
241 242	9. Quæ in cubito dextro.		26 40	16 30	3
242	10. Præcedens de duabus quæ sunt in extremitate	57 <i>µ</i> · · · · · · · · · ·	20 40	15 O	4
~45	manus dextræ	64 v	₹ 2 20	13 40	4-5
244	11. Sequens ipsarum	69τ	3 20	14 20	
245	12. Quæ in genu dextro.	$35 \eta \dots$	M 21 10	7 30	4 3
246	13. Quæ in tibia dextra	4 0 ξ	*23 40	2 15	4-3
247	14. Præcedens de quatuor quæ sunt in pede dextro.	36 A	23 0	- 2 15	4
248	15. Quæ istam sequitur.	42 θ	24 20	1 30	4-3
249	16. Quæ adhuc istam sequitur	44 <i>b</i>	25 O	0 20	4
250	17. Reliqua de quatuor quæ omnes sequitur.	51 c	25 50	*o 15	5
251	18. Quæ istas sequitur et tangit calcaneum	52 ? 2 Sagitt	27 10	+ 1 ŏ	5
252	19. Quæ in sinistro genu	Ϊ3ζ	12 10	11 50	3
253	20. Borealior de tribus quæ sunt in sinistra tibia			-	-
-	secundum rectam lineam	$8 \varphi \dots$	11 40	5 20	5-4
	21. Media ipsarum	$7 \times \cdots \cdots$	10 40	3 10	5
254					
255	22. Australior de tribus	$4 \psi \dots$	9 50	*ĭ 40	5-4
		$4 \psi \dots \dots$ $9 \omega \dots \dots$ $5 \rho \dots \dots$	9 50 12 20 10 40	*1 40 0 40	5-4 5

Catalogue	<i>I</i> cc	ontinued.
-----------	-------------	-----------

No. in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Northern Constellations-continued.				
	INFORMATÆ.		0 /	• /	
258	1. Borealior de tribus quæ sunt ad ortum humeri dextri		720	+28 10	4
259	2. Media de tribus		2 40	26 20	4
260	3. Australior ipsarum		•	25 0	4
261	4. Sequens de tribus quasi supra mediam			27 0	4
262	5. Borealior de quatuor et est solitaria	72	4 40	+33 0	4
	SERPENS.				
263	1. Quæ in extremitate maxillæ est de illis quæ in capite	AX .			
	quadrilateræ sunt	2Ιι	5	+38 0	4
264	2. Quæ nares tangit.	38 p	21 40	40 0	4
265	3. Quæ in tempore	$4\mathbf{I} \boldsymbol{\gamma} \dots$	24 20	36 O	3
266	4. Quæ in radice colli	$28 \beta \dots$		34 15	3
267	5. Media quadrilateri et est in ore.	$35 \kappa \ldots$	21 20	37 15	4
268	6. Exterior et ad septentrionem capitis	$44 \pi \dots$	23 10	42 30	4
269	7. Quæ post primum colli flexum est.	$13\delta \ldots$	21 40	29 15	3
270	8. Borealis de tribus deinceps sequentibus	27 λ	24 50	26 30	4
271	9. Media de tribus	24 a	24 20	25 20	3
272	10. Australis ipsarum	37 €	26 20	24 0	3
273	11. Præcedens manum sinistram Ophiuchi post sequentem				
	flexum	$3^{2} \mu \dots$	28 50	16 30	4
274	12. Sequens eas quæ in manu sunt	3 v Oph.	M 8 10	*13 15	1
275	13. Quæ post posteriorem partem dextri cruris Ophiuchi	$53 \nu \ldots$	23 40	10 30	
276	14. Australior de duabus sequentibus istam	55ξ	27 0	8 30	4-3
277	15. Borealior ipsarum	56 0	27 50	10 50	4
278	16. Quæ post manum dextram in flexu caudæ	57 5	₹ 340	20 0	4
279	17. Quæ istam sequitur et est in cauda similiter	$58 \eta \ldots$	8 40	21 10	4-3
280	18. Quæ in extrema cauda est	63 θ	18 20	+27 0	4
	SAGITTA.				
281	1. Quæ in ferro sagittæ solitaria est	$12 \gamma \ldots$	ろ 10 10	+39 20	4
282	2. Sequens de tribus quæ in arundine sunt	8ζ	640	39 10	6
283	3. Media ipsarum	7δ		39 50	5
284	4. Præcedens de tribus	5 a		39 0	
285	5. Quæ in extremitate γλυφίδου sagittæ	δβ			5
=~ J	AQUILA.				
	~	60 -	3 7 10	1 26 50	
286	1. Quæ in medio capite	$63 \tau \ldots$	~ ~ ~ 10	+26 50	
287	2. Quæ istam præcedit et est in collo	6οβ		27 10	3
288	3. Fulgens quæ in occipite et vocatur Aquila	53 a		29 10	
289	4. Quæ prope hanc ad septentrionem est.	59ξ····	4 40	30 0	3-
290	5. Præcedens de duabus quæ sunt in humero sinistro			31 30	3
291	6. Quæ istam sequitur	$61 \varphi \dots$		31 30	1 2
292	7. Præcedens de duabus quæ sunt in humero dextro			28 40	
293	8. Quæ hanc sequitur	44 σ · · · ·	7 I 10	*26 40	5-
294	9. Quæ sub Aquilæ cauda remotior est et lacteum				
	circulum tangit	175	₹ 22 10	+36 20	3
	INFORMATÆ.		-	1	
295	1. Præcedens de duabus quæ sunt ab australi capitis parte	55 7	T 3 40	+21 40	-
296	2. Ouæ istam seguitur.	65 θ		19 10	
297	3. Ouæ ab austro et africo dextri aquilæ humeri est	30δ	₹ 26 0	25 0	4-
297	A Quæ a meridie hujus est	4Ιι		20 0	
	5. Quæ australior hac adhuc est	<u>3</u> 9 к	29 40	15 30	
299 300	6. Quæ cunctas præcedit	<u>1</u> 6λ	- ماد	+18 io	

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Northern Constellations-continued.				
	DELPHINUS.				
101		-	0 / X x = 10		
301 302	 Præcedens de tribus quæ in cauda sunt Borealior de duabus reliquis 	2 €	17 40	+29 10	
302	3. Australior ipsarum	5ι 7κ	18 40 18 40	29 0	
303 304	4. Australis earum quæ sunt in antecedente latere quad-	γκ	10 40	27 45	4
J04	rilateri rhomboidis	6β	18 30	32 0	2-4
305	5. Borealior antecedentis lateris.	9 a	20 10	*33 20	
306	6. Australis sequentis lateris rhombi		21 20	33 20 32 0	3-4
307	7. Borealis sequentis lateris	12 γ	23 10	33 10	3-4
308	8. Australis de tribus quæ sunt inter caudam et rhombum.	3 7	17 30	30 15	⁷ 6 ⁻ .
309	9. Præcedens de duabus reliquis borealibus.	4 (*17 30	31 50	6
310	10. Reliqua de ipsis et sequens	8θ	19 0	+3130	6
-					
	EQUULEUS.				
311	1. Præcedens duarum quæ sunt in capite	8 a	ъ 26 20	+20 30	
312	2. Quæ ipsam sequitur	$10 \beta \dots$	28 O	20 40	
313	3. Præcedens duarum quæ in ore sunt	5γ	26 20	25 30	
314	4. Quæ ipsam sequitur	7δ	27 40	+25 0	obs.
	PEGASUS.				
315	1. Quæ in umbilico est et communis cum capite				
313	Andromedæ	$\delta = 21 \alpha$ And.	¥ 17 50	+26 o	2_2
316	2. Quæ in lumbis et extremitate pennæ	$88 \gamma \dots$	12 10	12 30	2-3
317	3. Quæ in humero dextro et in ipsa pedis radice	$53 \beta \dots$	2 10	31 0	2-3
318	4. Quæ in occipite et humero alæ	54 a	× 26 40	19 40	2-3
319	5. Borealior duarum quæ sunt in corpore sub ala	$62 \tau \dots$	\mathcal{H} 4 30	25 30	4
320	6. Australior ipsarum	68 v	5 0	25 0	4
321	7. Borealior duarum quæ in genu dextro sunt	$44 \eta \dots$	# 29 O	35 O	3
322	8. Australior ipsarum	43 0	28 30	34 30	5
323	9. Antecedens duarum propinquarum quæ in pectore sunt.		26 10	29 O	4
324	10. Sequens ipsarum	48 μ	27 O	29 30	4
325	11. Præcedens duarum propinquarum quæ in collo sunt	42 5	18 50	18 O	3
326	12. Sequens ipsarum	46 ξ	20 30	19 O	4
327	13. Australior duarum quæ in juba sunt	50 ρ	21 20	15 0	5
328	 Borealior ipsarum Borealior duarum propinquarum quæ in capite sunt 	49 σ	20 30 *9 20	16 O	5
329	16. Australior ipsarum	$\begin{array}{c} 26 \ \theta \ \dots \ \dots \ \\ 22 \ \nu \ \dots \ \end{array}$	9 20 8 0	1650 160	3
330 331	17. Quæ in rictu est.	8 ε	5 20	22 30	4 3-2
332	18. Quæ in dextro talo	29π	23 40	41 IO	$\frac{3^{-2}}{4^{-3}}$
333	19. Quæ in genu sinistro				4-3
334	20. Quæ in talo sinistro	ΙΟ Κ	12 20	+3650	
551				1 3- 3-	т J
	ANDROMEDA.				
335	1. Quæ in occipite	31δ		+24 30	3
336	2. Quæ in humero dextro	$29 \pi \dots$	26 20	27 O	4
337	3. Quæ in humero sinistro	30 <i>e</i>	24 20	23 O	4
338	4. Australis de tribus quæ sunt in dextro brachio		23 40	32 0	4
339	5. Borealior ipsarum	24 0	24 40	33 30	4
340	6. Media de tribus.	27 ρ	25 O	32 20	5
341	7. Australis de tribus quæ sunt in extremitate manus	17.	TO 10	12 -	
242	dextræ	1/l	19 40	41 0	4
342	9. Borealis de tribus	<u>19</u> π 16 λ	20 40 22 10	42 0	4
343 344	10. Quæ in brachio sinistro	24 6	22 IO 24 IO	44 0 17 30	4
744		14 2	•		4
	11. Quæ in cubito sinistro	38 n.	25 101		A 1
345 346	11. Quæ in cubito sinistro 12. Australior de tribus quæ sunt supra cingulum	$\frac{38 \eta}{43 \beta}$	25 40 T 3 50	15 50 +*26 20	4

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Northern Constellations—continued.				
	ANDROMEDA—continued.		o /		
347	13. Media ipsarum	27	Ϋ́ 1 50		
348	14. Borealis de tribus	37 μ 25 ν	2 0	+30 0 32 30	4
349	15. Quæ supra pedem sinistrum	$57 \gamma \cdots \cdots$	16 50	28 O	4
350	16. Quæ in pede dextro.	$54 = \varphi$ Pers.	17 10	37 20	4-3
351	17. Australior hac	5I = v Pers.	15 10	35 40	4-3
352	18. Borealior duarum quæ sunt in poplite sinistro	50 0	12 20	29 0	4-3
353	19. Australior ipsarum	$53 \tau \cdot \cdot \cdot \cdot$	I2 O	28 O	4
354	20. Quæ in genu dextro	$4^2 \varphi \cdots$	10 10	35 30	5
355	21. Borealior duarum quæ sunt in syrmate		12 40	34 30	5
356	22. Australior ipsarum 23. Exterior præcedensque de tribus quæ sunt in extrem-	$5^2 \chi \cdots$	14 10	32 30	5
357	itate manus dextræ	10	Y II IO	+ 4 0	
		10	// 11 40	+44 0	3
0.58	TRIANGULUM.	2.5	<u>о</u> тт. е	1 -6 -0-	
358 359	 Quæ in vertice trianguli est Præcedens de tribus quæ sunt in basi 	2 u	16 o	+16 30 20 40	3
360	3. Media ipsarum.			20 40 19 40	3
361	4. Sequens de tribus			+19 40	4
J		,,	10 30	1.9 0	5
	Zodiacal Constellations.				
	ARIES.				
362	1. Præcedens duarum quæ sunt in cornu	5γ	Υ 640	+ 7 20	3-4
363	2. Sequens ipsarum	6β	7 40	8 20	3
364 365	 Borealior duarum quæ in rictu sunt. Australior ipsarum. 	$17 \eta \dots $ 22 $\theta^1 \dots$	II O	740 60	5
366	5. Quæ in collo est	8,	11 30 6 30	5 30	5
367		32 v	17 40	5 JO	5
368	7. Quæ in radice caudæ		21 20	4 50	5
369	8. Præcedens de tribus quæ in cauda sunt	57δ	23 50	I 40	4
370	9. Media de tribus	585	25 20	2 30	4
371	IO. Sequens ipsarum	$63 \tau^2 \dots$	27 0	I 50	4
372	11. Quæ in posteriore parte cruris est	45ρ	} 1940	*1 10	5
373 3 74	12. Quæ sub poplite 13. Quæ in extremitate posterioris pedis	43 σ 87 μ Ceti	18 O 15 O	- 1 30 5 15	5 4-3
	INFORMATÆ.				
375	1. Quæ supra caput est quam Hipparchus in collo dicit	13α	Υ 10 40	+*10 0	3-2
376	2. Sequens fulgentiorque de quatuor quæ supra lumbos	J	•		
	sunt	41 6	21 40	IO IO	4
377	3. Borealior reliquarum trium minusque splendidarum	39	21 20	12 40	5
378	4. Media de tribus		19 40	II IO	5
379	5. Australis ipsarum	33 · · · ·	19 10	+10 40	5
	TAURUS.	- (m . (1	
380	1. Borealis de quatuor quæ sunt in abscissione	$5f\ldots$		- 6 0	4
381	2. Sequens ipsam	45	26 0 *24 40	7 15	4
382	 Quæ istam adhuc sequitur. Australissima de quatuor. 	2ξ Ιο	*24 40	8 30	4
383	 Australissima de quatuol	30 e	24 20 29 40	9 15 9 30	4
384	6. Quæ in pectore	$35 \lambda \dots$	29 40 8 3 40	930 8 o	53
385 386	7. Quæ in genu dextro	49 μ · · · · · ·	640	12 40	3 4
387	8. Quæ in talo dextro	38 v	3 0	14 50	4
388	9. Quæ in genu sinistro	$90 c^1 \dots$	12 10	-10 0	4
J~~		-			1

No. in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Zodiacal Constellations-continued.				
	TAURUS—continued.		o /	o /	
389 390	10. Quæ in cubito sinistro 11. De Hyades, sic enim vocantur quæ in facie sunt, ea	88 d		-13 0	4
391	quæ in naribus 12. Quæ inter hanc et borealem oculum est		9 0 10 20	5 45 4 15	3-4 3-4
392	13. Quæ inter istam et australem oculum	$\left\{\begin{array}{c} 77 \ \theta^1 \dots \\ 78 \ \theta^2 \dots \end{array}\right.$	} 10 50	5 50	3-4
393 394	 Fulgens de Hyades, et est in oculo australi subrufa Reliqua quæ est in oculo boreali Quæ est in radice australis cornu et in aure 	87 α 74 ε	12 40 *11 50 *17 10	5 IO 3 O 4 O	I 3-4
395 396 397	10. Qua est in radice australis confu et in auter	$104 m \dots$	20 20 20 0	4 0 5 0 3 30	4 5 5
398 399	19. Quæ est in extremitate cornu australis	123 5	27 40 15 40	2 30 *0 15	3 4
400	 Quæ est in extremitate borealis cornu, eademque in dextro pede Aurigæ Borealior duarum propinquarum quæ sunt in aure 	112 β	25 40	+50	3
401	22. Dorealior duardin propinquardin qua suite in aute boreali	69 v ¹ 65 к	12 0 11 40	030 015	5 5
403 404	24. Præcedens duarum parvarum quæ in collo sunt 25. Quæ ipsam sequitur	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 0	0 40 -*1 0	5 6
405 406	 26. Australior antecedentis lateris quadrilateræ figuræ quæ in collo est 27. Borealior antecedentis lateris 	$44 p \cdots \cdots$	8 0 8 30	+ 5 0 *7 10	5
400	28. Australior sequentis lateris	$42 \psi \dots \dots$ 59 x \dots \dots	12 0	3 0	5 5
408	29. Borealior sequentis lateris	$52 \varphi \ldots \ldots$	II 40		
409	30. Borealis terminus antecedentis Pleiadum lateris	19 Taygeta	2 10	4 30	5 5
410	31. Australis terminus antecedentis lateris	23 Merope.		3 40	5
411 412	 32. Sequens et angustissimus Pleiadum terminus 33. Exterior et parva Pleiadum a septentrione 			$+ \frac{3}{5} \frac{40}{0}$	5 4
	INFORMATÆ.				
413	I. Quæ sub pede dextro est et scapula 2. Præcedens de tribus quæ supra cornu australe	10	Υ <u>25</u> Ο	-17 30	4
414 415	3. Media de tribus	$102 \iota \dots \dots$ $109 n \dots \dots$	*24 O	2 0 I 45	5
416	4. Sequens ipsarum	114 0	26 0	2 0	5
417	5. Borealior de duabus quæ sunt sub extremitate cornu				
418	australis 6. Australior ipsarum	120	29 O 29 O	6 20	5
419	7. Præcedens de quinque quæ sub cornu boreali sequuntur	129		+ 0 40	5
420	8. Quæ istam sequitur.	125	· ·		5
421	9. Quæ istam adhuc sequitur.			I 20	5
422 423	10. Borealior reliquarum duarum sequentium 11. Australior ipsarum	136 139	2 20 3 20	3 20 + 1 15	5 5
	GEMINI.				
424 425	 Quæ est in capite præcedentis Geminorum Quæ est in capite sequentis Geminorum, subrufa 	78 β	Ц 23 20 26 40	+*9 40	2 2
426	3. Quæ est in sinistro præcedentis Geminorum cubito	34 θ		10 0	4
427	4. Quæ in eodem brachio.	<u>4</u> 6 <i>τ</i>	18 40	7 20	4
428	5. Quæ ipsam sequitur et est in occipite	60 ι		5 30	4
429	 6. Quæ istam sequitur et est in dextro humero ejusdem 7. Quæ in humero sequenti sequentis Geminorum 			4 50	4
430	8. Quæ in dextro latere antecedentis Geminorum	77 к 57 А		2 40 2 40	4
431 432	9. Quæ in sinistro latere sequentis Geminorum		*23 10	*0 20	
433	10. Quæ in sinistro genu præcedentis Geminorum			+ 1 30	1 5

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Zodiacal Constellations-continued.				
	GEMINI-continued.				
			• / \\	• /	
434	11. Quæ sub sinistro genu sequentis Geminorum	43 \$	X*18 10	- 2 30	
435	12. Quæ in sinistra sequentis Geminorum axilla		21 40 *21 40	030 *60	
436	13. Quæ supra dextrum poplitem ejusdem Geminorum	$54 \lambda \cdots$			
437	14. Quæ in extremo pede præcedentis Geminorum	$7 \eta \ldots$	6 30 *8 10	1 30	
438	15. Quæ hanc in eodem pede sequitur 16. Quæ in extremitate dextri pedis præcedentis Gemi-	$13 \mu \dots$	8 10	1 15	4-3
439		18 v	10 10	2 20	4-2
	norum 17. Quæ in extremitate sinistri pedis sequentis Geminorum.	$24 \gamma \dots$	10 10	3 30 7 30	
440	18. Quæ in extremitate dextri pedis sequentis Geminorum.	31ξ	14 40	-10 30	
44I	10. Qua in extremitate dextri pedio sequencio Cemmorum.	J	-7 1-	10 90	T
	INFORMATÆ.				
442	1. Præcedens extremitatem pedum antecedentis Gemi-				
	_ norum	1 H	д 4 10	— o 4o	4
443	2. Præcedens eam quæ est in genu antecedentis Gemi-	<u>.</u>	(
	norum et est splendida	44 KAurigæ.	6 30	+ 5 50	4-
444	3. Quæ præcedit genu sinistrum sequentis Geminorum	36 d	15 10	- 2 15	5
445	4. Borealis trium sequentium dextram sequentis Gemi-	Q -	28 20	I 20	
	norum per rectam lineam	85	26 20		
44 6	5. Media de tribus 6. Australis ipsarum et ad cubitum manus	$\begin{array}{c} 81 \ \mathbf{g} \ \dots \ \mathbf{f} \\ 74 \ \mathbf{f} \ \dots \ \mathbf{f} \end{array}$	20-20 26 0		
447	7. Quæ dictas tres sequitur et est splendida	16 Cancri.			
44 8	7. Quæ dictas ties sequitur et est spiendida	To y Canetti.	0 3 40	2 40	4
	CANCER.				
449	1. Media nubiformis convolutionis quæ in pectore dicta		_		-
	Præsepe	4I 6	99 IO 2O	+*0 40	IN C
450	2. Borealior duarum præcedentium quadrilateræ figuræ,				
	quæ est in nebula	$33 \eta \cdots$	7 40	1 15	4-
45 I	3. Australior præcedentium duarum	31 θ	8 0	- 1 10	4-
452	4. Borealis duarum sequentium quadrilateræ quæ	12.00	10.00	+ 2 40	
	vocantur Aselli	$\begin{array}{c} 43 \ \gamma \dots \\ 47 \ \delta \dots \end{array}$		-010	
453	5. Australis ipsarum	47 σ 65 α		5 30	
454	6. Quæ in australi forfice	48 <i>i</i>	8 20	+11 50	4
455	 Quæ in boreali forfice Quæ in posteriore pede boreali 	10 μ		I C	
456	9. Quæ in posteriore pede australi	$17 \beta \dots$		-*10 30	
457	9. Quæ in posteriore pede australit	-1	,		
	INFORMATÆ.				
458	1. Quæ super cubitum australis forficis est	$\begin{cases} 62 \ 0^1 \dots \\ 62 \ 0^2 \end{cases}$	80*15 40	- 2 20	4-
		76 κ	21 10) <u>1</u> -
459	2. Quæ sequitur extremitatem australis forficis 3. Præcedens duarum sequentium quæ sunt super	70 k	21 10	5 40	T
460	nebulam	69 v	14 0	+*7 15	5 5
.6.	4. Sequens ipsarum	$77 \xi \dots$	17 0		
461	4. Sequens ipsarum	11 3	,		
	LEO.				
462	1. Quæ in extremitate naris	Ι κ		1	
463	2. Quæ in apertione oris	4λ	21 10		
464	3. Borealior duarum quæ sunt in capite	$24 \mu \dots$			
465	4. Australior ipsarum	$17 \epsilon \dots $	24 10		
466	5. Borealis de tribus quæ in collo sunt	365			
467	6. Sequens et media de tribus	$4\mathbf{I} \boldsymbol{\gamma} \dots$			
468	7. Australis ipsarum	30 η	0 40		
469	8. Ouæ est in corde et vocatur Regulus.	32 a	2 30		
	9. Australior ipsa et est quasi in pectore	31 A			
470	10. Parum antecedens illam quæ in corde est	$27 \nu \ldots$	00	OI	51

No. in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Zodiacal Constellations—continued.				
	LEO—continued.				
170		-6.1	° /	o /	-
472	II. Quze in genu dextro		¹ 27 20 €	- 0 0	5
473	12. Quæ in anteriore dextræ vola	5ξ	24 10	3 40	6
474	13. Quæ in anteriore sinistræ vola	14 0	27 20	4 10	4
475	14. Quæ in genu sinistro		R 230	4 15	4
476	15. Quæ in axilla sinistra	47 P · · · · · · · · ·	9 10	0 10	4
477	16. Præcedens de tribus quæ sunt in ventre			+ 4 0	
47 ⁸	17. Borealis reliquarum et sequentium duarum	$52 k \dots \dots$	10 20	5 20	6
479	18. Australior ipsarum	53l	*12 20	2 20	6
480	19. Præcedens de duabus quæ sunt in lumbis.	60 <i>b</i>	II 20	12 15	5
481	20. Sequens ipsarum	68 δ	14 10	13 40	2-3
482	21. Borealior duarum quæ sunt in vertebris	>	14 20	$*_{II} \begin{cases} 20\\ I0 \end{cases}$	
483	21. Doreanor duardin qua sunt in vertebris	• • • • • • • • • • •	14 20	101	5
484	22. Australior ipsarum		16 20	940	3
485	23. Quæ in posterioribus cruribus	78 i	20 20	5 50	3
486	24. Quæ in posterioribus poplitibus	77 σ	21 40	1 15	4
487	25. Australior hac et quasi in cubitis	84 τ	24 40	- 0 50	4
488	26. Quæ in posterioribus volis	9I v	27 30	-*3 o	5
.	27. Quæ in extremitate caudæ	94 β	24 30		I-2
	INFORMATÆ.			, i i	
489		tr Leo Min	060	1 70 00	
490	1. Præcedens de duabus quæ sunt super scapulam				5
491	2. Sequens ipsarum	54	8 10	15 30	5
492	3. Borealis de tribus, quæ sunt sub latere	$o_3 \chi$		I IO	4-5
493	4. Media ipsarum			- o 30	5
494	5. Australis ipsarum.	58 d	18 0	2 40	5
	6. Borealissimum convolutionis nubilosæ quæ Coma				1
	Berenices vocatur, et est inter extrema Leonis			1.	1
495	et Ursæ 7. Præcedens de australibus eminentibus Comæ Bere-	15 c Com. Ber.	24 50	+30 0	obs.
+75	7. Præcedens de australibus eminentibus Comæ Bere-				1
496	nices	7 h Com. Ber.	24 20		obs.
1 12	8. Sequens de ipsis in figura folii edere	23 k Com. Ber.	28 30	+25 30	obs.
	VIRGO.				
497	1. Australis de duabus quæ sunt in extremo craneo		1		1
	Virginis	3 v	Ω*27 O	+ 4 15	5
498	2. Borealior ipsarum	2ξ		5 40	5
499	3. Borealior de sequentibus ipsas in facie.	90		8 0	5
500	4. Australior ipsarum	8 π		5 30	5
501	5. Quæ est in extremitate australis alæ atque sinistræ	5 β		0 10	3
502	6. Præcedens de quatuor, quæ sunt in ala sinistra.	$15 \eta \dots$	m 8 15	I 10	3
503	7. Quæ ipsam sequitur	29 γ	13 10	2 50	3
504	8. Quæ adhuc istam sequitur.	46	17 10	2 50	5
505	9. Última et sequens de quatuor	51θ		I 40	4
506	10. Quæ est sub cingulo in dextro latere	43 δ	14 20	8 30	
507	11. Præcedens de tribus quæ in dextra borealique ala	т <i>ј • • • • • • • •</i> • •		5 30	J
50/	sunt	30 p	8 10	13 50	E
508	12. Australis reliquarum duarum	$32 d^2$		13 50	
	13. Borealis ipsarum et vocatur Previndemiatrix.	$47 \epsilon \cdot \cdots \cdot \cdots$		16 0	•
509	14. Quæin extremitate manus sinistræ et vocatur Spica		26 40	-20	
510	15. Quæ sub cingulo juxta dextrum vertebrum	79 5			1
511	16. Borealis antecedentis lateris quadrilateræ figuræ	198	24 50	+ 8 40	3
512		7.1	a6 aa		_
	quæ est in crure sinistro			3 20	1 2
		76 h	27 15	0 10	-
513	17. Australis antecedentis lateris				1 4 -
514	18. Borealior de duabus, quæ in sequenti latere sunt.	82 m	<u>~</u> o o	1 30	
		$\begin{array}{c} 82 m \\ 68 i \\ \ldots \\ \end{array}$	$2 \circ 0$ $10728 \circ$		5

	name.	Long.	Lat.	Mag
Zodiacal Constellations—continued.				
		. ·		Į
21. Quæ in dextro crure posteriore	$90 p \dots$	11/28 0		-
22. Media de tribus quæ sunt in syrmate	991	= 10 40		
23. Australis ipsarum	98 к	7 20		
24. Borealis ipsarum	$105 \varphi \dots$	8 20		
25. Quæ in extremitate sinistri pedis atque australis	100 λ	10 0	0 30	
26. Quæ in extremitate dextri pedis atque borealis	107 μ	12 40	+ 9 50	3
INFORMATÆ.				
1. Præcedens de tribus quæ ad rectam lineam sub sinis-				
2. Media ipsarum	40 <i>ψ</i>	19 O		
3. Sequens ipsarum	4 9	22 15	3 20	5
4. Præcedens de tribus quæ quasi ad rectam lineam sub				
Spica sunt	53	27 10	*7 20	6
r Media insarum et duplex	£61	28 10	8 20	
5. metura ipoarani et dupiex		1		
6. Sequens trium	89	≏ *5 o	- 7 50	6
LIBRA.				
1. Fulgens earum quæ sunt in extremitate australis				
forficis				
2. Borealior ipsa et minus splendida	$7 \mu \dots$	17 0	2 30	
3. Fulgens earum quæ sunt in extremitate borealis	Ì	i	-	
forficis		22 10	8 50	
4. Præcedens ipsas et obscura		*17 40	8 30	
5. Quæ est in medio australis forficis				
6. Quæ istam præcedit in eadem forfice	$2I \nu \ldots \ldots$		+ 1 15	4
7. Quæ est in medio borealis forficis.		27 50	4 45	
8. Quæ istam in eadem forfice sequitur.	4 6 θ	M 3 0	+ 3 30	° 4⁻
INFORMATÆ.				
1. Antecedens de tribus borealibus quæ sunt in forfice		-		
			+ 9 0	
2. Australis sequentium duarum		m 340	6 40	י 4
3. Borealis ipsarum	$51 = \xi \text{ Scorp.}$	4 20		
4. Sequens de tribus intermediis	$45 \lambda \dots$. 3 30		
5. Borealis reliquarum duarum præcedentium	43 K · · · · · ·	. 020		
6. Australis ipsarum	0 ^h Arg. 14782	. I IO	- I 3C) .
7. Præcedens de tribus australioribus, quæ sunt in				
forfice australi.	$20 = \gamma$ Scorp			
8. Borealior duarum reliquarum sequentium.	39			
9. Australior ipsarum	40 τ	. *2 0	- 9 40	
,				
	88	m 6 20	+ 1 20	b
1. Doteans de titous spiendidis, quæ suite in fronte.				
2. Ivienta ipsatum				
3. Australior de tribus				5
4. Australior adnuc ista in altero pedum	5	. 00	1 50	
5. Borealior duarum, quæ borealissimæ spiendidarum	TAN	7 0	+ T 40	
	1 0 1			
	$1 10 \omega^2 \dots$		0 30	
7. Præcedens de tribus splendidis, quæ sunt in corpore	20 σ	•	1 .	1
8. Media ipsarum et subrufa quæ vocatur Antares	. 21 a			í
9. Sequens de tribus	$23 \tau \ldots$. 14 30	- 5 3	0
	VIRGO—continued. 21. Quæ in dextro crure posteriore. 22. Media de tribus quæ sunt in syrmate. 23. Australis ipsarum. 24. Borealis ipsarum. 25. Quæ in extremitate sinistri pedis atque australis. 26. Quæ in extremitate dextri pedis atque borealis. 27. Præcedens de tribus quæ ad rectam lineam sub sinistro cubito sunt. 28. Media ipsarum. 3. Sequens ipsarum. 4. Præcedens de tribus quæ quasi ad rectam lineam sub Spica sunt. 5. Media ipsarum et duplex. 6. Sequens trium. 19. Kerken et duplex. 6. Sequens trium. 10. Fulgens earum quæ sunt in extremitate australis forficis. 20. Wa istam præcedit in eadem forfice. 7. Quæ est in medio australis forficis. 6. Quæ istam præcedit in eadem forfice. 7. Quæ est in medio borealis forficis. 8. Quæ istam in eadem forfice sequitur. 10. MFORMATÆ. 1. Antecedens de tribus borealibus quæ sunt in forfice boreali. 2. Australis ipsarum. 3. Borealis ipsarum. 4. Sequens de tribus intermediis. 5. Borealis reliquarum duarum præcedentium. 6. Australis ipsarum. 7. Præcedens de tribus splendidis, quæ sunt in fronte.	VIRGO—continued.21. Quæ in dextro crure posteriore.90 p .22. Media de tribus quæ sunt in syrmate99 t23. Australis ipsarum105 φ .24. Borealis ipsarum105 φ .25. Quæ in extremitate sinistri pedis atque australis.100 λ 26. Quæ in extremitate sinistri pedis atque borealis.107 μ .27. Media ipsarum26 χ .28. Media ipsarum26 χ .3. Sequens ipsarum494. Præcedens de tribus quæ quasi ad rectam lineam sub spica sunt535. Media ipsarum et duplex616. Sequens trium5329. Borealior ipsa et minus splendida7 μ 7. Fulgens earum quæ sunt in extremitate australis forficis.9 a29. Quæ est in medio australis forficis.21 ψ 7. Quæ est in medio borealis forficis.21 ψ 7. Quæ est in medio borealis forficis.38 γ 8. Quæ istam præcedit in eadem forfice11 ψ 9. Australis sequentum duarum præcedentium.51 $= \xi$ Scorp.9. Borealis reliquarum duarum præcedentium.51 $= \xi$ Scorp.9. Borealis de tribus australioribus, quæ sunt in forfice boreali.78 $= \sqrt{2}$ 9. Australis ipsarum.70 $= \sqrt{2}$ 9. Australis ipsarum.70 $= \sqrt{2}$ 9. Australis ipsarum.70 $= \sqrt{2}$ 9. Australior ipsa et ribus sequentium50 $= \sqrt{2}$ 9. Ouæ est in medio borealis, quæ sunt in fronte boreali.8 $= \sqrt{2}$ 9. Australis ipsarum.6 $= \sqrt{2}$ 9. Australis ipsarum.70 $= \sqrt{2}$ 9. Australior ipsarum. <td< td=""><td>VIRGO—continued.$\sigma$$\sigma$$\sigma$21. Quæ in dextro crure posteriore.σ</td></td<> <td>VIRGO-continued.90$p$$w28o$$r$21. Quze in dextro crure posteriore.90$p$$w28o$$r$8022. Media de tribus quze sunt in syrmate.91$w$$r$202444. Borealis ipsarum.105r202424. Borealis ipsarum.105r202425. Quze in extremitate dextri pedis atque borealis.100r124026. Quze in extremitate dextri pedis atque borealis.$r$$r$$r$$r$$r$26. Media ipsarum.26$x$$w1440-3$$30$35. Sequens ipsarum.40$w19o$$30$36. Media ipsarum et duplex.$61$$r$$r$$r$$r$$r$6. Sequens trium.$r$$r$$r$$r$$r$$r$$r$$r7r$$r$$r$$r$$r$$r$$r$$r$$r$$r$$r7r$$r$</td>	VIRGO—continued. σ σ σ 21. Quæ in dextro crure posteriore. σ	VIRGO-continued.90 p w 28 o r 21. Quze in dextro crure posteriore.90 p w 28 o r 8022. Media de tribus quze sunt in syrmate.91 w r 202444. Borealis ipsarum.105 r 202424. Borealis ipsarum.105 r 202425. Quze in extremitate dextri pedis atque borealis.100 r 124026. Quze in extremitate dextri pedis atque borealis. r r r r r 26. Media ipsarum.26 x w 1440 -3 30 35. Sequens ipsarum.40 w 19 o 30 36. Media ipsarum et duplex. 61 r r r r r 6. Sequens trium. r r r r r r r r 7 r 7 r

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Zodiacal Constellations—continued. scorpius—continued.				
555 556 557	 Præcedens duarum quæ sub ipsis in extremo pede sunt. Sequens ipsarum Quæ in primo spondilo a corpore 	XVI 31 d 26 ε	10 40 18 30	°' -*6 10 6 40 11 0	5 5 3
558	13. Quæ post hanc in secundo spondilo	$XVI 189 \mu^1 XVI 102 \mu^2$	} 18 50	15 0	3
559 560 561 562 563 564 565 566	 14. Borealis de binis quæ in tertio spondilo sunt 15. Australior de binis	XVI 198 ζ^{1} XVI 206 ζ^{2} XVI 302 η XVII 138 θ XVII 210 ι^{1} . XVII 174 κ 35 λ	20 0 20 10 23 10 28 10 ₹ 0 30 M 29 0 27 30	-	4 3 3 3 3 3 4
	INFORMATÆ.	∫γ Telescopii)		NT 1
567 568	1. Quae actieum sequitur et est nebulosa	XVII 229	} <i>₹</i> I IO		Neb.
569	 Præcedens duarum, quæ a septentrione aculei sunt Sequens ipsarum 	45 d. Oph 3 Sagittarii .	M 25 30 *29 30	6 10 -*4 10	5-4 5
	SAGITTARIUS.				
570 571 572 573	 Quæ in ferro sagittæ Quæ in capulo sinistræ manus est Quæ in australi parte Sagittarii est	19δ 20ε 22λ	740 80 90	6 30	3 3 3 3
574	5. Borealior ipsarum et in extremitate arcus.	$\{13 \ \mu^1 \dots \dots \}$	6 40	+ 2 50	4
575 576	6. Quæ in humero sinistro 7. Quæ hanc præcedit et est in sagitta	$27 \varphi \dots$, 15 20 13 0	- 3 10 *3 50	$3 \\ 4^{-3}$
577	8. Quæ in oculo est nebulosa et bina	$\{32 \nu^1, \ldots,\}$	} 15 10	+ 0 45	Neb.
578 579 580 581 582 583	 9. Præcedens de tribus quæ sunt in capite 10. Media ipsarum 11. Sequens de tribus 12. Australior de tribus, quæ in boreali interscapilio sunt. 13. Media ipsarum 14. Borealis ipsarum 	$\begin{array}{c} 37 \ \xi^2 \\ 39 \ 0 \\ 41 \ \pi \\ 43 \ d \\ 44 \ \rho \\ 46 \ v \\ 46 \ v \\ \end{array}$	15 40 17 40 19 10 21 20 22 20 22 50	2 IO I 30	4 4 5 4 4
584	15. Obscura quæ tres istas sequitur	$\{54 \ e^1 \dots \dots \dots \}$	<pre>*25 40</pre>	5 30	6
585 586	17. Australior ipsarum	56 f	29 30 27 40	550 20	5 6
5 ⁸ 7	18. Quæ in humero dextro	$\begin{cases} 47 \ \chi^1 \cdots \\ 49 \ \chi^3 \cdots \end{cases}$	} *22 20	— I 50	5
588	19. Quæ in cubito dextro	$ \begin{cases} 51 & h^1 \\ 52 & h^2 \\ \end{cases} $	} 24 50	2 50	4
589 590 591	 20. De tribus quæ sunt in scapula, quæ prope occiput est. 21. Media ipsarum et in ipsa latitudine scapulæ 22. Reliqua et quasi sub axilla 	$42 \psi \dots \dots$ $40 \tau \dots$	20 0 17 40 16 20	2 30 4 30 6 45	5 4-3 3
592	23. Quæ in anteriori sinistro talo	$\begin{cases} XIX 54 \beta^1 \dots \\ XIX 62 \beta^2 \end{cases}$	} 17 40	23 0	2
593 594	24. Quæ in genu ejusdem pedis 25. Quæ in anteriori dextro talo	XIX 68 α XVIII 17 η	17 0 6 40	18 O	2-3 3
595	26. Quæ in crure sinistro.	$\{XIX 330 \kappa^{1}\}$	27 20	13 30	3
596	27. Quæ in posteriore dextro cubito	$\begin{array}{c} \text{XIX 333 } \kappa^2 \dots \\ \text{XIX 297 } \dots \end{array}$	*26 50	-20 10	3

lo.in aily.	Ptolemy.	Modern name.	Long.	Lat.	Ma
	Zodiacal Constellations-continued.				
	saggitarius-continued.		0 /	0 /	
507	28. Præcedens borealis lateris de quatuor quæ sunt in				
597	radice caudæ	58 ω	<i>*</i> *27 40	- 4 50	5
598	29. Sequens borealis lateris	60 A		4 50	5
599	30. Antecedens australis lateris	59 b	28 50	5 50	5
600	31. Sequens australis lateris	62 c	29 40	- 6 30	5
	CAPRICORNUS.				
601	1. Borealis de tribus quæ sunt in sequenti cornu	$\{ 5 \alpha^1 \ldots \ldots \}$	} で 7 20	+ 7 20	3
					6
602	2. Media ipsarum		7 40 7 20	6 40 5 0	3
603	3. Austrans de tilbus.				
604	4. Quæ in extremitate antecedentis cornu est	$2\xi^2 \dots$	} *6 o	8 0	6
605	5. Australis de tribus quæ sunt in rictu.	120	90	0 45	6
606	6. Præcedens reliquarum duarum	ΙΟ <i>π</i>	8 40	I 45	1
607	7. Sequens ipsarum	11 ρ	8 50 6 10	I 30	6
608	8. Præcedens de tribus quæ sunt sub oculo dextro		h	0 40	
609	9. Borealior duarum quæ sunt in collo.	$114 \tau^2 \dots$	} 11 40	3 50	
610	10. Australior earum	$15 v \dots \dots$		*0 50	
611	11. Quæ sub genu dextro.	16ψ	10 50	- 6 30 8 40	1 '
612	12. Quæ est in genu sinistro atque flexo	$10 \omega \dots \omega$	11 40 16 40	7 40	
613	13. Que in numero sinistro	24 5	20 10	6 50	
614	14. 1 accuents duardin contiguardin qua sunt sub ventre.	$36 b \dots$		6 0	
615 616	16. Sequens de tribus quæ sunt in medio corpore	28 6	18 40	4 15	
617	17. Australior reliquarum duarum antecedentium	$25 \times \dots $	16 40	4 0	
618	18. Borealior ipsarum		· · ·	2 50	
619	19. Antecedens duarum, quæ sunt in scapula.	$23 \theta \dots$	16 40	0 0	
620	20. Sequens ipsarum	32 6	21 0	0 50	
621	21. Antecedens duarum, quæ sunt in spina australi	39 e	23 20	4 45	-
622	22. Sequens ipsarum	43 <i>K</i> · · · · ·	25 0	4 30	
623	23. Antecedens duarum, quæ sunt apud caudam	$40 \gamma \dots$	24 50	2 10	1
624	24. Sequens ipsarum.	49 0	26 20	2 0	
625	25. Antecedens de quatuor, quæ sunt in boreali caudæ parte	12 d	26 50	+ 0 20	
626	26. Australis reliquarum trium	51μ	28 40		4
627	27. Media ipsarum	48 λ	27 40		
628	28. Borealis ipsarum.	$46 c^1 \dots$	28 40	+ 4 20	
	AQUARIUS.				
629	1. Quæ est in capite Aquarii	$25 d \ldots$	× 0 20		
630	2. Fulgentior duarum, quæ sunt in humero dextro	34 a	6 20	II C	
631	3. Quæ sub ipsa obscurior	310	5 10		
632	A. Ouæ in humero sinistro.	$ 22 \beta$	0 26 30		
633	5. Quæ sub ipsa in scapula et quasi sub axilla	23 ξ	. 27 20	6 15	
634	6. Sequens de tribus, quæ sunt in vestimento manus		T.M		
	sinistræ 7. Media ipsarum	$\begin{array}{c c} 13 \ \boldsymbol{\nu} \dots \\ 6 \ \boldsymbol{\mu} \dots \end{array}$. 17 40 . 16 10		<u>,</u>
635	7. Media ipsarum. 8. Antecedens de tribus	2 ε			
636	9. Quæ in cubito dextro	$48 \gamma \dots$			
637	9. Que in cubico dextro 10. Borealis de tribus, que sunt in extremitate manus	4 0 7	9 30	43	'
638	dextræ	52 π	. 11 40	10 49	
600	11. Antecedens duarum reliquarum et borealium.	55 C dup			
639	12. Sequens ipsarum	$62 \eta \dots$. 13 20	$+ \frac{1}{8} \frac{1}{30}$	
640	12. Dequeno ipour ani.		, , , , , , , , , , , , , , , , , , , ,		

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Zodiacal Constellations—continued.				
	AQUARIUS—continued.		0 /	o /	
641	13. Præcedens duarum contiguarum, quæ sunt in dextro		υ,	• •	
~41	vertebro	43 θ	<i>**</i> 6 to	+ 3 0	4
642	14. Sequens ipsarum		7 0	*3 10	5
643	15. Quæ in dextro clune	57 σ	8 40	- o 50	4
644	16. Australis duarum quæ sunt in sinistro clune	33 6	I 40	I 40	4
645	17. Borealior ipsarum.	38 e		$+ \circ i_5$	6
646	18. Australior duarum quæ sunt in tibia dextra	76δ		- 7 30	3
647	19. Borealior ipsarum et est sub poplite	$71 \tau \ldots$	II 20	5 0	4
648	20. Quæ in posteriori sinistri cruris parte	53f · · · ·	4 40	5 40	5
649	21. Australior duarum quæ sunt in tibia sinistra		8 20	IO 0	5
650	22. Borealior ipsarum et est sub genu	$66 g^1 \dots$	7 50	90	5
651	23. Antecedens duarum quæ sunt in ipso aquæ fluxu à	6.3		1	
-	manu	63 <i>k</i> ?	-	+20	4
652	24. Quæ istam ex austro sequitur	$73 \lambda \dots$	14 50		4
653	25. Adhuc quæ istam sequitur et est post flexum	$83 h \dots$ $90 \varphi \dots$	17 40 20 0		4
654	26. Quæ istam adhuc sequitur		20 0	030 140	4
655.	28. Borealior duarum quæ adhuc à meridie istius sunt		19 0	3 30	4
656	20. Doreanor duarum qua aunue a mendre iseus sune	$(03 \psi^2 \dots)$	190		т
657	29. Australior ipsarum	$\begin{cases} 95 & \psi^3 \\ 05 & \psi^3 \\ \end{array}$	} 1950	4 10	4
658	30. Solitaria ad meridiem istarum	94	*17 50	8 15	5
659	31. Antecedens duarum contiguarum post ipsam.	$102 \omega^1 \ldots$	*22 40	ΠΟ	5
660	32. Sequens ipsarum	$105 \omega^2 \dots$	23 IO	10 50	5
			3 21 40	14 0	2
661	33. Borealis de tribus quæ sunt in convolutione sequenti		} 21 40	14 0	5
662	34. Media de tribus	$106 i^1 \dots$	22 IO	I4 45	5
663	35. Sequens ipsarum	$108 i^3 \dots$	23 10	15 40	5
664	36. Borealis de tribus quæ deinceps similiter sunt	$98 b^1 \dots$	17 0	14 10	4
665	37. Media ipsarum	99 $b^2 \cdots$ 101 $b^3 \cdots$	17 30 18 20	15 0	4
666	38. Australior ipsis de tribus 39. Præcedens de tribus, quæ sunt in reliqua convolutione.		18 20 11 50	15 45 *16 15	4
667 668	40. Australior reliquarum duarum		*12 40	15 20	4
669	41. Borealior ipsarum		13 10	13 20	4
670	42. Aquæ ipsius ultima et est in ore Piscis Austrinus		7 0	-20 20	I
0/0	42. Induce about a contract of the second	Aust.			
	INFORMATÆ.				
671	1. Præcedens de tribus, quæ flexum id est curvaturam	<u> </u>			
	aquæ sequuntur	2 Ceti			
672	2. Borealior reliquarum duarum.	6 Ceti	29 40	14 40	4-3
673	3. Australior ipsarum	7 Ceti	29 O	-18 15	4-3
	PISCES.				
674	1. Quæ in antecedentis Piscis ore	4 β	≈ 21 40	+ 9 15	4-3
675	2. Australior duarum quæ sunt in cranio ejus	6γ	24 10	7 30	4
676	3. Borealior ipsarum	$7 b \ldots$	26 O	9 20	4
677	4. Antecedens duarum quæ sunt in dorso	10θ	28 10	9 30	4
678	5. Sequens ipsarum	17ι		7 30	4
679	6. Antecedens duarum quæ sunt in ventre.	8κ	≈ 26 o	4 30	4
680	7. Sequens ipsarum	18 λ		3 30	4
681	8. Quæ est in cauda Piscis ejusdem.	$28 \omega \ldots$	<u> </u>	6 20	4
682	9. Prima post caudam in lino.	$41 d \dots$	II O	5 45	6
683	10. Sequens ipsarum	51 dup	13 0	3 45	6
684	11. Antecedens de tribus splendidis, quæ deinceps sunt	$63 \delta \ldots$	17 10	2 15	4
685	12. Media ipsarum 13. Sequens de tribus	71 ε 86ζ dup.	*20 30 23 0		4
686					

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Ma
	Zodiacal Constellations—continued.				
	PISCES—continued.		。 /	o /	
60-	14. Borealior duarum parvarum, quæ sub ipsis in flexu		č ,	υ,	
687		80 e^2)(*22 20		6
(00	sunt			- 2 0	6
688	15. Australior ipsarum	$89f\ldots$	*23 0	5 0	1
689	16. Præcedens de tribus quæ sunt post flexum	98 μ	26 30	2 20	4
690	17. Media ipsarum	106 v	*28 40	4 40	4
691	18. Sequens de tribus	ΠΙξ	Υ ο 40	7 45	4
692	19. Quæ est in nodo linorum duorum	113 a dup.	2 30	8 30	3
693	20. Antecedens earum quæ sunt à nodo in boreali lino	1100	0 30	I 40	4
694	21. Australis de tribus quæ deinceps post ipsam sunt	$102 \pi \dots$	0 10	+*1 50	5
695	22. Media ipsarum	$99 \eta \cdots$	*0 20	5 20	3
696	23. Borealis de tribus et est in extremitate caudæ	$\begin{cases} 93\\ 04 \end{cases} \rho \dots$	0 30	90	4
697	24. Borealior duarum quæ sunt in ore piscis sequentis	82 g	2 0	21 45	5
698	25. Australior ipsarum	$83 \tau \dots$	1 40	21 40	
	26. Sequens de tribus parvis quæ sunt in capite	$68 h \dots$	X 28 40	20 0	5
699 700	27. Media ipsarum	$67 \ k \dots$	27 40	19 50	1 e
•	28. Antecedens de tribus	65 i dup.		20 20	16
701 702	29. Præcedens de tribus quæ in australi spina, post	oj r cu pr	_, _		
/02	cubitum Andromedæ.	74 √¹ dup	25 40	14 20	4
701	30. Media ipsarum.		26 40	*13 0	
703	31. Sequens ipsarum		27 40	12 0	
704	32. Borealior duarum quæ sunt in ventre		Υ 2 10		
705	32. Boleanor duardin qua sunt in venere	$85 \varphi \dots$	H 29 50	15 20	
706	34. Quæ est in spina sequenti juxta caudam	$84 \chi \dots$		+11 45	
707		° 1 λ · · · ·		1 +3	-
0	INFORMATÆ. 1. Præcedens de duabus borealibus quadrilateræ figuræ				
708	quæ est sub Pisce antecedente	27	Н 10	- 2 40	
	2. Sequens earum.	29			
709	3. Præcedens australis lateris	30	-	-	
710	4. Sequens australis lateris				
711			2	5.50	
	Southern Constellations.				
	CETUS.		~		
712	1. Quæ in extremitate naris	91	Υ 17 40	- 7 45	
713	2. Sequens de tribus quæ sunt in rictu, et est in extrema				
	maxilla	92 a	17 40		
714	3. Media ipsarum et est in ore medio	$86\gamma\ldots$		11 30	
715	4. Præcedens de tribus et est in mento	82δ			
716	5. Quæ est in supercilio et in oculo.	?	1		
717	6. Borealior hac et est quasi in capillis	?			
718	7. Præcedens hanc, et est quasi in juba.	$65 \xi^1 \dots$	7 20	4 10	
, 719	8. Borealis antecedentis lateris quadrilateræ figuræ quæ				
	est in pectore	$72 \rho \dots$	-		1
720	9. Australis antecedentis lateris			1	
721	10. Borealis sequentis lateris	83 e		-	
722	11. Australis sequentis lateris.	$89 \pi \dots$. 70		1
723	12. Media de tribus quæ sunt in corpore	$52 \tau \dots$.) (22 0	25 20	
	13. Australis ipsarum	59 v			
724	14. Borealis de tribus	555			
725	15. Sequens duarum quæ sunt juxta caudam	45 θ · · ·	. 19 40		
726	16. Antecedens ipsarum.	$3I\eta \dots$. 15 0	-	
727	17. Borealis sequentis lateris figuræ quadrilateræ, quæ est	,		J - J +	1
728	17. Doleans sequencis lateris ligura quadriatera, qua est	$19 \varphi^2 \dots$. 11 0	-13 40	
140	in cauda	1007			

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Southern Constellations-continued.				
	CETUS—continued.		o /	o /	
		0 108			
729	18. Australis sequentis lateris			-14 40	5
730	19. Borealis præcedentis lateris	$17 \varphi^1 \dots$	9 20	13 0	5-4
731	20. Australis præcedentis lateris	0. 161	9 O	14 0	5-4
732	21. De duabus quæ sunt in extremis caudæ, quæ in	0	4 40	0.40	2-4
	boreali est	81	4 40	9 40	3-4
733	22. Quæ in extremitate australi caudæ	16 β .	5 40	-20 20	3
	ORION.	_			
734	1. Nebulosa quæ in capite Orionis est	39 X dup		—*13 50	Neb.
735	2. Splendida quæ in humero dextro et est subrufa	58 a	其 2 0	17 O	1-2
736	3. Quæ in humero sinistro	$24 \gamma \dots$	824 O	17 30	2-I
737	4. Quæ sub ista sequitur	32 A	25 0	18 O	4-5
738	5. Quæ est in cubito dextro	61 μ	其 4 20	14 30	4
739	6. Quæ in brachio dextro	$74 \ k \dots$	6 20	11 50	6
740	7. Sequens et bina australis lateris figuræ quadrilateræ	-		-	
	quæ est in extremitate manus dextræ	70 ξ	6 30	10 0	4
741	8. Antecedens australis lateris	67 ν	6 o	945	4
742	9. Sequens borealis lateris	$72 f^2 \dots$	7 20	8 15	4 6
743	10. Præcedens borealis lateris	$69 f^1 \dots$	640	8 15	6
744	11. Præcedens de duabus quæ sunt in collorobo	54 χ^1 · · · · ·	I 40	3 45	5
745	12. Sequens ipsarum	$62 \chi^2 \ldots$	*4 20	4 15	5
746	13. Sequens de quatuor quæ sunt in scapula quasi ad		•		_
/ +-	rectam lineam	47 ω	8 27 50	19 40	4
747	14. Præcedens istam	$38 n^2 \dots$	26 20	20 0	6
748	15. Quæ adhuc hanc præcedit		25 20	*20 20	6
749	16. Reliqua et antecedens de quatuor	$30 \psi^2 \dots$	24 10	20 40	5
750	17. Borealissima earum quæ sunt in pelle manus sinistræ	$15 y^2 \dots$	20 30	8 o	4
751	18. Secunda a borealissima.	$II y^1 \dots$	19 20	8 10	4
752	19. Tertia a borealissima	$9 o^2 \dots$	1Ś O	10 15	4
753	20. Quarta a borealissima	$7 \pi^1 \dots$	16 20	12 50	4
754	21. Quinta a borealissima	$2 \pi^2 \dots$	15 10	14 15	4
755	22. Sexta a borealissima	$I \pi^3 \dots$	14 50	15 50	3
756	23. Septima a borealissima	$3 \pi^4 \dots$	14 50	17 10	3
757	24. Octava a borealissima.	$8 \pi^5 \dots$	15 20	20 20	3
758	25. Reliqua et australissima earum quæ sunt in pelle	10 π^{6}	1Ğ 2O	21 30	3
759	26. Antecedens de tribus quæ sunt in cingulo	34 δ	25 20	24 10	2
760	27. Media ipsarum	46 e	27 20	24 50	2
761	28. Sequens de tribus	50ζ dup	28 10	25 40	2
762	29. Quæ in ensis capulo	28 η	23 50	25 50	3
763	30. Borealis de tribus conjunctis quæ sunt in ensis				
105	extremitate	$\binom{4^2}{45}c\ldots$	26 30	*28 40	4
-6.	31. Media ipsarum	$[4I \theta^1 \dots \dots$	26 40	29 10	3-4
764		43 0	, ·		
765	32. Australis de tribus	44 6,	1 -	29 50	3
766	33. Sequens de duabus quæ sunt sub ensis extremitate	$49 d \dots$	27 40	30 40	4
767	34. Præcedens ipsarum	36 v	*26 10	30 50	4
768	35. Splendida quæ est in extremitate pedis sinistri com-				_
	munis cum aqua	$19 \beta \dots$	19 50	31 30	I
769	36. Borealior ipsarum supra talum in tibia	20 τ	21 0	30 15	4-3
770	37. Exterior sub sinistro calcaneo	29 <i>e</i>	23 20	31 10	4
771	38. Quæ sub dextro et sequenti genu	$53 \kappa \ldots$	Д 010	-33 30	3-2
	ERIDANUS.				
772	1. Quæ post illam quæ est in extremo pede Orionis in				
1 11-	principio fluvii	69 λ		-31 50	4-3
773	2. Borealior hac in flexu juxta suram Orionis			-28 15	4
	-	1		1	

lo. in aily.	Ptolemy.	Modern name.	Long.	Lat.	Ma
	Southern Constellations-continued.				
	ERIDANUScontinued.				
		(-1	0 /	0 /	
774	3. Sequens de duabus quæ post istam deinceps sunt	$65 \psi \dots$	Χ18 Ο	- 29 50	4
775	4. Præcedens ipsarum	$61 \omega \ldots$	I4 40	28 15	4
776	5. Sequens duarum quæ rursus deinceps sunt	$57 \mu \dots$	13 10	25 50	4
777	6. Præcedens ipsarum	$48 \nu \cdots \cdots$	*10 10	25 20	4
778	7. Sequens de tribus quæ post ipsam sunt	42 ξ · · · · ·	<u>6</u> 20	<u>26</u> 0	5
779	8. Media ipsarum.	40 0 ²	*5 30	*27 0	4
780	9. Præcedens de tribus	38 o ¹	2 50	27 50	4
781	10. Sequens de quatuor quæ parum deinceps distant	$34\gamma\cdots$	Υ27 Ο	32 50	3
782	11. Præcedens istam	$26 \pi \dots$	24 20	31 0	4
783	12. Præcedens adhuc istam	23 δ	24 IO	28 50	
784	13. Præcedens de quatuor	18 e	22 O	28 O	
785	14. Sequens de quatuor quæ parum deinceps distantia				
	distant	135	17 10	25 30	1 3
-86	15. Præcedens istam	$\begin{cases} 9 \rho^2 \dots \end{pmatrix}$	} 14 50	23 50	
786	13. 1 laccucio istalin				
787	16. Præcedens adhuc istam	ξη	12 10	*23 50	
788	17. Præcedens de quatuor	· · · · · · · · · · ·	10 30	23 15	
789	18. Quæ in flexu fluvii est, primumque tangit pectus Ceti	I τ^1	5 10	32 10	
790	19. Sequens istam	$2 \tau^2 \ldots$	5 50	34 50	
791	20. Præcedens de tribus quæ deinceps sunt	II τ^3	8 50	38 30	
792	21. Media ipsarum	$16 \tau^{4} \dots$	13 50	38 10	1 .
793	22. Sequens de tribus	19 τ^5	17 30	39 0	
794	23. Borealis antecedentis lateris de quatuor quæ deinceps	-			1
• • •	quasi quadrangulum faciunt	$27 \tau_{-}^{6} \dots$	21 20	41 20	
795	24. Australior antecedentis lateris	$28 \tau^7 \dots$	21 30	42 30	
796	25. Antecedens sequentis lateris	$33 \tau^8 \ldots \ldots$	22 IO	43 15	
797	26. Sequens hujus lateris et reliqua de quatuor	$36\tau^9$	24 40	43 20	
798	27. Boreali sede duabus contiguis quæ ab istis ad ortum				
• •	distant	$50 v_{1}^{6} \dots$		50 20	
799	28. Australior ipsarum	$52 v^7 \ldots$		51 45	
800	29. Sequens duarum quæ deinceps post flexum sunt	$43 v^5 \dots$		53 50	
801	30. Præcedens ipsarum	4Ι υ ⁴	25 50	53 10	1
802	31. Sequens de tribus quæ deinceps in nonnulla distantia				
	sunt	III 202 v^{8} .		53 0	
803	32. Media ipsarum	III 189 υ ² .			
804	33. Præcedens de tribus	$111 \mathrm{I49} v^1$.	11 50	52 0	
··•		[II 238] dur	1		
805	34. Ultima fluvii et est splendida)} o io	-53 30	
J	JT ¹	lθ Eridani	1		
	LEPUS.				
806	1. Borealis antecedentis lateris quadrangulæ figuræ quæ		U****		
	in auribus	3 6			
807	2. Australis antecedentis lateris	4 <i>K</i>	19 50		
808	3. Borealis sequentis lateris	$7 \nu \dots$			1
809	4. Australis sequentis lateris	6λ		1 2 1	
810	5. Quæ in mento est.	$5 \mu \dots$			
811	6. Ouæ in extremitate anterioris sinistri pedis	2 €	1		
812	7. Quæ in medio corpore.	II a		41 30	
813	8 Ouze sub ventre	9β			
814	o. Borealior duarum, quæ sunt in posterioribus pedibus.	15δ			
815	10. Australior ipsarum	$13 \gamma \dots$		45 5	o .
816	TT Ouze in lumbis	Ι4ζ	. дос		
817	12. Quæ in extremitate caudæ	16η	. 240	-38 I	o ,
~ - /					

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag
	Southern Constellations—continued.				
	CANIS MAJOR.		0 /	o /	
818	1. Quæ in ore fulgentissima est, et vocatur Sirius, et est		• •	• ,	
010	subrufa	9a	1 17 40	-39 10	I
819	2. Quæ in auribus	14θ		35 0	4
820	3. Quæ in capite.	14 0 · · · · · · · · · · · · · · · · · ·		36 30	5
821	4. Borealis duarum quæ sunt in collo	$23 \gamma \ldots \ldots$		37 45	4
822	5. Australis ipsarum			40 0	4
823	6. Quæ in pectore			42 40	5
824	7. Borealis duarum quæ sunt in genu dextro.	$8 \nu^3$	16 10	41 15	5
825	8. Australior ipsarum.	$7 \nu^2 \dots \dots$	16 O	42 30	5
826	9. Quæ in extremitate anterioris pedis	2β		41 20	3
827	10. Antecedens duarum quæ sunt in genu sinistro.	$4 \xi^1 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	14 40	46 30	5
828	11. Sequens ipsarum	ξ^{2}	16 io	45 50	5
829	12. Sequens duarum quæ sunt in humero sinistro	$24 o^2 \dots \dots$	24 40	46 10	4
830	13. Præcedens ipsarum	16 o ¹	21 40	47 O	5
831	14. Quæ est in cruris sinistri radice	25δ	26 40	48 45	3-4
832	15. Quæ sub ventre inter crura	2I €	23 40	51 30	3
833	16. Quæ in poplite pedis dextri	13 к	*21 0	55 10	4
834	17. Quæ in extremitate pedis dextri	Ιζ	9 40	53 45	3
835	18. Quæ in cauda	$31 \eta \ldots \ldots$	69 2 10	—50 40	3-4
	INFORMATÆ.				
836	1. Quæ a septentrione capite canis .	22 Monoc	X 19 30	-25 15	4
837	2. Australissima de quatuor quæ sunt sub posterioribus			5 5	•
0,1	pedibus quasi ad rectam lineam	θ Columbæ	*7 O	61 30	4
838	3. Borealior hac		11 20	58 45	4
839	4. Doreanor aunuc ista	l=3Can. Maj	f 13 0	57 0	4
840	5. Reliqua et borealior de quatuor.	λ	14 10	56 O	4
841	6. Præcedens de tribus quæ sunt ad occasum rerum	0.1			
	istarum quatuor quasi ad rectam lineam	μ Col		55 30	4
842	7. Media ipsarum	$\lambda \operatorname{Col}_{-1}$		57 4 ⁰	4
843	8. Sequens de tribus	γ Col	2 20	*59 30	4
844	9. Sequens de duabus splendidis quæ sunt sub istis	ρ Col	829 0 26 0	59 40	2
845	10. Præcedens ipsarum 11. Reliqua et australior supradictis	a Col	20 0 22 IO	57 40	2
846	11. Kenqua et austranor supradicus	e COI+	22 10	-59 30	4
	CANIS MINOR.				
847	1. Quæ in collo	$\beta \beta \ldots \ldots \ldots$	Д 25 О		4
848	2. Fulgens quæ est in posterioribus et vocatur Procyon	ΙΟ α	*29 10	16 10	I
	ARGO NAVIS.				
849	1. Præcedens duarum quæ sunt in extremitate navis	II <i>e</i>	9 10 20	-42 30	5
850	2. Sequens earum.	15 p Pup		43 20	3
851	3. Borealior duarum contiguarum quæ sunt supra			-	
5.	scutulum in puppi.	<u>7</u> § Pup	8 50	45 O	4
852	A. Australior ipsarum	VII 220	8 40	46 O	4
853	5. Præcedens istarum 6. Splendida quæ est in medio scutulo.	VII 173	5 20	45 30	4
854	6. Splendida quæ est in medio scutulo.	VII 175 dup	6 20	_47 I5	3
855	7. Præcedens de tribus quæ sunt sub scutulo	VII 163	5 20	*49 30	4
856	8. Sequens ipsarum	3 Pup	9 20	*49 30	4
857	9. Media de tribus	VII 200 I Pup.	8 30	49 I 5	4
858	to f have in $\sqrt{n}\psi \sigma r \omega$ sive an set cillo est	VII 277		49 5 0	4
859	11. Borealior duarum quæ sunt in carina puppis	{VII 99 {VII 108}group	4 0	53 0	4
860	12. Australior ipsarum	VII 68π Pup.	4 0	-58 40	3
	In ISUCLANCE PORCHIER		. т "	J - T	J J

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Southern Constellations—continued.				
	ARGO NAVIS—continued.				•
861	13. Borealior earum quæ sunt in foris puppis.	VII 172 f Pup.	。 / 91010	-*55 30	5
862	14. Præcedens de tribus quæ deinceps sunt.	$(d^1,\ldots,$	า		
06.		$d^3 \dots$	J	• •	
863	15. Media ipsarum 16. Sequens de tribus	VII 214 C Fup.		57 15	
864 865	17. Splendida quæ istas in foris sequitur	VII 254 0 Lup.	16 30 21 10	57 45 *58 20	4
866	18. Præcedens de duabus obscuris, quæ sunt sub splendida	VII 300 y I up.	18 10	50 20 60 0	
867	19. Sequens ipsarum	Lac. 3128		59 20	1 2
868	20. Præcedens de duabus quæ sunt supra splendidam	-		39 20	5
	dictam	VIII 21 h ¹ Pup.		56 40	5
869	21. Sequens ipsarum	VIII 35 h ² Pup.	24 20	57 40	
870	22. Borealis de tribus quæ sunt in scutulis et est quasi in	_			
	malo	Lac. 3580	R 5 40	51 30	4-3
871	23. Media ipsarum	VIII 168 dVel.		55 40	
872	24. Australis de tribus	VIII 139 e Vel.	•	57 10	
873	25. Borealior de duabus contiguis quæ sunt sub istis	VIII 176 aVel.		60 O	1
⁸ 74	26. Australior ipsarum	VIII 155 b Vel.	90	61 15	4-3
875	27. Australis de duabus, quæ sunt in medio malo	VIII 145 β Pyx	0 10	*51 30	
876	28. Borealior ipsarum	VIII 162 a Pyx		49 0	
877	29. Præcedens de duabus quæ sunt in extremitate mali	VIII 193 7 Pyx		43 20	
878	30. Sequens ipsarum	VIII 220 8 Pyx	29 0		
879	31. Quæ est sub tertia in sequento scutulo	IX $I \lambda Vel$		54 30	
880	32. Quæ in abscissione fororum est	IX 116 ψ Vel	17 30	51 15	-
881	33. Quæ inter gubernacula in carina.	VII 135 or Pup.	01110		
882	34. Sequens istam obscura.	VII 235 P.Pup. γ Vel	19 0		
883	35. Splendida sequens istam sub foris36. Splendida quæ ad meridiemistius est in inferiore carina	χ Car			
884	30. Spiendida que au mendiemistrus estiminentite carma 37. Antecedens de tribus, que istam sequuntur	o Pup		69 40 65 40	
885 886	38. Media ipsarum	δ Vel	21 20		
887	39. Sequens de tribus	f Car	26 0	67 20	
888	40. Præcedens de duabus sequentibus has juxta abscis-	, Cu	20 0	0/ 20	-
000	sionem	к Vel	WIO	62 50	3
889	41. Sequens ipsarum	N. Vel	8 0	*62 15	
890	42. Antecedens de duabus quæ sunt in boreali et			5	
-)-	præcedenti gubernaculo	V 315 = η Col.	X4 0	65 50	4-3
891	43. Sequens ipsarum	VI 205 v Pup	20 10	65 40	
892	44. Præcedens duarum reliquarum in gubernaculo et				
-	vocatur Canopus	a Argus		75 0	I
893	45. Reliqua et sequens ipsarum	τ Pup	29 0	- 7º 45	3-2
	HYDRA.				
804	1. Australis duarum præcedentium de quinque quæ sunt				
894	in capite et est in naribus	5σ	614 0	- 15 0	
895	2. Borealior ipsarum et est supra oculum	4δ			
896	3. Borealis de duabus sequentibus et est quasi in cranio.			II 30	
897	4. Australior ipsarum et est in oris hiatu	7η		*14 45	
898	5. Quæ omnes istas sequitur et est quasi in mento				
899	6. Præcedens duarum quæ sunt in radice colli	18ω		11 50	
900	7. Sequens ipsarum			13 40	
900 901	8. Media de tribus quæ deinceps in flexu colli sunt	$32 \tau^2 \dots$		15 20	
902	9. Sequens de tribus	351		14 50	-
902	10. Australissima ipsarum	$3I \tau^1$	028 20	17 10	
903	11. Borealis et obscura de duabus contiguis quæ sunt ab		1		
	austro	$\{W. 9^h 439 \dots\}$	29 10	- 19 45	6

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Southern Constellations-continued.				
	HYDRA—continued.		• /	*	_
905	12. Splendida de duabus contiguis	30 a		-*23 0	2
906	13. Præcedens de tribus sequentibus post flexum	38 <i>к</i>		26 30	4
907	14. Media ipsarum	$39 v^1 \dots \dots$	8 40	26 O	4
908	15. Sequens de tribus.	$40 v^2 \dots$	11 10	*23 15	4
909	16. Præcedens de tribus quæ deinceps quasi ad	10	-9 0		
	rectam lineam sunt.	$4^2 \mu \dots \dots$	18 0	24 40	3
910	17. Media ipsarum	φ (2 Crat.)	20 0	23 0	4
911	18. Sequens de tribus	ν (4 Crat.)	23 0	22 10	3
912	19. Borealis de duabus quæ sunt post basim Crateræ.	$(11 \beta \text{ Crat.}) \dots$	-	25 45	4-3
913	20. Australior ipsarum	χ^1 (9 Crat.)	2 20	30 10	4
9 1 4	21. Præcedens de tribus post istas quæ sunt quasi	Elec Cont)			
	in triangulo	ξ (19 Crat.)	12 10	31 20	4
915	22. Media et australior ipsarum	o (25 Crat.)		33 10	4
916	23. Sequens de tribus	β (28 Crat.)		31 20	3
917	24. Quæ post corvum est prope caudam	$46 \gamma \dots$		13 40	4-3
918	25. Quæ in extremitate caudæ	49 π · · · · · · · · ·	13 30	- 17 40	4-3
	INFORMATÆ.				
		ao Mon	6 10 00		2
919	1. Quæ a meridie capitis 2. Sequens eas quæ in collo sunt non multum ab	30 WIOH	· 09 12 30	- 23 15	3
920	2. Sequens eas quæ in collo sunt non multum ab	124 Sextan	δ 11 Ο	*IO IO	3
	illis distans	(15 a Sextan)		-
	CRATER.				
	1. Quæ in basi Crateræ est communis cum Hydro	7 a	ର 26 20	- 23 O	4
921	2. Australior de duabus quæ sunt in medio Crateræ.			19 30	4
922	3. Borealior ipsarum		0 0	18 0	4
923	4. Quæ est in australi arcu oris	27 ζ · · · · · · · ·		18 30	4-3
924	5. Quæ est in boreali arcu oris	$14 \epsilon \dots$		13 40	4
925	6. Quæ est in ansa australi	$30 \eta \ldots \ldots$		16 10	4-5
926	7. Quæ est in ansa boreali	$2I\theta$		- 11 50	4
927	7 10	210	- 40	30	T
	CORVUS.				
928	1. Quæ in rostro communis cum Hydro.	Ια		- 21 40	3
929	2. Quæ est in collo juxta caput	2 <i>€</i>		19 40	3
930	3. Quæ in pectore	55	16 40	18 10	5
931	4. Quæ in antecedente dextraque ala	4γ		14 50	3
932	5. Præcedens de duabus quæ sunt in ala sequenti	7δ		12 30	3
933	6. Sequens ipsarum	$8\eta\ldots\ldots$		II 45	4
934	7. Quæ in extremo pede communis cum Hydro	9β	20 30	- 18 10	3
,,,,,	CENTAURUS.				
		2 g	≏ IO 30	- 21 40	5-4
935	1. Australissima de quatuor quæ sunt in capite	2g		- 21 40	5-4
936	2. Borealior ipsarum.	$\begin{array}{c c} 4 & n & \cdots & \cdots \\ \mathbf{I} & i & \cdots & \cdots & \cdots \end{array}$	1	18 50	
937	3. Antecedens de duabus reliquis et mediis	$\frac{1}{3} \frac{1}{k} \dots \dots \dots$		20 30	4-3
938	4. Sequens ipsarum et reliqua de quatuor			20 0	5-4
939	5. Quæ in sinistro antecedentique humero.	$\underset{\tau}{\text{XIII}} 53 \ldots$		25 40	3
940	6. Quæ in humero dextro	$5 \theta \dots$ XIII 99 $d \dots$	15 40	22 30	3
94 1	7. Quæ in sinistra scapula.			27 30	
942	8. Borealior de duabus præcedentibus quæ sunt in	XIV 40 ψ	18 10	22 20	4
	Thyrso.	XIV FF A		22.15	
943	9. Australior ipsarum	$XIV 55 a \dots$	19 10	23 45	4
944	10. De reliquis duabus quæ est in extremo Thyrsi	$\begin{array}{c} \text{XIV 150 } c^1 \\ \text{XIV 147 } b \end{array}$		18 15	-
945	 Reliqua et australior hac Præcedens de tribus quæ sunt in dextro latere 	XIV 141 b		20 50	4
	12. Præcedens de tribus quæ sunt in dextro latere	XIII 197 v		28 20	
946		VIII TOO	T / O		
946 947 948	13. Media ipsarum 14. Sequens de tribus	$ $ XIII 198 μ		29 20 - 28 0	4-3 4-3

No.in Baily.	• Ptolemy.	Modern name.	Longi- tude.	Lat.	Mag
	Southern Constellations—continued.				-
	CENTAURUS—continued.		o /	o /	
040	15. Quæ est in dextro brachio	XIII 288 Y.	≃ 16 20	- 26 30	12
949 950	16. Quæ in dextro cubito	XIV 109 η	22 50	25 15	3
951	17. Quæ in extremitate manus dextræ	XIV 216 K.	27 30	24 0	
951	18. Splendida quæ est in conjunctione humani corporis	XIII 231 5.	18 0	33 30	
952	19. Sequens de duabus obscuris, quæ sunt borealiores hac.		17 40	31 0	
955	20. Præcedens ipsarum		16 50	30 20	
955	21. Quæ est in principio scapulæ	ω cum	12 IO	34 50	
956	22. Antecedens hanc in dorso equi	$f\ldots\ldots\ldots$	90	37 40	
957	23. Sequens de tribus quæ sunt in lumbis	γ	5 50	40 0	
958	24. Media ipsarum	τ	5 0	40 20	4
959	25. Antecedens de tribus	σ	2 40	4I O	5
960	26. Præcedens de duabus contiguis quæ sunt in crure				
-	dextro		2 40	46 10	
961	27. Sequens ipsarum	ρ		46 45	
962	28. Quæ in pectore sub axilla equi	M	18 20	40 45	
963	29. Præcedens de duabus quæ sunt sub ventre	ε	16 20	43 0	
964	30. Sequens ipsarum	Q		43 45	
965	31. Quæ est in poplite pedis dextri	γ Crucis	10 0	51 10	
966	32. Quæ est in talo ejusdem pedis	β Crucis δ Crucis	15 20 6 20	51 40	
967	33. Quæ sub poplite sinistri pedis	a Crucis	11 IO	55 IO 55 20	4
968	34. Quæ in sura ejusdem pedis 35. Quæ in extremo anterioris dextri pedis	a Centauri.		*44 10	I
969	35. Quæ in genu sinistri pedis	β Centauri.		44 10	2
970	37. Quæ est extra sub dextro posteriore pede	μ Crucis		-49 10	
971	37. Que est extra sub dextro postenore pede	μ στα εισ	-+ +-	+,	+
	LUPUS.				
972	1. Quæ in extremo posteriore pede apud manum Centauri.	XIV 211 β	≏ 28 O	-24 50	3
973	2. Quæ in poplite eiusdem pedis	α	25 50	29 10	
974	3. Præcedens de duabus quæ sunt in scapula	XV 31 δ	Μιο	21 15	
975	4. Sequens earum	$XV 98 \gamma \dots$	4 10	21 0	
976	5. Quæ in medio feræ corpore	\mathbf{XV} 35 $\boldsymbol{\epsilon}$	30	25 10	
977	6. Quæ in ventre sub latere	\mathbf{X}	0 10	27 0	1 2
978	7. Quæ in crure	AV 242 π	0 40	29 0 28 30	
979	8. Borealior de duabus quæ sunt juxta radicem cruris	μ	4 40	20 30 30 IO	
980			3 40 5 40	33 10	
981	10. Quæ in extremis lumbis	5	(20 20	33 10	5
.	11. Australis de tribus quæ sunt in extrema cauda	0?	≏{*26 o	31 20	5
982	An mutano de tribas que sant in entrema cadacititi		22 0	J J = J	
983	12. Media de tribus	ι	*21 50	30 30	4
	13. Borealior ipsarum		· .	29 20	4-
984				-	
985	14. Australior de duabus quæ sunt in collo 15. Borealior ipsarum	$XV 217 \eta \dots$ $XV 248 \theta \dots$	11 8 50 9 20	17 C 15 2C	
986	15. Boreallor Ipsarum 16. Præcedens de duabus quæ sunt in rictu	$XV_{174}Fl.5\chi$		13 20	1.
987	16. Præcedens de duabus quæ sunt in fictu.		6 40	11 50	
988	17. Sequens ipsarum 18. Australior de duabus quæ sunt in anteriore pede	XV 10 Fl. 1 i		*11 30	
989	19. Borealior ipsarum	XV 22 Fl. 2f	*27 30		4-
990					
	ARA.		m .=		
991	1. Borealior de duabus quæ sunt in basi	σ	M 27 40		
992	 Australior ipsarum Quæ est in media aræ 	Ø	7*3 0 m*26 to	25 45	5 4
	a ()um act in media are	α	M *26 10	26 30	-4ך∣
993	4. Borealis de tribus quæ sunt in foco	-1	20 40	-30 20	

No.in Baily.	Ptolemy.	Modern name.	Long.	Lat.	Mag.
	Southern Constellations-continued.				
	ARA—continued.		o /	• •	
995	5. Australior reliquarum et contiguarum duarum	~	M25 10	- 34 10	1-2
996	6. Borealior ipsarum	8	25 0	33 20	4-3
997	7. Quæ est in extremitate	ξ	20 50	-*34 0	4
		3	20 30	JT -	+
	CORONA AUSTRALIS.				
998	1. Antecedens extra australem arcum	${ {\rm XVIII}_{73\delta^1} \over {\rm XVIII}_{76\delta^2} }$ Tel.	₹910	- 21 30	4
999	A Our incom acquitur at act in scrops	$\begin{cases} \text{XVIII 166 } \eta^1 \\ \text{XVIII 169 } \eta^2 \\ \end{cases}$	} 11 40	2I O	•5
1000	3. Quæ istam sequitur		13 10	20 20	5
1001	4. Sequens adhuc istam	XVIII 250 5	14 50	20 0	4
1002	5. Quæ post istam est ante Sagittarii genu	XVIII 291 δ	16 10	18 30	5
1003	6. Quæ post istam est borealior quam fulgens quæ	-			5
	est in genu	XVIII 305 β	17 0	17 10	4
1004	7. Borealior hac	XVIII 300 a	*16 50	16 O	4
1005	8. Adhuc borealior ista	XVIII 280 γ	16 30	15 10	4
1006	9. Sequens de duabus præcedentibus istam in	3757777			
	boreali arcu	XVIII 230 ϵ	15 10	15 20	6
1007	10. Præcedens de duabus obscuris	XVIII 222 V	14 40	14 50 *L4 40	6
1008	11. Hanc etiam satis præcedens	XVIII 142 λ	11 50	*14 40	5
1009	12. Adhuc istam præcedens 13. Reliqua et australior quam supradicta		9 40	15 50 - 18 30	5
1010		XVIII $85 \theta \dots$	9 10	10 30	5
	PISCIS AUSTRINUS.				
1011	1. Quæ est in ore, est eadem cum principio aquæ	24 a	≈ 7 O	-*20 20	I
1012	2. Præcedens de tribus quæ sunt in australi capitis				
	circumferentia	$17 \boldsymbol{\beta} \dots \dots$		20 20	4
1013	3. Media ipsarum			22 15	4
1014	4. Sequens de tribus		5 20	22 30	4
1015	5. Quæ est ad branchias			16 15	4-3
1016	6. Quæ est in dorsali australique spina		T 25 IO	19 30	5
1017	7. Sequens de duabus quæ sunt in ventre	<u>ζ</u>	01 1 ***	15 10	5
1018	8. Antecedens ipsarum.	16 λ		I4 40	4
1019	9. Sequens de tribus quæ sunt in boreali spina 10. Media ipsarum			15 O 16 30	4
1020 1021	11. Præcedens de tribus			18 10	4
1021	12. Quæ in extrema cauda	9ι γ Gruis		-2215	4
1022		γ σιώς	20 10		4
	INFORMATÆ.				
1023	I. Præcedens de tribus splendidis antecedentibus Piscem	a Micros	5 80	- 22 20	2-4
1024	2. Media ipsarum.	γ Micros	11 10	22 10	3-4
1024	3. Sequens de tribus	ϵ Micros	II 10 I4 0	21 10	3-4
1026	4. Præcedens hanc et est obscura	XX 445	14 0	20 50	3-4
1027	5. Australior de duabus reliquis quæ sunt in				5
,	septentrione	XXI 12	13 50	17 0	4
1028	6. Borealis ipsarum.	24 A Capric	13 50	- 14 50	4
1					T

CATALOGUE II.

Ptolemy's Catalogue Compared with Modern Observations Reduced to Epoch A. D. 100.

The first column gives the number of the star in Baily's edition; the second, Ptolemy's number; the third, Ptolemy's longitude in degrees and minutes with some alternative readings; the fourth, Ptolemy's latitude with some alternative readings; the fifth column gives Ptolemy's magnitude; the sixth column gives the modern name; the seventh and eighth columns give the longitude and latitude of the identified stars for the epoch A. D. 100, reduced from Piazzi's Catalogue, with the exception of the stars in Danckwortt's Catalogue (*Vierteljahrsschrift der Astronomische Gesellschaft, 1881*); and those in the catalogue of Neugebauer (*Sterntafeln von 4000 vor Chr. bis zur Gegenwart nebst Hilfsmitteln zur berechnung von Sternpositionen zwischen 4000 vor Chr. und 3000 nach Chr., 1912*) which have been reduced from those catalogues respectively. The ninth column gives the magnitudes in the Harvard Revised Photometry, the combined magnitude being given for double stars; and the tenth and eleventh columns give the differences of the computed positions of longitude and latitude.

No.in]	Ptolemy's	Catalogue	e.	Modern	A.D. 100. tude i		Magni- tude in Harvard	C—Pt.		
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	∆Long.	Δ Lat.	
		URSA	MINOR.								
		0 /	0 /		1	o /	o /		,	,	
I	I	60 10	+66 0	3	Ια	62 8	+65 52	2.I	+118	- 8	
2	2	62 30	70 0	4	23 δ	64 42	69 46	4.4	+132	- 14	
3	3	70 10	74 20	4	22 E	72 36	73 39	4 · 4	+146	- 4I	
4	4	89 40	75 40	4	165.	90 32	74 53	4.3	+ 52	- 47	
5	56	93 40	77 40	4	21η 7β	93 39 106 21	77 43	5.0	- I	+ 3	
	7	107 10 116 10	72 50 74 50	2 2	13γ	114 25	72 49 75 5	2.2 3.I	-49 -105	-1 + 15	
7 8	Inf. 1	103 0	+71 10	4	5 A	101 27	75 5 + 71 14	4.4	-93	+ 4	
		URSA MAJOR.									
9	I	85 20	+39 50	4	Ι ο	86 33	+40 7	3.5	+ 73	+ 17	
IÓ	2	85 50	43 0	5	2 A	85 7	44 23	5.4	- 43	+ 83	
II	3	86 20	43 0	5	$4 \pi^2 \dots$	86 17	43 46	4.8	- 3	+ 46	
12	4	86 10	47 10	5	8ρ	87 26	47 43	5.0	+ 76	+ 33	
13	5 6	87 40	47 0	5	13 σ^2	88 45	47 39	4.9	+ 65	+ 39	
14		88 10	50 30	5	$\begin{array}{c} 24 \ d \dots \\ 14 \ \tau \dots \end{array}$	89 47 90 58	51 1	4.6	+ 97 + 28	+ 31 + 33	
15 16	7 8	90 30 92 30	43 50 44 20	4	23 h	90 50 94 20	44 23 44 55	4.7 3.7	+10	+ 33 + 35	
17	9	92 30	42 0	4	29 v.	99 51	42 38	3.9	+ 51	+ 38	
18	10	101 0	37 15?	4-5	30 q.	102 48	38 4	4.5	+108	+ 49	
19	II	100 40	35 0	3	25 θ	IOI IO	35 9	3.3	+ 30	+ 9	
20	12	95 30	29 20	3	9	96 32	29 35	3.I	+ 62	+ 15	
21	13	96 20	28 20	3	12 K	97 27	28 50	3.7	+ 67	+ 30	
22	14	95 40	36 O	4	18 e	96 47	35 53	4.9	+ 67	- 7	
23	15	95 50	33 0	4	15 <i>f</i>	96 41	33 17	4.5	+ 51	+ 17	
24	16	107 40	49 0	2	50 α 48 β	108 36 112 47	49 34	1.9	+ 56	+ 34	
25	17 18	112 IO	44 30	2	40 μ 69 δ	112 47 124 17	44 55 51 29	2.4	+ 37 + 67	+ 25 + 29	
26 27	10	123 IO 123 O	51 0 +46 30	3 2	$64 \gamma \dots$	124 17	+4659	3·4 2.5	+ 44	+ 29 + 29	

No. in	Pt	olemy's (Catalogue.		Modern		uted for . 100.	Magni- tude in Harvard	C—Pt.	
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	ΔLat.
t eng	UR	SA MAJOR	—continu	ed.						
	1	o /	• /	1		o /	o /		1	1
28	°.₂. 20	112 40	+29 20	3	33 λ	112 56	+29 51	3.5	+ 16	+ 31
29	21	114 10	28 15	3	34 <i>µ</i> ······	114 42	28 52	3.2	+ 32	+ 37
30	22	121 40	35 15	4-3	$52 \psi \dots$	122 15	35 28	3.I	+ 35	+ 13
31	23	129 50	25 50	3	$54 \nu \cdots \cdots$	130 7	26 3	3.7	+ 17	+ 13
.32	24.	130 20	25:0	3	$53 \xi \dots$	130 55	25 3	4.6	+- 35	+ 3
-33	25	132 10	53 30	2	$77 \epsilon \dots $	132 5	54 11	1.7	- 5	+ 41
34	26	138 0	55 40	2	795	138 47	56 17	2.4	+ 47	+37
35	27 Inf. 1	149 50 147 50	·54 0		85 η 12 Can.Ven	150 13 148 6	54 25 40 9	1.9 3.0	+ 23 + 16	+ 25 + 24
.36 37	2	147 50 140 IO	39 45 41 20	35	8 Can.Ven.	140 0	40 9 40 33	3.0 4.3	+ 86	- 47
38	3	105 0	17 15	4	40 Lyncis	105 30	17 49	3.3	+ 30	+ 34
39	4	103 20	19 10	4	38 Lyncis	104 4	19 59	3.8	+ 44	+ 49
40	5	106 10	20 0	àμ	10 Leo. min.	107 19	20 33	4.6	+ 69	+33
4I	6	105 10	22{45 50	}àμ	IX 115	106 17	23 38	5.0	+ 67	+ 53
42	7.	101 10	{ 23 0 20 20	 àμ	36 Lyncis VIII 245	100 48 101 6	25 39 20 42	5.2 4.7	-22 - 4	+159 + 22
43	8	90 0	+22 15	àµ	31 Lyncis	91 4	+2257	4.7	+ 64	+ 42
	1	DR	ACO.							
44	I	206 40	+76 30	4	21 µ	208 O	+76 27	5.8	+ 80	- 3
45	2	221 50	78 30	4-3	${24 \\ 25}^{\nu} \cdots \cdots$	223 9	78 21	4.2	+ 79	— 9 [.]
46	3	223 10	75 40	3	23β	225 16	75 31	3.0	+126	- 9
47	4	237 20	80 20	4	32 8	237 47	80 30	3.9	+ 27	+ 10
48	56	239 40	75 30	3	$33 \gamma \cdots \cdots$	241 32	75 12	2.4	+112	- 18
49	1	264 40	82 20	4	396	266 34	82 0	4.8	+114	- 20
50	7	272 20	78 15	4	46 c	274 7	78 6	5.1	+107	- 9
51	-8	268 50	80 20	4	45 <i>d</i>	269 53 289 26	80 I	4.9	+ 63	- 19
52	9	289 30	81 10 81 40	4	47 0	-	81 O 81 48	4.8 4.6	- 4	-10 + 8
53	10 11	338 O 350 30	81 40 83 0	4	$ 58 \pi \dots \dots$ $ 57 \delta \dots \dots$	338 44 352 26	82 51	4.0 3.2	+ 44 + 116	$ + 8 \\ - 9$
54	I2	7 40	78 50	4	63ϵ	7 22	79 23	4.0	- 18	+ 33
55 56	13	352 50	77 50	4	67 ρ	355 12	78 5	4.7	+142	+ 15
57	14	10 40	80 30	5	61 σ	¹¹ 36	80 51	4.8	+ 56	+ 21
58	15	21 40	81 40	5	52 v	25 18	83 3	4.9	+218	+ 83
59	ıб	26 10	80 15	5	60 τ	28 59	80 27	4.6	+169	+ 12 - 42 - 17
: 60	. 17	73 20	84 30	4	$3I\psi$	76 27	83 48	4.9	+187	- 42
61	18	50 20	83 30	4	$ 44 \times \cdots \cdots$	52 46	83 13	3.7	+146	
62	19	41 50	84 50	4	$43 \varphi \dots$	45 33	84 38	4.2	+223	- 12
63 64	20	118 40	87 30		$27 f \dots$	116 58	86 47	5.2	- 102	- 43
64	21	111 40	86 50	6	28 ω	104 45	86 49	4.9	-415	- I + 24
- 65	22	159 0	81 15	5	$18 g \dots$	156 3	81 39	5.0	- 177	+ 24
66	23	159 20 158 20	83 0 84 50	5	$19 h. \dots 22 \zeta. \dots $	156 2	83 12 84 47	4.8	-198 -251	+ 12
67 68	24 25	150 20	78 0	3	$I_4 \eta \dots$	154 9 167 1	⁰⁴ 47 78 30	3.2 2.9	+421	$ \begin{array}{r} - 3 \\ + 30 \\ - 9 \\ + 67 \\ + 36 \end{array} $
69	26	163 0	74 40	4-3	13 θ	170 12	74 31	2.9 4.1	+432	- 0
70	27	162 40	74 40	3	12	157 48	74 51	3.5	-292	-9 + 67
71	28	127 20	64 40	4	10 <i>i</i>	127 58	65 16	4.8	+38	+ 36
. 72	29	131 10	65 30	3	ΙΙ α	130 32	66 17	3.6	- 38	+ 47
73	30	109 10	61 15	3	5 κ	109 31	61 37	3.9	+ 21	+ 47 + 22 + 49
74	31	103 10	+56 15	3	Ιλ	103 39	+57 4	4.I	+ 29	+ 49

No.in	H	Ptolemy's	Catalogue	• .	Modern		uted for 9. 100.	Magni- tude in Harvard	C–	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised	ΔLong.	ΔLat.
		CEPH	IEUS.							r L
75 76 77 78 79 80 81 82 83 84 85 86 87	I 2 3 4 5 6 7 8 9 10 11 Inf. 1 2	\circ , 35 0 33 0 7 20 346 40 339 20 340 0 358 30 7 30 346 20 347 20 349 0 343 40 351 20	$\begin{array}{c} \circ \\ +75 \\ 64 \\ 15 \\ 71 \\ 10 \\ 69 \\ 0 \\ 72 \\ 0 \\ 74 \\ 0 \\ 65 \\ 30 \\ 62 \\ 30 \\ 60 \\ 15 \\ 61 \\ 20 \\ 64 \\ 0 \\ +59 \\ 30 \end{array}$	$ \begin{array}{c} 4 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4^{-3} \\ 5 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$ \begin{array}{c} \mathbf{I} \ \kappa\\ 35 \ \gamma \\\ 8 \ \beta.\\ 5 \ a.\\ 5 \ a.\\ 5 \ a.\\ 3 \ \eta.\\ 2 \ \theta.\\ 17 \ \xi.\\ 32 \ \iota.\\ 32 \ \epsilon.\\ 23 \ \epsilon.\\ 21 \ \xi.\\ 21 \ \xi.\\ 27 \ \delta.\\ 3. \ \delta.\\ 5. \ \delta.\\ \mathbf$	37 5 33 56 9 47 346 50 337 52 339 23 358 11 7 26 346 43 348 2 350 7 343 50 351 37	$ \begin{array}{c} \circ \\ +75 \\ 64 \\ 17 \\ 71 \\ 0 \\ 68 \\ 54 \\ 71 \\ 33 \\ 73 \\ 56 \\ 65 \\ 45 \\ 62 \\ 28 \\ 60 \\ 3 \\ 61 \\ 5 \\ 61 \\ 49 \\ 64 \\ 9 \\ +59 \\ 28 \end{array} $	$ \begin{array}{r} 4 \cdot 4 \\ 3 \cdot 4 \\ 3 \cdot 3 \\ 2 \cdot 6 \\ 3 \cdot 6 \\ 4 \cdot 3 \\ 4 \cdot 4 \\ 3 \cdot 7 \\ 4 \cdot 2 \\ 3 \cdot 6 \\ 5 \cdot 2 \\ 4 - 5 \mathbf{v} \\ 3 \cdot 7 - 4 \cdot 6 \mathbf{v} \end{array} $	$ \begin{array}{c} & & \\ & +125 \\ & +56 \\ & +147 \\ & +10 \\ & -88 \\ & -37 \\ & -19 \\ & -4 \\ & +23 \\ & +42 \\ & +67 \\ & +10 \\ & +17 \end{array} $	$ \begin{array}{c} & , \\ - & 25 \\ - & 10 \\ - & 27 \\ - & 4 \\ - & 15 \\ - & 12 \\ - & 12 \\ - & 10 \\ + & 9 \\ - & 29 \\ + & 2 \\ \end{array} $
		BO	DTES.		ļ				:	
88 89 90 91 92 93 94 95 96	1 2 3 4 5 6 7 8 9	152 20 154 10 155 40 159 40 169 40 176 40 185 40 185 40 185 0	$\begin{array}{r} +58 & 40 \\ 58 & 20 \\ 60 & 10 \\ 54 & 40 \\ 49 & 0 \\ 53 & 50 \\ 48 & 40 \\ 53 & 15 \\ 57 & 30 \end{array}$	$\begin{vmatrix} 5 \\ 5 \\ 5 \\ 3 \\ 4^{-3} \\ 4^{-3} \\ 4 \\ 4 \end{vmatrix}$	$ \begin{array}{c} $	154 27 155 37 160 24 171 4 177 30 186 58	$\begin{array}{c} +58 & 51 \\ 58 & 52 \\ 60 & 24 \\ 54 & 40 \\ 49 & 35 \\ 54 & 15 \\ 49 & 7 \\ 53 & 29 \\ 57 & 17 \end{array}$	4.6 4.8 4.1 4.3 3.0 3.6 3.5 4.5 4.3	$ \begin{array}{r} + 37 \\ + 17 \\ + 3 \\ + 44 \\ + 84 \\ + 50 \\ + 78 \\ + 46 \\ + 53 \\ \end{array} $	+ 11 + 32 + 14 - 35 + 25 + 27 + 14 - 13
97	10	187 40	46{30 10	} 4-3	2 η Coronæ.	190 20	47 I	5.6	+160	+ 31
98 99	11 12	188 30 188 ³⁰ 188 ³⁰	$ \begin{array}{c} 45 & 30 \\ 41 \\ 40 \\ 40 \end{array} $	5 } 5	1 o Coronæ . 45 c		46 7 40 39	5.6 5.0	+ 93 + 23 + 10	+ 37 - 61 + 50
100 101 102 103 104 105 106 107 108 109 110	13 14 15 16 17 18 19 20 21 22 Inf. 1	186 40 187 0 187 40 180 0 175 40 175 0 175 0 185 20 171 20 170 30 171 20 177 0	$\begin{array}{c} 41 & 40 \\ 42 & 30 \\ 40 & 20 \\ 40 & 15 \\ 41 & 40 \\ 42 & 10 \\ 28 & 0 \\ 28 & 0 \\ 26 & 30 \\ 25 & 0 \\ +31 & 30 \end{array}$	5 5 3 4 4-3 3 3 4 4 1	$ \begin{array}{c} 43 \ \psi \\ 46 \ b \\ 41 \ \omega \\ 36 \ \epsilon \\ 28 \ \sigma \\ 25 \ \rho \\ 30 \ \varsigma \\ 8 \ \eta \\ 4 \ \tau \\ 5 \ \upsilon \\ 16 \ a \\ \end{array} $	188 19 187 10 181 31 177 9 176 15 186 30 172 43 171 41 172 40	$\begin{array}{c} 42 & 30 \\ 42 & 1 \\ 40 & 21 \\ 40 & 48 \\ 42 & 6 \\ 42 & 29 \\ 28 & 1 \\ 28 & 22 \\ 26 & 40 \\ 25 & 17 \\ +32 & 3 \end{array}$	$ \begin{array}{c} 4 \cdot 4 \\ 2 \cdot 8 \\ 4 \cdot 5 \\ 4 \cdot 3 \end{array} $	$ \begin{array}{r} + 19 \\ + 79 \\ - 30 \\ + 91 \\ + 89 \\ + 75 \\ + 70 \\ + 83 \\ + 71 \\ + 80 \\ + 48 \end{array} $	$ \begin{array}{c c} + 50 \\ - 29 \\ + 1 \\ + 33 \\ + 26 \\ + 19 \\ + 1 \\ + 22 \\ + 10 \\ + 17 \\ + 33 \end{array} $
	1		BOREALIS.	1					the cr	4 2
111 112 113 114 115 116 117 118	1 2 3 4 5 6 7 8	194 40 191 40 191 50 193 40 197 10 199 10 201 20 201 40	$ \begin{array}{r} +44 & 30 \\ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 a 3 β 4 θ 9 π 8 γ 10 δ 13 ε 14 ι	. 192 37 . 192 50 . 195 26 . 198 16 . 200 25 . 202 31	48 45 50 38 44 40 44 57 46 16	$ \begin{array}{c} 3.7 \\ 4.2 \\ 5.6 \\ 3.9 \\ 4.7 \\ 4.2 \\ 4.2 \end{array} $	$ \begin{array}{r} + 55 \\ + 57 \\ + 60 \\ + 106 \\ + 66 \\ + 75 \\ + 71 \\ + 43 \end{array} $	+ 1 + 45 + 45 + 8 - 5 + 7 + 6

No.in	Р	'tolemy's	Catalogue	•	Modern		uted for 0. 100.	Magni- tude in Harvard	C-	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	ΔLat.
		HERC	ULES.							
		0 /	• /			o /	o /		,	,
119	I	227 40	+37 30	3	64 a	229 41	+37 31	3.5	+121	+ I
120	2	213 40	43 O	3	$27 \beta \dots$	214 37	42 57	2.8	+ 57	- 3
12I 122	3 4	211 40 208 0	40 IO 37 IO	3	20 γ 7 κ	212 40 209 11	40 12 37 26	3.8 5.3	+ 60 + 71	$^{+ 2}_{+ 16}$
122		226 40	48 0	3	65 δ	228 15	48 I	3.2	+ 95	+ 1
124	5 6	232 0	49 30	4-3	76 λ	233 24	49 32	4.5	+ 84	+ 2
125	7	237 40	52 0	4-3	86 µ	239 2	51 49	3.5	+ 82	— II
126	8	245 30	52 50	4-3	103 0	246 16	52 29	3.8	+ 46	- 21
127 128	9 10	241 40 241 30	54 O 53 O	4-3	$94 \nu \dots $	243 I	53 53	4.5 3.8	+ 81 + 75	- 7
120	10	213 50	53 10	4-3	92 ξ 40 ζ	242 45 215 22	52 57 53 9	3.0	+ 92	— 3 — 1
130	12	220 10	53 30	4-3	58 ε	221 46	53 28	3.9	+ 96	- 2
131	13	220 O	56 10	5	59 <i>d</i>	221 25	56 8	5.3	+ 85	- 2
132	14	221 10	58 30	5	61 <i>c</i>	223 2	58 42	5.4	+112	+ 12
133	15	224 0	59 50	4	67π	225 30	59 47	3.4	+ 90 + 63	-3 + 1
134	16 17	225 20	60 20 61 15	4 4-3	69 <i>ε</i> 75 <i>ρ</i>	226 23 228 55	60 21 60 13	4.8 4.5	+155	-62
135 136	18	240 50	61 0	4 3	9 Ι θ	242 J	60 57	4.0	+ 71	- 3
137	19	232 10	69 20	4	85		69 31	3.8	+ 57	+ 11
138	20	225 20	70 15	6	74	224 2	69 16	5.8	- 78	- 59
139	21	226 50	71 15	6	77 × · · · ·	225 59	71 28	5.8	- 51	+ 13
140	22	229 40	60 15	6	82 y	5 5	72 I 60 32	$5.5 \\ 3.6$	+ 76 + 81	+ 1 + 17
14I 142	23 24	210 40	60 I5 63 0	4-3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	212 I 206 30	63 21	4.2	+ 70	+ 21
142	25	195 40	65 30	4-3	22 τ		66 0	3.9	+113	+ 30
144	26	193 40	63 40	4	ΙΙ φ		63 56	4.3	+ 77	+ 16
145	27	190 10	64 15	4	6υ	191 24	64 30	4.6	+ 74	+ 15
146	28	191 10	60 O	4	$\int \frac{1}{5^2} \frac{\chi}{\nu^1} R_{\text{potting}}$	191 21	60 0	4.6	+ 11	0
147	29 T C	185 0	57 30	4	$\int 53 v^2 \int 00013$	5 55	57 17	4.3	+ 53	- 13
148	Inf. 1	212 40	+38 10	1 5	24 ω	215 4	+35 23	4-5	+144	- 167
			YRA.							
149	I	257 20	+62 0	I	$3 \alpha \dots \beta$ $4 \epsilon^1 \dots \beta$	258 45	+61 51	0.14	+ 85	- 9
150	2	260 20	62 40	4-3	$\left\{ 5 \epsilon^2 \dots \right\}$	262 20	62 33	4.7	+120	- 7
151	3	260 20	61 0	4-3	$\begin{cases} \tilde{6}\zeta^1 \dots \\ 7\zeta^2 \dots \end{cases}$	261 47	60 35	4 · I	+ 87	- 25
152	4	263 40	60 0	4	12 δ^2	. 265 23	59 33	4.5	+103	- 27
153	56	272 0	61 20 60 20	4	$20 \eta \dots$			4.5	+110	- 26
154	0 7	272 40 261 0	56 10	4-5	¹ 21 θ 10 β			4·5 3·4-4·1	+ 98 + 94	$ \begin{array}{c c} - & 33 \\ + & 4 \\ + & 26 \\ - & 5 \end{array} $
155 156	8	260 50	55 0	4-5	$9 \nu^2 \cdots$			5.1	+ 76	+ 4 + 26
157	9	264 10	55 20	3	$14 \gamma \dots$. 265 37	55 15	3.3	+ 87	- 5
158	IO	264 0		4-5	15λ	. 265 50	+54 41	5.1	+110	- 4
		CY	GNUS.							
159	I	274 30	+49 20	3	6β		+49 11	3.2	+ 28	
160	2	279 0	50 30	5	$12 \varphi \dots$			4.8	- 17	
161 162	3	286 20	54 30	4-3	$\begin{array}{c c} 21 & \eta \dots \\ 37 & \gamma \dots \end{array}$			4.0 2.3	+ 24	
162	4 5	309 10	57 20 +60 0	3	50 α			1.3	+ 8	

No. in	, P	tolemy's	Catalogue	•	Modern		uted for). 100.	Magni- tude in Harvard	C	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	ΔLat.
	(CYGNUS	continued.							
164 165 166 167 168 169 170 171 172 173 174	6 7 8 9 10 11 12 13 14 15 16	 * * 289 40 292 30 291 10 286 40 300 50 306 40 310 0 314 30 301 10 302 40 312 10 	+64 40 69 40 71 30 74 0 49 30 52 10 44 0 55 10 57 0 64 0 64 30 63 45	$ \begin{array}{c} 3 \\ 4 \\ 4^{-3} \\ 3 \\ 4^{-3} \\ 3 \\ 4^{-3} \\ 4^{-3} \\ 4^{-3} \\ 4 \\ 4 \\ 5 \\ \end{array} $	$ \begin{array}{c} 18 \ \delta \\ 13 \ \theta \\ 10 \ \iota \\ 10 \$	289 I 301 II 303 37 306 49 309 57 314 44 302 3 303 49 310 3	$^{\circ}$ + 64 36 69 39 71 34 73 57 49 29 51 45 43 49 55 1 56 40 63 48 64 25 64 10	$ \begin{array}{c} 3.0 \\ 4.6 \\ 3.9 \\ 4.0 \\ 2.6 \\ 4.5 \\ 3.4 \\ 4.0 \\ 3.9 \\ 3.6 \\ 4.2 \\ \end{array} $	+ 29 + 2 + 48 + 141 + 21 - 13 + 9 - 3 + 14 + 53 + 69 - 103	$ \begin{array}{r} - 4 \\ - 1 \\ + 4 \\ - 3 \\ - 1 \\ - 25 \\ - 11 \\ - 9 \\ - 20 \\ - 12 \\ - 5 \\ + 29 \\ \end{array} $
175					$\begin{array}{c} 46 \ \omega^2 \dots \dots \\ 65 \ \tau \dots \dots \end{array}$	310 51 312 10	64 17 50 30	3.8	+ 90	+ 50
176 177	Inf. 1 2	310 40 313 50	49 40 +51 40	4-3 4-3	<pre>\66 v</pre> 67 σ	311 5 314 13	47 35 +51 35	4 4 4 4·3	+ 25 + 23	-125 - 5
-77			OPEIA.	10						
178 179 180 181 182 183 184 185 186 187 188 189 190	I 2 3 4 5 6 7 8 9 10 11 12 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +45 & 20 \\ 46 & 45 \\ 47 & 50 \\ 49 & 0 \\ 45 & 30 \\ 47 & 45 \\ 47 & 20 \\ 44 & 20 \\ 44 & 20 \\ 45 & 0 \\ 50 & 0 \\ 52 & 40 \\ 51 & 40 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 ζ 18 α 24 η 27 γ 37 δ 45 ε (35 Hev.) ι 33 θ 34 φ 8 σ. 15 κ 11 β. 7 ρ	11 34 13 34 17 42 21 32 28 30 35 58 15 31 19 16 3 58 16 25 8 41	$\begin{array}{r} + 44 & 35 \\ 46 & 29 \\ 47 & 23 \\ 48 & 39 \\ 46 & 21 \\ 47 & 21 \\ 48 & 44 \\ 42 & 59 \\ 44 & 56 \\ 49 & 18 \\ 52 & 7 \\ 51 & 19 \\ + 51 & 2 \end{array}$	3.7 2.5 3.6 2.2 2.8 $3.44.64.55.24.94.22.44.8$	$ \begin{array}{r} + & 61 \\ + & 44 \\ + & 34 \\ + & 62 \\ + & 52 \\ + & 90 \\ + & 258 \\ + & 51 \\ + & 96 \\ + & 85 \\ + & 51 \\ + & 73 \\ \end{array} $	$ \begin{array}{r} - 45 \\ - 16 \\ - 27 \\ - 21 \\ + 51 \\ - 24 \\ + 84 \\ - 91 \\ - 42 \\ - 33 \\ - 21 \\ - 38 \\ \end{array} $
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	26 40 31 10 32 40 27 30 30 40 31 30 34 50 37 0 30 30 37 40 29 40 29 10 27 40 26 50 44 50 43 0	$\begin{array}{c} \text{SEUS.} \\ +40 & 30 \\ 37 & 30 \\ 34 & 30 \\ 32 & 20 \\ 34 & 30 \\ 31 & 10 \\ 30 & 0 \\ 27 & 50 \\ 27 & 40 \\ 27 & 20 \\ 27 & 0 \\ 27 & 0 \\ 21 & 0 \\ 22 & 15 \\ 28 & 15 \\ +28 & 10 \\ \end{array}$	Neb. 4 3-4 4 4 4 4 2 4 4 3 4 2 4 4 4 4 4 4	7 χ (cum.) 15 η 23 γ 13 θ 18 τ 18 (Hev.) ι 33 a 35 σ 37 ψ 39 δ 26 β 28 ω 25 ρ 22 π (72) b (21 Hev.) 47 λ	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26 0 22 13 20 46 20 27 21 32 28 13	4.2 4.1 4.2 1.9 4.5 4.3 3.1 4.0 2.1 V 4.8 3.4 V 4.6 4.6	+ 78 + 73 + 61 + 38 + 55 + 41 + 53 + 55 + 46 + 7 + 50 + 49 + 42 + 36 + 23	$ \begin{array}{c c} - & 15 \\ - & 60 \\ - & 47 \\ - & 14 \\ - & 33 \\ - & 43 \\ - & 2 \end{array} $

4

Catalogue II—	-continued.
---------------	-------------

No.in	Pt	olemy's	Catalogue	•	Modern	Compu A. D	1ted for . 100.	Magni- tude in Harvard	C—Pt.	
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	ΔLat.
	PE	RSEUS	continued			0 /	0 /		,	,
208	18	42 20	+25 0	1	48 c	43 6	+26 1	4.0	+ 46	+ 61
209	19	44 0	26 15	4	51μ	44 25	26 28	4.3	+ 25	+ 13
210	20	44 10	24 30	5	53 d	45 4	24 23	4.9	+ 64	- 7
211	21	46 20	18 45	5-4	58 e	47 11	18 46	4.5	+ 51	+ i
212	22	36 50	21 50	4-3	4 Ι ν	37 27	21 56	3.9	+37	+ 6
213	23	38 40	19 15	3	45 e	39 17	18 54	3.0	+ 37	- 21
214	24	38 20	I4 45	4	46 ξ	38 35	I4 43	4.0	+ 15	- 2
215	25	34 10	12 0	3-4	38 0	34 44	11 58	3.9	+ 34	- 2
216 217	26 Inf. 1	36 20	11 O 18 O	3-2	44 5	36 43	11 7 18 42	2.9	+ 23 + 55	+ 7 + 42
218	2	41 50		5	52 <i>f</i>	42 45	31 30	4.9 5.1	+ 55 + 56	+ 42 + 30
219	3	45 0 24 40		5 aµ	14 (116v.) Camer	45 56	+20 50	4.3	+ 40	+ 10
	3		16A.	~~ <i>µ</i>	10 p	23 20	1 20 30	4.3	1 40	1 10
220	I	62 30	+30 O	4	33 δ	63 28	+30 41	3.9	+ 58	+ 41
221	2	62 20	31 50	4	30 ξ	62 43	32 1	4.9	+ 23	+ II
222	3	55 0	22 30	I I	I3 a	55 25	22 50	0.2	+ 25	+ 20
223	4	62 50	20 0	2	34β	63 31	21 15	2.I	+ 41	+ 75
224	56	61 10	15 15	4	32 v	61 52	15 28	4.2	+ 42	+ 13
225		62 50	13 20	4-3	$37 \theta \dots \dots \dots$	63 29	13 34	2.7	+ 39	+ 14
226	7	52 0	20 40	4-3	7 e	52 26	20 42	3.2 V	+ 26	+ 2
227	8	52 10	18 0	4-3	ΙΟ η	53 I	18 4	3.3	+ 51	+ 4
228	9	52 0	18 0	4	8 5	52 13	17 59	3.9	+ 13 + 23	-1 + 4
229	10	49 50	10 IO 5 0	3-4	$\begin{array}{c} 3 \ \iota \\ 23 \ \gamma \ (= 112 \ \beta \ Taur.) \end{array}$	50 13 56 9	10 I4 5 I3	2.9 1.8	+ 23 + 29	
230 231	11 12	55 40 56 0		3-2	25χ	57 43	8 37	4.9	+103	+ 13 + 7
232	12	56 20	-	5	24φ .	56 47	10 59	5.3	+ 27	- 71
233	14	53 0	1	6	I4	54 5	+ 9 22	5.1	+ 65	- 58
		OPHIU	JCHUS.							
234		234 50 238 0		3-2	55 α 60 β	235 55 238 52	+36 12 28 16	2.I 2.9	+ 65 + 52	+ 12 + 61
235 236	3	239 0	26{30	}	$62 \gamma \dots$		26 25	3.7	+ 70	- 5
237	4	223 20	33 0	4	25	•	32 45	4.3	+ 50	- 15
238	1 2	224 40		4	27 κ	225 34	32 6	3.4	+ 54	+ 16
239	6	218 20		4	το λ	219 7	23 47	3.8	+ 47	+ 2 + 33
240	7	215 0	17 0	3	Ιδ	215 51	17 33	3.0	+ 51	
241	8	216 0		3	2 ε	217 I	16 39	3.3	+ 61	+ 9
242	9	236 40	15 0	4	57 μ.	237 53	15 28	4.6	+ 73	+ 28
243	IO	242 20	13 40	4-5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	243 20	13 59	3.5	+ 60 + 60	+ 19 + 72
244		243 20 231 IO	14 20	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	244 20 231 32	15 32	5.3 2.6	+ 22	+ 72 - 6
245 246	I2 I3	231 10	+ 2 15	4-3	40 ξ		+ 2 23	4.5	+ 22 + 38	+ 8
240	13	233 40	1 -	4 4	36 A		- 2 35	5.3	+ 49	- 20
247	15	234 20		4-3	42θ		- I 35	3.4	+ 38	
249	16	235 0	- 0 20	4	44 <i>b</i>		- o 38	4.3	+ 53	- 5 - 18
250	17	235 50	- 0 15	5	51 c	237 3	- 0 26	4.9	+ 73	- II
251	18	237 10	+ 1 0	5	{52 2 Sagitarii	237 50	+ 1 34 1 41	6.6 6.0	+ 40 + 89	+ 34 + 41
252	19	222 10	11 50	3	13 5	222 48	II 37	2.7	+ 38	- 13
253	20	221 40	5 20	5-4	8φ	222 14		4.4	+ 34	+ 6
254	21	220 40		5	7 x · · · · · · · · · · · · · · · · · · ·	221 33	+ 3 27	4.8	+ 53	+ 17
	<u> </u>	<u> </u>	1	·		1	1	1	1	i

No.in	F	Ptolemy's	Catalogue	•	Modern	Compu A. D.		Magni- tude in Harvard	C	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	ΔLat.
	OF	HIUCHUS-	continue ° '	ed.		0 /	0 /		,	,
255	22	219 50	+ 1 40	5-4	4ψ	_	+ 1 47	4.6	+ 77	+ 7
256	23	222 20	+ 040	5	9ω	1 .	+ 0 40	4.6	+ 52	Ó
257	24	220 40	- 0 45	4	5 ρ		- I 30	5.2	+ 81	- 45
258	Inf. 1	2 42 O	+28 10	4	$66 n \dots \dots$	243 38	+28 4 26 38	4.8	+ 98 + 65	$\begin{vmatrix} - & 6 \\ + & 18 \end{vmatrix}$
259	2	242 40	26 20 25 0	4	67	243 45 244 3	20 30	3.9 4.4	+ 63	
260 261	3	243 O 243 40	25 O 27 O	4	70		26 51	4.I	+ 76	- 9
261	4 5	243 40	+33 0	4	72	245 44	+33 15	3.7	+ 64	+ 15
	5		PENS.	•						
263	I	198 50	+38 o	4	2I t		+38 17	4.5	+107	+ 17
264	2	201 40	40 0	4	<u>38</u> ρ		40 11	4.9	+ 77	+ 11
265	3	204 20	36 0	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		36 I 34 32	3.9 3.7	+ 89	+ 1 + 17
266 267	4	202 O 20I 20	34 15	3	28 β 35 κ		37 18	4.3	+113	+ 3
267 268	56	201 20 203 10	37 15 42 30	4	44π	-	42 39	4.8	+142	+ 9
269	7	201 40	29 15	3	13 δ		29 5	4.2	+ 11	- 10
270	8	204 50	26 30	4	27 λ		26 46	4.4	+ 71	+ 16
27 I	9	204 20	25 20	3	24 a		25 4I 24 8	2.7	+ 70 + 85	+ 21 + 8
272	10	206 20 208 50	24 0 16 30	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	207 45	16 28	3.7 3.6	+ 41	- 2
273 274	II 12	218 10	13 15		3 v Ophiuchi	220 6	13 26	4.7	+116	+ 11
274	13	233 40	10 30	4	53 v	233 51	10 30	4.3	+ II	0
276	14	237 0	8 30	4-3	55 ξ	. 238 9	8 13	3.6	+ 69	- 17
277	15	237 50	10 50	4	56 0		10 45	4.4 4.6	+ 68	- 5 + 3
278	16	243 40	20 0 21 IO	4	575. $58\eta.$		20 3	-	+ 58	+ 3 - 3
279 280	17 18	248 40 258 20	+27 0	4-3	$6_3 \theta$	259 21	+27 7		+ Ğı	+ 7
		•	SITTA.	•	1					
281	I	280 10	+39 20		$12 \gamma \ldots$. 280 44			+ 34	+ 4
.282	2	276 40	39 10	6	85	277 45			+ 65	+ 28
283	3	275 50	39 50		7δ 5 α	. 277 0 274 45	39 8 39 1		+ 5	+ 44
284 285	4 5	274 40 273 20	39 0 +38 40	5	6β				+ 93	- 14
205	5		UILA.							
286	I	277 10	+2650	4	63 τ	. 278 41	+27 14	5.6	+ 91	+ 24
287	2	274 50	27 10		60β	276 6		3.9	+ 76	<u>-</u> :
288	3	273 50	29 10		53 a	275 2			+ 72	
289	4	274 40	30 0		59 ξ	276 10			+90 + 85	
290	56	273 10	31 30		$50 \gamma \dots \dots \\ 61 \varphi \dots \dots$		31 28		+ 96	
291		276 0 269 40	31 30 28 40	5	38μ .	270 18			+ 38	
292	7		$26 \begin{cases} 20 \\ 40 \end{cases}$	1		. 271 26			+ 16	
293	8	271 10								
294	J	262 10	36 20	3	17 ζ	-			+ 76 + 23	
295	Inf. I	273 40 278 50	21 40 19 10		$55 \eta \dots \dots$				- 20	
296 207	23	278 50	25 0		30 δ	. 267 4			+ 64	. +
297 298	5 4	268 10	20 0	1	4Ι <i>ι</i>	. 269 27	20 15	4.3	+ 77	' + I
299	5	269 40	15 30	5	39 к	. 268 27			- 73	- 5
300	ő	260 10	+18 10	3	16 λ	. 260 57	+17 52	3.5	+ 47	' – I

Catal	logue	IIce	ontinued
Gaiai	ogue	11	Junuco

No.in		Ptolem	ny's Catalo	gue.	Modern		uted for). 100.	Magni- tude in Harvard	C	CPt.	
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	∆Lat.	
		DEL	PHINUS.								
		o /	0 /			• /	0 /		,	1	
301	I	287 40	+29 10	3-4	2 ε	287 44	+29 16	4.0	+ 4	+ 6	
302	2	288 40 288 40	29 0	4-5	5 ι 7 κ	288 59 288 42	29 O 27 43	5·4 5.2	+ 19 + 2	- 2	
303 304	3	288 30	27 45 32 0	4 3-4	6β	200 42 290 0	$32^{27} + 3$	3.7		+ 8	
305	5	290 10	33 20	3-4	9 a	29I O	33 13	3.9	+ 50	- 7	
306	6	291 20	32 0	3-4	ΙΙ δ	291 48	32 8	4.5	+ 28	+ 8	
307	7	293 10	33 10	3-4 6	$12 \gamma \dots \ldots \gamma$	293 8 288 28	32 58	4.5	- 2 + 58	- 12 + 36	
308	°	287 30	30 15		3η		30 51	5.2			
309	9	²⁸⁷ 130	} 31 50	6	45	289 26	32 20	4.7	+116	+ 30	
310	10	289 O	+31 30	6	8 θ	289 55	+30 47	6.1	+ 55	- 43	
			UULEUS.	(•	0						
311	I	296 20	+20 30	άμ ả	8 α 10 β	296 45 299 4	+20 20 21 11	4.1 5.1	+ 25 + 64	-10 + 31	
312	2	298 0 296 20	20 40 25 30	άμ ἀμ	5γ	299 4 297 5	25 29	4.8	+ 45	- I	
314	4	297 40		åμ	7δ	298 8	+25 5	4.6	+ 28	+ 5	
		PI	EGASUS.								
315	I	347 50	+26 o	2-3	(ô=)21 a Andromedæ		+25 44	2.I	+ 9	- 16	
316	1	342 10	12 30	2-3	$88 \gamma \dots \dots$	342 47	12 34	2.9	+ 37	+ 4 + 6	
317	3	332 IO 326 40	31 0	2-3	53β 54 a	332 57 327 8	31 6 19 28	2.6 2.6	+ 47 + 28	-12	
318 319	4	320 40	19 40 25 30	²⁻³ 4	62τ	334 45	25 34	4.6	+ 15	+ 4	
320	5	335 0	25 0	4	68 v	335 32	24 50	4.6	+ 32	- 10	
321	7	329 0	35 0	3	44 η	329 26	35 8	3.1	+ 26	+ 8	
322	8	328 30 326 10	34 30	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	328 39 326 46	34 27 28 50	4.8 4.1	+ 9 + 36	-3 - 10	
323	9	326 IO 327 0	29 0 29 30	4	47μ	328 I	29 30	3.7	+ 61	0	
325	II	318 50	18 0	3	425	319 46	17 46	3.6	+ 56	- 14	
326		320 30	19 0	4	46 ξ	321 37	18 48	4.3	+ 67	- 12	
327	13	321 20	15 O 16 O	5	50 ρ 49 σ	322 9 321 38	14 33 15 51	4.9 5.3	+ 49 + 68	- 27 - 9	
328 329	14 15	320 30	16 50	53	26 θ	310 19	16 30	3.7	+ 59	- 20	
330		308 0	16 0	4	22 <i>v</i>	308 51	15 46	4.9	+ 51	- 14	
331	17	305 20	22 30	3-2	8 ε	305 32	22 12	2.5	+ 12	-18 -8	
332	18	323 40	41 10 34 15	4-3	$\begin{array}{c} 29 \ \pi. \ \dots \ $	323 20 317 56	4I 2 34 23	4·4 4.0	- 20 + 16	+ 8	
333	19 20	317 40 312 20	+3650	4-3	10 к	312 41	+3644	4.3	+ 21	- 6	
551			DROMEDA.								
335	1	355 20	+24 30	3	3Ιδ	355 26	+24 20	3.5	+ 6	- 10	
336		356 20	27 0	4	$29 \pi \dots$	356 22	27 4	4.4	+ 2	+ 4	
337	3	354 20	23 0	4	30 ε	354 47	23 I	4.5	+ 27 + 28	+ I	
338	4	353 40	32 O 33 30	4	$\begin{array}{c} 25 \ \sigma \dots \\ 24 \ \theta \dots \end{array}$	354 8 354 56	31 31 33 18	4·5 4·4	+ 28 + 16	- 29 - 12	
339 340	5	354 40 355 0	33 30 32 20	45	27 ρ	355 21	32 18	5.2	+ 21	- 2	
341	7	349 40	4I 0	4	17	349 52	40 58	4.3	+ 12	- 2	
342	8	350 40	42 0	4	19 к	351 5	41 39	4.3	+ 25	- 21	
343	9	352 10	44 0	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	352 11 354 18	44 0	4.0 4.3	+ I + 8	+ 3	
344		354 IO 355 40	17 30 15 50	4	38η .	356 3	15 51	4.6	+ 23		
345	12	3 50	+26 20	3	$43 \dot{\beta}$	4 I	+25 54	2.4	+ 11	- 26	

No. in	F	'tolemy's	Catalogue	•	Modern		uted for D. 100.	Magni- tude in Harvard	C—I	r.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	Δ Long.	ΔLat.
	AN	DROMEDA	continu	ed.						
347 348 349 350	13 14 15 16	° ' 1 50 2 0 16 50 17 10	+30 0 32 30 28 0 37 20 20	4 4 3 4-3	$37 \mu \dots \dots$ $35 \nu \dots \dots$ $57 \gamma \dots \dots$ $54 (=\varphi \text{ Persei})$		$ \begin{array}{c} $	3.9 4.4 2.3 4.2	+ 57 + 52 + 63 + 68 + 50	- 26 - 2 - 20 - 39 - 39 - 21 - 21 - 21 - 21 - 21 - 21 - 21 - 2
351 352 353 354 355 356	17 18 19 20 21 22	15 10 12 20 12 0 10 10 12 40 14 10	$ \begin{array}{r} 35 \\ 29 \\ 28 \\ 35 \\ 34 \\ 32 \\ 30 \end{array} $	$\begin{array}{c} 4-3 \\ 4-3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ \end{array}$	51 (= v Persei) 50 v 53 τ 42 φ 49 A 52 χ	12 27 12 35 10 11 13 49 14 12	35 19 29 0 27 47 36 12 34 24 31 19	3.8 4.2 4.9 4.3 5.3 5.2 3.6	+ 59 + 7 + 35 + 1 + 69 + 2 - 4	-13 +42 -71 -10
357	23	341 40 TRIAN	$ +44 \circ$	3	Ι ο	341 36	+43 44	3.0	4	
358 359 360 361	I 2 3 4	11 0 16 0 16 20 16 50	+16 30 20 40 19 40 +19 0	3 3 4 3	$\begin{array}{c} 2 \ \mathbf{a} \\ 4 \ \mathbf{\beta} \\ \mathbf{\delta} \\ \mathbf{\delta} \\ \mathbf{\gamma} \\ $	10 32 15 56 16 41 17 10	$ \begin{array}{r} +16 \ 46 \\ 20 \ 28 \\ 19 \ 28 \\ +18 \ 46 \end{array} $	3.6 3.1 5.1 4.1	$ \begin{array}{c c} - & 28 \\ - & 4 \\ + & 21 \\ + & 20 \end{array} $	+ 16 - 12 - 12 - 12
			LIES.			6.6		. 7	+ 6	
362 363 364 365 366 367 368 369 370 371	1 2 3 4 5 6 7 8 9 10	6 40 7 40 11 0 11 30 6 30 17 40 21 20 23 50 25 20 27 0	$\begin{array}{r} + 7 20 \\ 8 20 \\ 7 40 \\ 6 0 \\ 5 30 \\ 6 0 \\ 4 50 \\ 1 40 \\ 2 30 \\ 1 50 \end{array}$		$ \begin{array}{c} 5 & \gamma & & & \\ 6 & \beta & & & \\ 17 & \eta & & & \\ 22 & \theta^1 & & \\ 8 & \iota & & \\ 32 & \nu & & \\ 32 & \nu & & \\ 48 & \epsilon & & \\ 57 & \delta & & \\ 58 & \zeta & & \\ 53 & \tau^2 & & \\ 45 & \rho^2 & & \\ \end{array} $	7 34 11 38 12 28 7 7 17 44 22 6 24 19 25 31 . 27 13	$ \begin{array}{c} + 7 & 6 \\ 8 & 25 \\ 7 & 17 \\ 5 & 36 \\ 5 & 20 \\ 6 & 0 \\ 3 & 58 \\ 1 & 39 \\ 2 & 41 \\ 1 & 55 \\ 1 & 20 \end{array} $	$ \begin{array}{c ccccc} & 4 \cdot 7 \\ & 2 \cdot 7 \\ & 5 \cdot 3 \\ & 5 \cdot 7 \\ & 5 \cdot 2 \\ & 5 \cdot 4 \\ & 5 \cdot 2 \\ & 4 \cdot 5 \\ & 4 \cdot 9 \\ & 5 \cdot 2 \\ & 5 \cdot 2 \\ \end{array} $	$ \begin{array}{r} - & 6 \\ + & 38 \\ + & 58 \\ + & 37 \\ + & 46 \\ + & 29 \\ + & 11 \\ + & 13 \end{array} $	- 5 + 1 +
372	II	19 40	+ I IO	5	$\begin{cases} 45 \ \rho \\ 46 \ \rho^3 \\ \dots \\ \end{pmatrix}$. 20 22	+ 1 9	} 5.0	+ 44	
373 374 375 376 377 378 379	12 13 Inf. 1 2 3 4 5	18 0 15 0 10 40 21 40 21 20 19 40 19 10		$ \begin{array}{r} 4-3 \\ 3-2 \\ 4 \\ 5 \\ 5 \end{array} $	$\begin{array}{c} 43 \ \sigma \dots \\ 87 \ \mu \ \text{Ceti} \dots \\ 13 \ a \dots \\ 41 \ c \dots \\ 39 \dots \\ 35 \dots \\ 33 \dots \end{array}$	11 12 21 47 21 56 20 33	$ \begin{array}{c c} - & 5 & 40 \\ + & 9 & 55 \\ & 10 & 20 \\ & 12 & 23 \\ & 11 & 8 \end{array} $	5.5 4.4 2.2 3.7 4.6 4.6 5.4	$ \begin{array}{c} + 30 \\ + 21 \\ + 32 \\ + 7 \\ + 36 \\ + 53 \\ + 33 \end{array} $	-2 -1 -1
•°•			rus.		5 <i>f</i>	27 9	- 6 7	4.3	+ 49	,
380 381 382 383 384 385 386 387 388 389 390 391	I 2 3 4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 15 8 30 9 15 9 30 8 0 12 40 14 50 10 0 13 0	$ \begin{array}{c} 4 \\ 4 \\ 5 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 3 \\ -4 \\ 3 \\ -4 \\ \end{array} $	$5 J \dots $ $4 s \dots $ $2 \xi \dots $ $1 o \dots $ $30 e \dots $ $35 \lambda \dots $ $49 \mu \dots $ $38 v \dots $ $90 c^{1} \dots $ $88 d \dots $ $54 \gamma \dots $ $61 \delta^{1} \dots $	26 39 25 26 24 45 30 54 34 12 37 8 33 27 43 16 42 21 39 19	7 38 8 59 9 31 8 51 8 11 12 24 14 39 9 44 11 59 5 56	5.1 3.7 3.8 5.0 $3.3-4.2$ 4.3 3.9 4.3 4.4 3.9	$ \begin{vmatrix} + & 39 \\ + & 48 \\ + & 29 \\ + & 74 \\ + & 32 \\ + & 21 $	

No. in	F	tolemy's	Catalogue	,	Modern	Comp A. 1	outed for D. 100.	Magni- tude in Harvard	C	Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	∆Lat.
		1	-continued	•						
		• /	0 /		$\int 77 \theta^1 \dots$	°' 41 30	- 5 58	h	,	1
39 2	13	40 50	- 5 50	3-4	$1 78 \theta^2 \dots$	41 29	-558 64	3.1	+ 39	II
393	14	42 40	5 10	1	87 a	43 20	5 37 2 47	1.1 3.6	+ 40 + 9	-27 + 13
394	15 16	41 50 47 10	3 O 4 O	34 4	$\begin{array}{c} 74 \ \epsilon \dots \\ 97 \ i \dots \end{array}$	41 59 47 19	2 47 3 52	5.0 5.1	+ 9 + 9	+ 13 + 8
395 396	17	50 20	5 0	5	104 m	50 46	4 27	5.0	+ 26	+ 33
397	18	50 O	3 30	5	$10\dot{6} l^1 \dots \dots$	51 21	2 43	5.3	+ 81	+ 47
398	19	57 40	2 30	3	123 5	58 22	-226	3.0	+ 42	+ 4
399	20 21	45 40	-015 +50	4 3	94 τ · · · · · · · · · · · · · · · · · · ·	45 44 56 9	+ 0 28 5 14	4·3 1.8	+ 4 + 29	+ 43 + 14
- 400 - 401	21	55 40 42 0	0 30	5 5	$69 v^1 \dots \dots$	41 59	0 54	4.4	- I	+ 24
402	23	41 40	0 I 5	5	65 к	41 46	0 24	4.4	+ 6	+ 9
403	24	37 O	+ 0 40	5 6	$37 A^1 \dots$	36 59	+15	4.5	- I	+ 25
404	25	39 O			$50 \omega^2 \dots \dots$	39 38	-0.58 + 5 5	4.8	+ 38 + 75	+ 2
405 406	26 27	38 O 38 30	+ 5 0	5 5'	$\begin{array}{c c} 44 \ p \\ 42 \ \psi \\ \end{array}$	39 15 38 55	+55 742	$5.5 \\ 5.3$	+ 25	+ 5 + 32
400 : 407	28	42 0	3 0	5	$59 \times \cdots \times \cdots$	4I 44	3 50	5.4	- 16	+ 50
408	29	41 40	5 0	5	$52 \varphi \dots$	41 30	5 37	5.1	- 10	+ 37
409	30	32 10	4 30	5	19 (Taygeta) e.	· · · ·	4 19	4.4	+ 58	II
410	31	32 30	3 40	5	$\begin{array}{c c} 23 & (\text{Merope}) \ d. \\ \hline 25 & (\text{Alcyone}) \ \eta. \end{array}$		3 45 3 52	4.2 3.0	+ 46 - 6	+ 5 + 12
411	32	33 40	3 40	5	127 (Atlas) f	33 56	3 43	3.8	+ 16	$+\overline{3}$
412	33	33 40	+ 5 0	4	IÍI 170	34 31	+59	5.4	+ 51	+ 9
413	Inf. I	25 0	-17 30	4	10		-18 25	4.4	+ 41	- 55
414	2	50 0 54 0	2 O I 45	5 5	$102 \iota \ldots \ldots$ $109 n \ldots \ldots$	50 21 54 5	1 26 1 15	4·7 5.1	+ 21 + 5	+ 34 + 30
415 416	3	54 0 56 0	I 45 2 0	5	114 0	56 4	1 32	4.8	+ 4	+ 28
417		59 0	6 20	5	126	59 3	7 5	4.9	+ 3	- 45
418	56	59 0	- 7 40	5	129	60 21	- 7 50	5.9	+ 81	- 10
419	7	57 0	+ 0 40	5	121	57 58	$+ 0 29 \\ 2 18$	5.3 5.0	+ 58 + 1	+ 78
420	8	59 0 61 0	I 0 I 20	55	125 132	59 I 61 5	0 54	5.0	+ 5	-26
421 422	10	62 20	3 20	5	136		3 55	4.5	- 14	+ 35
423	11	63 20	+ ĭ 15	5	139	63 7	+ 2 15	4.9	- 13	+ 60
			MINI.	I						
424	I	83 20	+ 9 40	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	83 52 87 5	+955 631	2.0 I.2	+ 32 + 25	+ 15 + 16
425	2	86 40 76 40	6 15 10 0	2 4	78β	74 41	10 47	3.6	-119	+ 16 + 47
426 427	3	78 40	7 20	4	46 τ	79 I	7 31	4.5	+ 21	+ 11
428	5	82 0	5 30	4	60 <i>.</i>	82 35	5 34	3.9	+ 35	+ 4
429	56	84 0	4 50	4	69 v	84 53	5 2	4.2	+ 53	+ 12
430	7	86 40	2 40	4	77 κ 57 Α	87 14 82 26	2 52 2 44	3.7 5.1	+ 34 + 46	+ 12 + 4
431	8	81 40 83 10	2 40 0 20	5 5	58	82 43	• 44 • 49	6.0	$ \begin{array}{c c} + 46 \\ - 27 \\ + 31 \\ + 24 \\ + 26 \end{array} $	+ 29
432 433	10	73 0	+130	3	27 ε	73 31	+ 1 49	3.2	+ 31	+ 19
434	II	78 10	- 2 30	3	43 5	78 34	- 2 17	3.7-4.3 V	+ 24	+ 13
435	12	81 40	0 30	3	55 δ	82 6 82 23	0 26	3.5 3.6		+ 4 + 8
436	13	81 40 66 30	6 0 I 30	3 4-3	54λ	82 23 67 2	5 52 I 8	3.0 3.5 V	+ 43 + 32	+ 8 + 22
437	14	68^{30}_{10}	h					3.2		
438	15	10	} 1 15	4-3			I 2			
439	16	70 10	- 3 30	4-3	18 <i>ν</i>	70 23	- 3 17	4. I	+ 13	+. 13

Ńo. in	1	Ptolemy's	Catalogue	•	Modern		uted for). 100.	Magni- tude in Harvard	· · · C	Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	ΔLati.
		GEMINI—	continued.							
		0 /	01			o /	• /		,	1
44 0	17	72 0	- 7 30	3	$24 \gamma \cdots$	72 39	- 6 59	I.9	+ 39	+ 31
441	18	74 40	10 30	4	31 ξ	74 50	10 15 - 0 22	3.4	+ 10 + 21	+ 15 + 18
442	Inf. 1	64 IO 66 30	- 0 40 + 5 50	4 4-3	1 Н 44 к Aurigæ	64 31 66 56	$+60^{22}$	4 · 3 4 · 4	+ 21 + 26	+ 10
443 444	3	75 10	-215	5	36 <i>d</i>	75 32	- I 23	5.2	+ 22	+ 52
445	4	88 20	1 20	5	85	90 39	гĞ	5.4	+139	+ 14
446	56	86 20	3 20	5	81 g	88 43	2 51	5.0	+143	+ 29
447		86 o	4 30	5	74 ^f	87 11	3 59	5.2	+ 71	+ 31
448	7	95 40	- 2 40	4	16 5 Cancri .	94 5 ²	- 2 27	6.3	- 48	+ 13
440	I	CAN 100 20	+ 040	Neb.	4I <i>€</i>	100 58	+ 0 58	Cum.	+ 38	+ 18
449 450	2	97 40	+ 1 15	4-5	$33 \eta \dots$	98 59	+ 1 23	5.5	+ 79	+ 8
451	3	98 0	- 1 10	4-5	3I θ		- 0 56	5.6	+ 79	+ 14
452	4	100 20	+ 2 40	4-3	$43 \gamma \cdots$	101 8	+ 3 1	4.7	+ 48	+ 21
453	56	IOI 20	- 0 10	4-3	$47 \delta \dots$	102 16	- 0 I	4.2	+ 56	+11
454	1	106 30	- 5 30	4	65 a 48 i	107 14	-516 +1015	4.3	+ 44 + 94	+ 14 - 95
455	78	98 20 92 40	+1150 +100	45	10 μ	99 54 93 3	+1015 +18	4.2 5.4	+ 94 + 23	- 95 + 8
456 457	9	97 10	-10 30	4-3	17β	97 53	-10 28	3.8	+ 43	+ 2
458	Inf. 1	105 40	2 20	4-5	$\int 62 o^1 \dots$	105 57	· 2 · I	} 4.6	+ 18	+ 29
450 459	2	111 10	- 5 40	4-5	<pre>\63 o² 76 κ</pre>	105 58 109 46	- 5 45	5.1	- 74	- 5
439 460	3	104.0	+715	5	69 v	104 36	$+7^{5}$	5.4	+ 36	- 10
461	4	107 0	+ 4 50	5	77 ξ	106 46	+ 5 14	5.2	- 14	+ 24
		1	EO.	,						
462	I	108 20	+10 0	4	Ι Κ	108 50	+10 15	4.6	+ 30	+ 15
463	2	111 IO 114 20	7 30 12 0	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111 25 115 3	7 45	4·5 4.1	+ 15 + 43	+ 15
464 465	3	114 10	9 30	3-2	17 ε	114 16	9 35	3.I	+ 43 + 6	+ 5
466		120 10	IÍO	3	365	121 5	11 43	3.6	+ 55	+ 43 + 12
467	56	122 10	8 30	2	$4^{I} \gamma \cdots \cdots$	122 59	8 42	2.6	+ 49	+ 12
468	7	120 40	4 30	3	<u>30</u> η	121 28	4 44	3.6	+ 48 + 61	+ 14
469	8	122 30	+ 0 10 - 1 50	I	32 a 31 A	123 31 124 2	+ 0 24 - 1 36	1.3 4.6	+ 61 + 32	+ 14 + 14
470 471	9 10	123 30 120 0	0 15	4 5	27ν	124 2	- 0 6	5.2	+ 55	+ 9
∵ 471 472	10	117 20	0 0		16ψ	117 4	+ 0 13	5.6	- 16	+ 13
473	12	114 10	3 40	5 6	5 ξ	115 15	- 3 19	5.1	+ 65	+ 21
474	13	117 20	4 10	4	14 0	117 54	3 52	3.8	+ 34	+ 18
475	14	122 30	4 15	4	$29 \pi \dots$	122 54	-43	4.9	+ 24	
476	15	129 10	-0 IO	4 6	$47 \rho \dots \rho$	129 58 128 1	$+ \circ 2$ 4 28	3.8 5.7	+ 48 + 61	+ 12 + 28
477	16	127 0 130 20	+ 4 0 5 20	6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	128 1	4 28	5.6	+ 56	
478	17	130 20	2 20	6	$53 l \dots$	133 14	2 44	5.3	+ 54	+ 24
479 480	10	131 20	12 15	5	60 b	132 22	12 49	4.4	+ 62	+ .34
481	20	134 10	13 40	2-3	68 δ	134 43	14 17	2.6	+ 33	+ 32
482	21	134 20	$11 \begin{cases} 20\\ 10 \end{cases}$	} 5	?	1			,	
483	22	136 20	940	3	70 θ	136 58	9 40		+ 38	
484	23	140 20	5 50	3	<u>78</u> ι	14I O	6 2	4.0	+ 40	
485	24	141 40	+ 1 15	4	77 σ	142 17	+ 1 39 - 0 36	4.I: 5.2	+ 37 + 25	
486	25	144 40	— o 50	4	84 τ	145 5	- 0 30	5.2	' T 25	+ I.

Catalogue II—	-continued.
---------------	-------------

No. in	F	Ptolemy's	Catalogue		Modern		uted for). 100.	Magni- tude in Harvard	C	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	ΔLat.
		LEOco	ntinued.							
		• •	• /	1		• /	o /	1	,	,
487	26	147 30	- 3 0	5	9 I <i>v</i>	148 38	- 3 5	4 · 5	+ 68	- 5
488 489	27 Inf. 1	144 30 126 0	+11 50	1-2 5	94 β 41 Leo. min	145 22 127 4	+12 23 13 52	2.2 5.0	+ 52 + 64	+ 33 + 32
409	2	128 10	15 30	5	54	129 0	16 23	4.5	+ 50	+ 53
491	3	137 30	+ ĭ ĭo	4-5	$\tilde{6}_3 \chi \ldots$	137 57	+ 1 23	4.7	+ 27	+ 13
492	4	137 10	- 0 30	5	59 c	137 27	- 0 19	5.1	+ 17 + 31	+ 11 + 5
493	56	138 O 144 50	-240 +300	5 àµ.	58 d 15 c Comæ Ber.	138 31 147 19	-235 +2825	5.0 4.6	+ 31 +2°29	+ 5 -1°35
494	7	144 20	25 0	àμ.	7 h Comæ Ber.	147 5	23 26	5.1	+2 45	-I 34
496	8	148 30	+25 30	àμ.	23 k Comæ Ber.	151 55	+24 6	4.8	+3 25	—I 24
		,	RGO.	1					1 40	
497		147 O 146 20	+ 4 15	5	$3 \nu \dots 2 \xi \dots$	147 39 146 53	$+ 4 39 \\ - 6 5$	4.2 5.1	+ 39 + 33	+ 24 + 25
498 499		140 20	5 40 8 0	5	90	151 21	8 32	4.2	+ 41	+32
500	4	150 10	5 30	5	8π	151 7	6 8	4.6	+ 57	+ 38
501	56	149 0	0 10	3	5β	150 19	0 39	3.8	+ 79 + 10	+ 29 + 14
502 503	0	158 15 163 10	I IO 2 50	3	$15 \eta. \ldots \dots $	158 25 163 59	1 24 2 58	4.0 3.6	+ 49	+ 8
504	8	167 10	2 50	5	46	168 50	2 55	6. 1	+100	+ 5
505	9	171 0	1 40	4	51 θ	171 49	I 49	4.4	+ 49	+ 9 + 18
506	10 11	164 20 158 10	8 30	3	43 δ 30 ρ	165 13 158 57	8 48 13 37	3.7 4.9	+ 53 + 47	+ 18 - 13
507 508	11	150 10	13 50 11 40	6	$32 d^2 \dots$	161 0	II 38	5.2	+ 50	- 2
509	13	162 10	+16 0	? 3-2	47 ε	163 34	+16 18	2.9	+ 84	+ 18
510	14	176 40	- 2 0	I	67 a	177 26	-156 +846	I.2	+ 46 + 59	+ 4 + 6
511	15 16	174 50	+ 8 40	35	79 \$ · · · · · · · · · · · · · · · · · ·	175 49 177 9	+ 8 46 + 3 13	3·4 4.8	+ 59	-7
512	10	177 15	0 10	6	76 h	178 50	- 0 19	5.4	+ 95	- 29
514	18	180 0	+ 1 30	4-5	82 m	180 20	+ 1 51	5.2	+ 20	+ 21
515	19	178 0 181 40	-3 0 - 1 30	5	68 <i>i</i> 86	178 24 182 36	-3 12 - 1 16	5.6 5.8	+ 24 + 56	- 12 + 14
516 517	20 2 I	181 40 178 0	+ 8 30	5	90 p	180 44	+ 9 44	5.3	+164	+ 74
518	22	186	} 7 30	4	99	187 17	7 33	4.2	+ 37	+ 3
519	23	187 20	2 40	4	98 к	188 5	3 0	4.3	+ 45	+ 20
520	24	188 20	11 40	4	$105 \varphi \dots \dots$	189 0	11 55	5.0	+ 40	+ 15
521	25 26	190 0 192 40	0 30 + 9 50	43	100 λ 107 μ	190 32 193 34	0 39 + 9 59	4.6 3.9	+ 32 + 54	+ 9 + 9
522 523	Inf. I	192 40	-330	5	$26 \chi \dots$	165 45	- 3 24	4.8	+ 65	+ 9 + 6
524	2	169 0	3 30	5	40 <i>ψ</i>	169 48	3 21	4.9	+ 48	+ 9
525	3	172 15	3 20	56	49	173 20 176 15	3 II 7 4I	5·3 5.1	+ 65 - 55	+ 9 - 21
526	4	177 10	7 20 8 20	1	53 61	178 55	8 28	h -	1 + 45	- 8
527	5	178 10		5	1 63	179 26	$\begin{vmatrix} 8 & 13 \\ - 6 & 12 \end{vmatrix}$	} 4.3		+ 7
528	6	185 0	- 7 50	6	89	185 37	- 0 12	5.1	+ 37	+ 98
	_		bra. + 0 40	2	9a	198 41	+ 0 35	2.8	+ 41	- c
529 530		198 O 197 O	+ 0 40		9 α	198 41	2 12	5.4	+ 45	- 5 - 18
531	3	202 10	8 50	2	27 β	202 58	8 43	2.7	+ 48	- 7
532	4	197 40	+ 8 30		19δ	198 50	+ 8 25	4.8	+ 70 + 35	$\begin{vmatrix} - & 7 \\ - & 5 \\ + & 1 \end{vmatrix}$
533	5	204 0	- I 40	4	24	204 35	- 1 39	4.7	+ 35	

Catalogue	IIco	ntinued.
Garanogan	11 00	munucu.

No.in]]	Ptolemy's	Catalogu	e.	Modern	Comp A. D	uted for). 100.	Magni- tude in Harvard	C—	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	Δ Lat.
		LIBRA-	continued							
538 539 540 541 542 543 544	6 7 8 1nf. 1 2 3 4 5 6 7 8 9	o , 201 20 207 50 213 0 213 40 213 30 210 20 213 30 210 20 211 10 203 0 211 10 203 0 211 10	$ \begin{array}{c} \circ & ' \\ + & 1 & 15 \\ 4 & 45 \\ 3 & 30 \\ 9 & 0 \\ 6 & 40 \\ 9 & 15 \\ 0 & 30 \\ + & 0 & 20 \\ - & 1 & 30 \\ - & 1 & 30 \\ 7 & 30 \\ 8 & 10 \\ - & 9 & 40 \end{array} $	4 4-5 5 4-5 4-5 6 5 4 3 4	21 ν . 38 γ . 46 θ	o / 202 21 208 42 213 24 207 1 213 57 214 52 214 3 211 19 211 42 204 19 212 13 212 57	$ \begin{array}{c} \circ & ' \\ + & 1 & 23 \\ & 4 & 35 \\ & 3 & 35 \\ & 9 & 11 \\ & 6 & 18 \\ & 9 & 28 \\ & 0 & 18 \\ + & 0 & 16 \\ - & 1 & 12 \\ & 7 & 24 \\ & 8 & 17 \\ - & 9 & 47 \\ \end{array} $	5.3 4.0 4.3 4.8 4.7 4.8 5.1 5.0 var. 3.4 3.8 3.8	$ \begin{array}{c} , \\ + & 61 \\ + & 52 \\ + & 24 \\ + & 51 \\ + & 17 \\ + & 32 \\ + & 33 \\ + & 59 \\ + & 32 \\ + & 79 \\ + & 63 \\ + & 57 \end{array} $	$ \begin{array}{r} + 8 \\ - 10 \\ + 5 \\ + 11 \\ - 22 \\ + 13 \\ - 12 \\ + 18 \\ + 6 \\ - 7 \\ - 7 \\ \end{array} $
545	9	SCOR		' T	4	57		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Inf. 1	216 20 215 40 215 40 215 40 216 0 217 0 216 20 217 0 216 20 220 40 222 40 220 40 220 40 220 40 220 40 228 30 238 30 233 10 233 10 239 0 237 30 237 0 237 0 241 10	$\begin{array}{r} + 1 & 20 \\ - 1 & 40 \\ 5 & 0 \\ - 7 & 50 \\ + 1 & 40 \\ + 0 & 30 \\ - 3 & 45 \\ 4 & 0 \\ 5 & 30 \\ 6 & 10 \\ 15 & 30 \\ 6 & 40 \\ 11 & 0 \\ 15 & 0 \\ 15 & 0 \\ 18 & 50 \\ 16 & 40 \\ 19 & 30 \\ 18 & 50 \\ 16 & 40 \\ 15 & 10 \\ 13 & 20 \\ 13 & 30 \\ 13 & 15 \end{array}$	3 3 3 4 4 3 2 3 5 5 3 3 4 4 3 3 3 4 4 3 3 3 4 4 Neb.	8 β	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} + & 1 & 15 \\ - & 1 & 44 \\ 5 & 14 \\ - & 8 & 21 \\ + & 1 & 53 \\ + & 0 & 27 \\ - & 3 & 47 \\ 4 & 20 \\ 5 & 52 \\ 6 & 27 \\ 6 & 53 \\ 11 & 19 \\ 15 & 10 \\ 19 & 25 \\ 19 & 16 \\ 19 & 47 \\ 19 & 22 \\ 16 & 27 \\ 15 & 22 \\ 13 & 31 \\ 13 & 43 \\ 13 & 23 \end{array}$	$\begin{array}{c} 2.9\\ 2.5\\ 3.0\\ 4.0\\ 4.3\\ 3.6\\ 3.1\\ 1.2\\ 2.9\\ 4.7\\ 4.9\\ 2.4\\ 2.6\\ 4.9\\ 3.7\\ 3.4\\ 2.0\\ 3.1\\ 2.5\\ 1.7\\ 2.8\\ \end{array}$	$\begin{array}{r} + 26 \\ + 30 \\ + 51 \\ + 44 \\ + 73 \\ + 54 \\ + 47 \\ + 44 \\ + 32 \\ + 306 \\ + 44 \\ + 57 \\ + 446 \\ + 660 \\ + 469 \\ + 460 \\ + 400 \\ + $	$ \begin{array}{r} - & 5 \\ - & 4 \\ - & 31 \\ + & 13 \\ - & 3 \\ - & 20 \\ - & 22 \\ - & 17 \\ - & 13 \\ - & 19 \\ - & 10 \\ - & 45 \\ - & 17 \\ - & 32 \\ + & 13 \\ - & 11 \\ - & 13 \\ - & 11 \\ - & 13 \\ - & 8 \end{array} $
568	2	235 30	6 10	5-4	XVII 229. 45 <i>d</i> Ophiuchi	236 29	6 19	4.4	+ 59	- 9
569	3		- 4 10	5	3 Sagittarii	240 49	- 4 10	4.3	+ 79	
570	I	SAGITTA 244 30	rius. 6 20	3	ΙΟ γ	244 52	- 6 37	3.1	+ 22	- 17
571 572 573	2 3 4 5	247 40 248 0 249 0 246 40	$ \begin{array}{r} 6 & 30 \\ 10 & 50 \\ - & 1 & 30 \\ + & 2 & 50 \end{array} $	3 3 3 4	$ \begin{array}{c} 19 \ \delta \\ 20 \ \epsilon \\ 22 \ \lambda \\ 13 \ \mu^{1} \\ \end{array} $	248 8 248 40 249 55 246 48	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.8 1.9 2.9 } 3.8	+ 28 + 40 + 55 + 8	+ 18 + 7 - 17 - 13
574 575 576	5 6 7	240 40 255 20 253 0	- 3 10 - 3 50	4 3 4-3	$\begin{bmatrix} 15 & \mu^2 & \dots & \dots \\ 34 & \sigma & \dots & \dots \\ 27 & \varphi & \dots & \dots & \dots \end{bmatrix}$		$ \begin{array}{r} 2 56 \\ - 3 9 \\ - 3 42 \end{array} $	2.I 3.3	$ \begin{array}{r} + 29 \\ + 37 \\ + 43 \end{array} $	$\begin{vmatrix} + & 6 \\ + & 1 \\ + & 8 \end{vmatrix}$

Catalogue IIcon	tinue	ea.
-----------------	-------	-----

No. in		Ptolemy'	s Catalogu	e.	Modern		uted for). 100.	Magni- tude in Harvard	C—	Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	Δ Long.	ΔLat.
	s	AGITTARI	uscontin	wed.						
		0 /	0 /			o /	o /		,	,
577	8	255 10	+ 0 45	Neb.	$\{32 \nu^1 \dots \dots \}$	256 3	+ 0 2I	} 4.3	+ 57	- 22
578	9	255 40	2 10	ţ	$\begin{bmatrix} 35 & \nu^2 & \dots & \dots \\ 37 & \xi^2 & \dots & \dots & \dots \\ \end{bmatrix}$	256 12 257 I	025 156	3.6	+ 81	- 14
579	10	253 40	1 30	4	39 0	258 33	1 9	3.9	+ 53	- 21
580	II	259 10	2 0	4	4Iπ	259 50	I 43	3.0	+ 40	- 17
581	12	261 20	2 50	5	43 d	261 55	3 30	5.0	+ 35	+ 40
582	13	262 20	4 30	4	44 <i>ρ</i>	263 3 263 18	4 27 6 20	3.9	+ 43 + 28	- 3 - 10
583	14	262 50	6 30	4	$46 v. \dots \dots$	267 47	5 20	4.6	+ 127	- 10
584	15	265 40	5 30	6	$155 e^2 \dots$	268 13	5 24	} 4.5	1 +153	- 6
585 586	16	269 30 267 40	+ 2 0	5	61 g	272 2 268 35	5 23 + 1 41	5.0 5.1	+152 + 55	- 27 - 19
_	17	267 40			$\int 47 x^1 \cdots \cdots$	262 55	-215	} 4.5	$\{ + 35 \}$	- 25
587	18		- 1 50	5	$\begin{array}{c} 1 \\ 49 \\ 1 \\ 51 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	263 2 265 25	1 50 3 I	h	1 + 42 1 + 35	0 - 11
588	19	264 50	2 50	4	$152 h^2 \dots \dots$	265 18	2 50	} 4.3	l + 28	0
589	20	260 O	2 30	5	$42\psi\cdots\cdots\cdots$	260 37 258 27	2 41	4.9	+ 37 + 47	- 11 - 12
590 591	2I 22	257 40 256 20	4 30 6 45	$\begin{vmatrix} 4-3 \\ 3 \end{vmatrix}$	$\begin{array}{c} 40 \ \tau \\ 38 \ \zeta \\ \end{array}$	257 14	4 42 6 56	3.4 2.7	+ 54	- 11
592	23	257 40	23 0	2	$\begin{cases} XIX 54 (\beta^1) \dots \\ XIX 62 (\beta^2) \dots \end{cases}$	259 20 259 22	21 53 22 11	} 3.7	$\begin{cases} +100 \\ +102 \end{cases}$	+ 67
593	24	257 0	18 0	2-3	$\begin{array}{c c} XIX \ 68 \ a \dots \\ XVIII \ 17 \ \eta \dots \end{array}$	260 11 247 17	18 4 13 3	4.I 3.I	+191 + 37	- 4 - 3
594 505	25 26	246 40 267 20	13 O 13 30	3	$\int XIX 330 (\kappa^1) \dots$	268 25	14 9	} 4.9	(+ 65)	- 39
595 596	20	266 50	20 10	3	$\begin{array}{c} \text{XIX 333} (\kappa^2) \dots \\ \text{XIX 297} \dots \end{array}$	268 34 266 6	13 35 20 26	4.2	1 + 74 - 44	-5
590	28	267 40	4 50	5	58 ω	269 18	5 7	4.8	+ 98	- 17
598	29	268 50	4 50	5	бо А	270 8	5 14	4.9	+ 78	- 24
599	30	268 50	5 50	5	59 b	269 29	6 5	4.6	+ 39	- 15
600	31	269 40	- 6 30	5	62 <i>c</i>	270 37	- 6 53	4.6	+ 57	- 23
		CAPRIC	ORNUS.		1		1			
601	I	277 20	+ 7 20	3	$\begin{cases} 5 a^1 \dots \cdots \\ 6 a^2 \dots \cdots \\ \cdots$	277 21 277 25	$ + 7 12 \\ 7 8$	} 3 ⋅ 4	+ 3	- 10
602	2	277 40	6 40	6	8 ν	278 2	6 48	4.8	+ 22	+ 8
603	3	277 20	50	3	9β	277 37 276 I	4 49 7 37	3.2	+ 17	- 11
604	4	276 O	8 o	6	$2\xi^2$	275 59	7 32	} 5.4	0	- 25
605	5	279 0	° 45	6	I 2 0	278 48	0 36		- 12	- 9
606	1 1	278 40	I 45	6	ΙΟ π	278 17	I 7 I 25	5.2 5.0	-23 - 6	-38 -5
607 608	7 8	278 50 276 IO	1 30 0 40	6 5	ΙΙ <i>ρ</i> 7 σ		0 41	5.5	+ 5	+ 1
600		270 IO 281 40	3 50	6	$\int \mathbf{I} \cdot \mathbf{J} \cdot \mathbf{\tau}^1 \cdot \cdots \cdot \mathbf{\tau}$	281 22	3 29		- 18	- 21
-	9				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	281 52 281 14	$+ \frac{3}{0} \frac{33}{26}$	$5 \cdot 3$ $5 \cdot 3$	+ 12 - 36	- 17 - 24
610 -611	IO II	281 50 280 50	+ 0 50 - 6 30	5	16ψ .	280 46	- 6 44	4.3	- 4	- 14
612	12	281 40	8 40	4	18 ω	281 31	8 46	4.2	- 9	- 6
613	13	286 40	7 40	4	24 A	285 23	7 53	4.6	- 77	- 13
614	14	290 10	6 50	4	34 5	290 29	6 49 6 21	3.9 4.6	+ 19 + 42	+ 1
615	15	290 20	60	5	36 <i>b</i>	291 2 288 35	- 4 21	5.3	+ 42 - 5	- 21 - 6
616	16	288 40	- 4 15	5	$28 \varphi \dots \dots$	200 33			و	

Catalogue	II-	-continued.
-----------	-----	-------------

No.in		Ptolemy	's Catalogu	ıe.	Modern		uted for 9. 100.	Magni- tude in Harvard	C—	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	Δ Long.	ΔLat.
	CA	PRICORN	uscontin	ued.						
6		° / 286 40	- 4 O		$25 \chi \ldots \ldots$	° / 286 51	~ 4 22	5.3	, + 11	- 22
617 618	17 18	286 40	- 4 0 2 50	5	25χ	286 19	2 48	4.9	- 21	$+ 2^{2}$
619	19	286 40	0 0	4	$23 \theta \dots \dots$	287 22	0 21	4.2	+ 42	- 21
620	20	291 0	0 50	4	32	291 15	III	4.3	$+ i_5$	- 21
621	21	293 20	4 45	4	39 ε	293 45	4 49	4.7	+ 25	- 4
622	22	295 0	4 30	4	43 K	295 8	4 39	4.8	+ 8	- 9
623	23	294 50	2 10	3	40 γ	295 16	2 2 1	3.8	+ 26	- 11
624	24	296 20	- 2 0	3	$49 \delta_{1} \cdots \delta_{n}$	297 I	- 2 15	3.0	+ 41	- 15
625	25	296 50	+ 0 20	4	42 <i>d</i>	296 40	$+ \circ 5$	5.3	- 10	- 15
626	26	298 40	0 0	5	$5I \mu \dots \dots$	299 12	-0.30 + 2.6	5.2	+ 32 + 56	- 30
627	27	297 40	2 50	5	$48 \lambda \dots \dots$	298 36 298 58	+ 2 6 + 4 21	5.4	+ 18	- 44 + 1
628	28	298 40	+ 4 20	5	$46 c^1 \dots \dots$	290 50	T 4 21	5.3	, 10	1 1
600		AQUA 300 20			25 d	301 35	+15 29	5.3	+ 75	- 16
629 630	1 2	306 20	+15 45	53	34 a.	306 58	10 47	3.2	+ 38	- 13
631	3	305 10	9 40	5	310	305 43	9 18	4.7	+33	- 22
632	4	296 30	8 50	3	22 β	297 0	8 46	3.1	+ 30	- 4
633	5	297 20	6 15	5	23 ξ	297 39	6 9	4.8	+ 19	$ - \epsilon$
634	5	287 40	5 30	3	13 ν	289 56	4 58	4 · 5	+136	- 32
635	7	286 10	8 O	4	6 μ		8 27	4.8	+ 28	+ 27
636	8	284 40	840	3	2 ε	285 19	8 18	3.8	+ 39	- 22
637	9	309 30	8 45	3	$48 \gamma \dots \dots$	310 16	8 22	4.0	+ 46	- 23
638	10	311 40	10 45	3	$52 \pi \dots$	312 13	10 35	4.6	+ 33 + 24	-10 - 2
639	II	312 0	90	3	55 ζ (dup.)	312 24	8 58 8 17	3.7	+ 24 + 39	-13
640	12	313 20	8 30	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8 17 2 52	4.I 4·3	+ 39 + 37	- 8
641	13	306 10	3 0	4	$\begin{array}{c c} 43 \ \theta \dots \dots \\ 46 \ \rho \dots \dots \dots \end{array}$	306 47	+ 2 29	5.4	+ 37	- 41
642	14	307 0	+ 3 10 - 0 50	5	57σ	308 58	-17	4.9	+ 18	- 17
643	15 16	308 40	— 0 50 — 1 40	4	33	302 17	I 56	4.3	+ 37	- 16
644	17	301 40 303 10	+ 0 15	4 6	38 e	304 4	0 9	5.4	+ 54	- 24
645 646	17	311 40	-730	3	76 δ	312 26	8 5	3.5	+ 46	- 3
640 647	10	311 20	5 0	4	7Ι τ	-	5 34	4.2	+ 49	- 34
648	20	304 40	5 40	5	53 f	1 -	6 20	6.3	+ 59	- 40
649	21	308 20	10 0	5	$68 g^2 \dots$	309 27	10 50	5.4	+ 67 + 56	- 50
650	22	307 50	- 9 0	5	$66 g^1 \dots \dots$	30 8 46	- 9 51	4.9	+ 56	- 5
651	23	315 0	+20	4	63 k?	313 5 315 8	+ 4 16	5.3	-115	+13
652	24	314 50	+ 0 10	4	73λ		- 0 19	3.8	+ 18	- 20
653	25	317 40	— I IO	4	$83 h. \ldots$	317 53	I 35	5.6	+ 13	-2
654	26	320 0	0 30	4	$90 \varphi \dots \dots$	320 44	0 54	4.4	+ 44 + 8	-2 -6
655	27	320 30	I 40	4	$92 \chi \dots \dots$	320 38	2 46		+ 40	- I
656	28	319 0	3 30	4	$\int 9\mathbf{I} \psi^1 \dots \dots$		3 49 4 13	4.5	(+ 27	-
657	29	319 50	4 10	4	$195 \psi^3 \dots$	320 2I	4 42	} 4.1	1 + 3I	-3 +
658	30	317 50	8 15	5	94	318 42	8 6	55	+ 52 + 31	
659	31	322 40	II O	5	$IO2 \omega^1 \dots$		10 59		+ 31 + 31	
660	32	323 10	10 50	5	$105 \omega^2 \dots$	323 41	11 31		(+ 20	
661	33	321 40	14 0	5	$\begin{cases} 103 & A^1 \dots \\ 104 & A^2 \dots \\ \end{cases}$	322 7	14 38 14 28	J 4·4	1 + 27	
662		322 10	14 45	5	$10\dot{6} i^1 \dots \dots$	0	15 7	5.3	+ 18	
663	34 35	323 10	15 40	5	108 <i>i</i> ³		16 24	5.3	+ 38	
664	35 36	317 O	-14 10	4	$98 b^1$		-14 4I	4.2	+ 4	- 3

No.in	P	tolemy's	Catalogue		Modern	Compu A. D	uted for 100.	Magni- tude in Harvard	C	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong-	∆ Lat
	A	QUARIUS-	-continue	d.		0 /	o ,		,	,
665 666 667 668 669 670 671 672 673	37 38 39 40 41 42 Inf. 1 2 3	317 30 318 20 311 50 312 40 313 10 307 0 326 40 329 40 329 0	-15 0 15 45 16 15 15 20 14 0 20 20 15 30 14 40	$ \begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 4^{-3} \\ 4^{-3} \\ 4^{-3} \\ 4^{-3} \end{array} $	99 b^2 . 101 b^3 . 86 c^1 . 89 c^3 . 88 c^2 . 79 (= a Pis. Aus.) 2 Ceti	317 25 318 54 311 50 313 6 313 29 307 14 327 16	$ \begin{array}{r} -15 & 30 \\ 16 & 27 \\ 16 & 29 \\ 15 & 37 \\ 14 & 25 \\ 20 & 53 \\ 16 & 12 \\ 15 & 7 \\ -18 & 44 \\ \end{array} $	4 · 5 4 · 8 4 · 9 3 · 8 1 · 3 4 · 6 5 · 0 4 · 7	$ \begin{array}{r} - & 5 \\ + & 34 \\ 0 \\ + & 26 \\ + & 19 \\ + & 14 \\ + & 36 \\ + & 13 \\ + & 2 \end{array} $	$ \begin{array}{r} - & 30 \\ - & 42 \\ - & 14 \\ - & 17 \\ - & 25 \\ - & 33 \\ - & 42 \\ - & 27 \\ - & 29 \end{array} $
			SCES.							
674 675 676 677 678 680 681 682 683 684 685 686 687 688 689 691 692 693 694 695 696 697 698 699 700	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	$ \begin{array}{c} 321 \ 40 \\ 324 \ 10 \\ 326 \ 0 \\ 328 \ 10 \\ 326 \ 0 \\ 329 \ 40 \\ 326 \ 0 \\ 329 \ 40 \\ 326 \ 0 \\ 329 \ 40 \\ 336 \ 0 \\ 347 \ 10 \\ 343 \ 0 \\ 347 \ 10 \\ 350 \ 30 \\ 353 \ 0 \\ 353 \ 0 \\ 355 \ 0 \\ 355 \ 0 \\ 356 \ 30 \\ 356 \ 30 \\ 0 \\ 356 \ 30 \\ 0 \\ 30 \\ 0 \\ 2 \\ 0 \\ 1 \\ 40 \\ 358 \ 40 \\ 357 \ 40 \\ \end{array} $	$\begin{array}{r} + 9 \ 15 \\ 7 \ 30 \\ 9 \ 20 \\ 9 \ 30 \\ 7 \ 30 \\ 4 \ 30 \\ 3 \ 30 \\ 6 \ 20 \\ 5 \ 45 \\ 2 \ 15 \\ + 1 \ 10 \\ - 0 \ 10 \\ 2 \ 0 \\ 4 \ 40 \\ 7 \ 45 \\ 8 \ 30 \\ - 1 \ 40 \\ + 1 \ 50 \\ 5 \ 20 \\ 9 \ 0 \\ 21 \ 45 \\ 21 \ 40 \\ 20 \ 0 \\ 19 \ 50 \end{array}$	4-3 4 4 4 4 4 4 4 4 4 6 6 4 4 4 6 6 4 4 4 5 3 4 5 5 6 6	$ \begin{array}{c} 4 \ \beta \dots & & \\ 6 \ \gamma \dots & & \\ 7 \ b \dots & & \\ 10 \ \theta \dots & & \\ 17 \ \iota \dots & & \\ 18 \ \lambda \dots & & \\ 18 \ \lambda \dots & & \\ 28 \ \omega \dots & & \\ 18 \ \lambda \dots & & \\ 18 \ \lambda \dots & & \\ 28 \ \omega \dots & & \\ 16 \ \lambda \dots & & \\ 11 \ \xi \dots & \\ 106 \ \mu \dots & & \\ 106 \ \mu \dots & & \\ 106 \ \mu \dots & & \\ 111 \ \xi \dots & & \\ 106 \ \mu \dots & & \\ 102 \ \pi \dots & & \\ 102 \ \pi \dots & & \\ 99 \ \eta \dots & & \\ 93 \ \rho \dots & & \\ 94 \ \rho \dots & & \\ 83 \ \tau & & \\ 68 \ h \dots & & \\ 67 \ k \dots & & \\ 67 \ k \dots & \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} + 9 & 6 \\ 7 & 30 \\ 8 & 55 \\ 9 & 4 \\ 7 & 31 \\ 4 & 34 \\ 3 & 30 \\ 6 & 27 \\ 5 & 27 \\ 3 & 2 \\ 7 \\ 1 & 15 \\ 1 & 32 \\ 4 & 40 \\ 3 & 5 \\ 2 & 10 \\ 1 & 44 \\ 5 & 16 \\ 9 & 15 \\ 9 & 21 \\ 20 & 52 \\ 19 & 25 \\ 19 & 25 \\ \end{array}$	$ \begin{array}{c} 4.6\\ 3.2\\ 4.3\\ 5.4\\ 4.3\\ 4.6\\ 5.7\\ 4.3\\ 5.7\\ 5.7\\ 5.7\\ 4.8\\ 9\\ 5.6\\ 7\\ 4.9\\ 5.7\\ 5.7\\ 4.9\\ 5.6\\ 7\\ 5.7\\ 4.9\\ 5.6\\ 7\\ 5.9\\ \end{array} $	+32 98 22 88 846 446 742 355 413 876 67742 355 4131 876 67742 375 4131 8776 67742 375 4131 8776 67742 375 4131 8776 67742 4131 8776 6774 4131 8776 6774 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 67744 4131 8776 6776 41776	$\begin{array}{r} - & 9 \\ - & 25 \\ - & 26 \\ + & 4 \\ - & - \\ - & + \\ + \\ - & - \\ - & - \\ + \\ - & - \\ - & - \\ + \\ - & - \\ - \\ - & - \\ + \\ - \\ - & - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$
701 702	28 29	357 0 355 40 (20)	$ \begin{array}{c} 20 \ 20 \\ 14 \ 20 \\ 12 \\ 0 \end{array} $	6	65 <i>i</i> (dup.) 74 ψ^1 (dup.)	356 18 357 2	20 26 13 16	5.5 4.9	+ 82	+ 6 - 62
703	30	356^{20}_{40}	¹³ 115	} 4	$\begin{vmatrix} 79 \ \psi^2 \cdots & \cdots \\ 81 \ \psi^3 \cdots & \cdots \\ \end{vmatrix}$	357 15	12 28	5.6 5.6	+ 35	- 3
704 705 706 707 708 709 710	$ \begin{array}{c} 31 \\ 32 \\ 33 \\ 34 \\ \text{Inf. 1} \\ 2 \\ 3 \end{array} $	357 40 2 10 359 50 0 0 331 10 332 15 330 40 332 20	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4 4 4 4 4 4 4	$81 \psi^{2} \dots \dots \\90 \psi \dots \dots \\85 \varphi \dots \dots \\84 \chi \dots \\27 \dots \\29 \dots \\30 \dots \end{pmatrix}$	357 15 2 26 0 6 358 8 331 50 332 46 331 36 332 29	$ \begin{array}{r} 11 & 13 \\ 17 & 21 \\ 15 & 25 \\ +12 & 20 \\ -3 & 4 \\ 2 & 57 \\ 5 & 42 \\ -5 & 45 \\ \end{array} $	5.0 4.7 4.6 4.9 5.1 5.1 4.7 4.7	$ \begin{array}{r} -25 \\ +16 \\ +16 \\ -112 \\ +40 \\ +31 \\ +56 \\ +9 \end{array} $	

No. in]	Ptolemy's	Catalogue	•	Modern		uted for 9. 100.	Magni- tude in Harvard	C	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	∆Lat.
		CE	TUS.			0 /	0 /		,	,
712	I	17 40	- 745	4	91λ	18 36	- 7 55	4·7	+ 56	— IO
713	2	17 40	I2 20	3	92 a		I2 44	2.8	+ 13	- 24
714	3	12 40	11 30 14 0	3	86 γ 82 δ	13 4 11 5	12 7	3.6	+ 24 + 35	-37 -37
715 716	4	10 30 10 10	8 10	3 4	020	11 5	14 37	4.0	+ 35	- 37
717	5 6	12 40	6 20	4						
718	7	7 20	4 10	4	$65 \xi^1 \dots$		4 24	4 · 5	+ 16	- 14
719	8	3 0	24 30	4	$72 \rho \dots \dots$		25 21	4.9	+ 11	- 51
720	9	3 20	28 0	4	76 σ 83 ε		28 34 25 58	4.8	+ 17 + 6	- 34 - 48
72I 722	10 11	640 70	25 IO 27 30	4	89π	7 13	25 58 28 23	5.0 4·4	+ 13	-53
723	12	352 0	25 20	3	$52 \tau \dots$	352 I	25 4I	3.6	+ I	- 2I
724	13	353 0	30 50	4	59 v	352 47	31 4	4.2	- 13	- 14
725	14	355 0	20 0	3	55 5	355 25	20 25	3.9	+ 25	-25 -26
726	15 16	349 40	15 20	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	349 49 345 11	15 46 16 5	3.8 3.6	+ 9 + 11	-26 -25
727 728	10	345 O 34I O	15 40 13 40	3 5	$19 \varphi^2 \dots$	341 0	I4 4I	5.2	0	$-\tilde{61}$
729	18	340 40	14 40	5	0. 198	339 22	17 21	5.8	- 78	-161
730	19	339 20	13 0	5-4	$17 \varphi^1 \dots$	339 26	14 3	4.9	+ 6	- 63
731	20	339 0	14 0	5-4	O. 161	338 44	15 22	6.4	- 16	- 82
732	2 I	$334 \begin{cases} 20 \\ 40 \end{cases}$	} 940	3-4	8	334 28	10 1	3.7	- 12	- 21
733	22	335 40	-20 20	3	16β	335 56	- 20 46	2.2	+ 16	- 26
		OR	ION.							
734	I	57 O	-13 50	Neb.	39 λ (dup.).	57 16	-13 38	3.5	+ 16	+ 12
735	2	62 0	17 0 17 30	I-2 2-I	58 α 24 γ	62 18 54 31	16 17 17 4	0.9 I.7	+ 18 + 31	+ 43 + 26
736	3 4	54 O 55 O	17 30 18 0	2-1 4-5	32 A		17 33	4.3	+ 57	+ 27
737 738	5	64 20	14 30	4 4	6 Ιμ.	64 11	14 2	4.2	- 9	+ 28
739	5 6	66 20	11 50	Ġ	$74 k \dots$		II 22	5.1	+ 80	+ 28
740	7	66 30	10 O	4	70 ξ	66 30	9 27	4.3	0	+ 33
741	8	66 0	9 45	4 6	$67 \nu \dots \dots$		8 55	4.4	-34 -2	+ 50 + 45
742	9 10	67 20 66 40	8 15 8 15	6	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	66 30	7 30	5.3 4.9	- 10	+ 43 + 43
743 744	10	61 40	3 45	5	$54 x^1 \cdots$	62 23	3 25	4.6	+ 43	+ 20
745	12	64 ⁴⁰ 20	} 4 15	5	$62 \chi^2 \dots$		3 33	4.7	+ 10	+ 42
746	13	57 ³⁰ 56 20	} 19 40	4	47 ω	58 4	19 28	4.5	+ 14	+ 12
747	14	56 20	20 0	6	$38 n^2 \dots$	56 45	19 46	5.3	+ 25	+ 14
748	15	55 20	20 20	6	$33 n^1$	55 55	20 12	5.5	+ 35	+ 8
749	16	54 10	20 40	5	$30 \psi^2 \dots$	54 44	20 20	4.7	+ 34	+ 20
750	17	50 30	8 0	4	$15(y^2)$	51 22	7 33	4.9	+ 52 + 46	+ 27 + 32
751	18	49 20	8 10 10 15	4	$\begin{array}{c c} \mathbf{II} & (\mathbf{y}^1) \\ 9 & (\mathbf{o}^2) \\ \end{array}$	50 6 47 56	7 38 9 18	4.6 4.3	-740	+ 32 + 57
752	19 20	48 0 46 20	10 15	4 4	$7 \pi^1 \dots$	47 50	12 31	4.3	+ 47	+ 19
753 754	20	45 10	14 15	4	$2 \pi^2 \dots \dots$ I $\pi^3 \dots \dots$	45 51	13 42	4.3	+ 41	+ 33
755	22	44 50	15 50	3	I π^3	45 13	15 37	3.3	+ 23	+ 13
756	23	44 50	17 10	3	$3 \pi^4 \dots$	45 40	17 1	3.8	+ 50	+ 9
757	24	45 20	20 20	3	$\begin{vmatrix} \tilde{8} & \pi^5 \\ 10 & \pi^6 \\ \vdots \\ \vdots \\ \vdots \\ \end{vmatrix}$	46 2	20 15 21 6	3.9	+ 42 + 45	+ 5 + 24
758	25	46 20	21 30	3 2	$10 \pi^{\circ} \dots \dots$ $34 \delta \dots \dots$	47 5 55 55	21 6 -23 49	4·7 2.5	$\begin{array}{c} + 25 \\ + 35 \\ + 35 \\ + 52 \\ + 46 \\ - 4 \\ + 47 \\ + 23 \\ + 50 \\ + 45 \\ + 45 \\ + 35 \end{array}$	$ \begin{array}{c} + 14 \\ + 8 \\ + 20 \\ + 27 \\ + 32 \\ + 57 \\ + 19 \\ + 33 \\ + 9 \\ + 5 \\ + 24 \\ + 21 \\ \end{array} $
759	26	55 20	-24 10	4	34 ****	55 55	-3 49	<u> </u>	' 55	

1 #

No.in	1	Ptolemy's	Catalogue		Modern		uted for 9. 100.	Magni- tude in Harvard	C	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised	ΔLong.	ΔLat
		ORION-0	continued.							
-(-		0 /	0 /			0 /	0 /		/	, ,
760 761	27 28	57 20 58 10	-24 50 25 40	2 2	46 ε 50 ζ (dup.)	57 2 58 14	-24 46 25 33	I.7 I.9	- 18 + 4	+ 4 + 7
762	29	53 50	25 50	3	28 n	53 43	25 47	3.4	- 7	+ 3
763	30	56 30	28 40	4	${42 \atop 45}c$	56 36	28 23	4.2	+ 6	+ 17
764	31	56 40	29 10	3-4	$\begin{cases} 4\mathbf{I} \ \theta^1 \dots \dots \\ 43 \ \theta^2 \dots \dots \end{cases}$	} 56 33	28 56	4.5	- 7	+ 14
765	32	57 O	29 50	3	44	56 33	29 27	2.9	- 27	+ 23
766	33	57 40	30 40	4	$49 d \dots \dots$		30 47	4.9	- 12	— ː
767 768	34 35	56 IO 49 50	30 50 31 30	4 I	36 v 19 β	55 27 50 22	30 47 31 23	4.6 0.3	-43 + 32	
769	36	51 0	30 15	4-3	20 τ	51 23	30 5	3.7	+ 23	+ I
770 771	37 38	53 20 60 IO	31 10 -33 30	$\begin{vmatrix} 4 \\ 3-2 \end{vmatrix}$	29 <i>e</i>	53 6 59 57	31 IO -33 I9	4.2 2.2	- 14 - 13	+ 1
	5		ANUS.							
772	I	48 20	-31 50	4-3	69 λ	48 45	-31 47	4.3	+ 25	+
773	2 3	48 50 48 0	28 15 29 50	4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 ⁸ 53 46 45	28 5 30 0	2.9 4.8	+ 3 - 75	+ 1 - 1
774 775	5 4	44 40	29 50 28 15	4	$61 \omega \dots$	44 34	28 2	4.0	-75 -6	+ 1
776	56	43 10	25 50	4	$57 \mu \dots$	42 49	25 56	4.2	- 21	-
777		40 IO 36 20	25 20 26 0	4	48ν 42ξ	40 20 36 51	25 21 25 11	4.I 5.2	+ 10 + 31	- + 4
778 779	7 8	30 20	20 0 27 0	5 4	40 o ²		27 6	4.5	- 6	4
780	9	32 50	27 50	4	$38 o^1 \dots$	32 56	27 41	4.I	+ 6	+
781 782	10	27 0 24 20	32 50 31 0	3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		33 22 31 19	3.2 4.6	+ 24 + 7	- 3 - 3 - 1
783	I I I 2	24 20 24 IO	28 50	43	23 δ		29 14	3.7	+ 7	- 2
784	13	22 0	28 0	3	18 ε	22 13	28 2	4.9	+ 13	-
785	14	17 10	25 30	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26 7 24 2	3.8	+ 9 (- 33)	
786	15	14 50	23 50	4	$10 \rho^3 \dots$	14 39	24 2	} 4·7	1 – II	- 1
787	16	12 10	23 50	3	$3 \eta \dots$	12 14	24 34	4.0	+ 4	- 4
788 789	17 18	10 30 5 10	23 15 32 10	4	$\mathbf{I} \boldsymbol{\tau}^1 \dots \dots$	5 21 6 7	32 50	4.6	+ 11	
790	19	5 50	34 50	4	$2 \tau^2 \dots$	6 7	35 38	4.8	+ 17	
791	20	8 50	38 30	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 3 13 31	39 2 38 40		- 47	
792 793	21 22	13 50 17 30	38 10 39 0	4	$10 \tau^5 \dots$	0	39 36		+ 8	-
795	23	21 20	41 20	4	$27 \tau^6 \ldots$	21 0	41 50	4.3	- 20	- 3
795	24	21 30	42 30	5	$28 \tau^7 \dots$	20 46	42 44		- 44	
796	25 26	22 IO	43 15 43 20	44	$\begin{array}{c c} 33 \ \tau^8 \\ 36 \ \tau^9 \\ \end{array}$	1	43 49 43 40		0 - 16	-
797 798	20 27	24 40 34 10	43 20 50 20	4	50 υ ⁶		51 2	4.6	- 66	
799	28	35 0	51 45	4	$52 v^7 \dots$	33 19	52 2	3.9	- 101	
800	29	28 10	53 50	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 51 25 51	54 45 54 11	4.1 3.6	-19 + 1	
801 802	30 31	25 50 17 50	53 IO 53 O	4	$111 202 v^3 \dots$	17 20	53 25	(5.3)	- 30	- 2
802	32	14 50	53 30	4	III 189 v ²	15 5	54 29	(4.1) (4.8)	+ 15 + 23	- 5
804	33	11 50	52 0	4	$ III 149 v^1 \dots \\ II 238 (dup) II 238 (dup) $)	54 59	1	1 23	• • •
805	34	0 10	-53 30	I	$\begin{cases} 11 & 238 \\ 11 & 239 \\ \theta & \text{Eridani} \\ \end{cases} (dup.)$	356 34	-53 55	3.I	• • •	- 2

No. in	I	Ptolemy's	Catalogue		Modern		outed for D. 100.	Magni- tude in Harvard	C	Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	∆Long.	ΔLat.
		LE ° /	PUS.			0 /	• •		,	,
806 807 808 809 810 811 812 813 814 815 816 817	I 2 3 4 5 6 7 8 9 10 11 12	49 40 49 50 51 20 51 20 49 10 46 10 55 50 61 0 59 0 60 0 62 40	$\begin{array}{c} \circ \\ -35 \\ 36 \\ 30 \\ 35 \\ 40 \\ 39 \\ 15 \\ 45 \\ 15 \\ 41 \\ 30 \\ 44 \\ 20 \\ 44 \\ 20 \\ 44 \\ 0 \\ 45 \\ 50 \\ 38 \\ 20 \\ -38 \\ 10 \end{array}$	$5 \\ 5 \\ 5 \\ 4^{-3} \\ 4^{-3} \\ 3 \\ 4^{-3} \\ 4^{-3} \\ 4^{-3} \\ 4^{-3} \\ 4^{-3} $	$\begin{array}{c} 3 \ \iota \\ 4 \ \kappa \\ 7 \ \nu \\ 6 \ \lambda \\ 5 \ \mu \\ 2 \ \epsilon \\ 11 \ a \\ 9 \ \beta \\ 15 \ \delta \\ 13 \ \gamma \\ 14 \ \zeta \\ 16 \ \eta \\ \end{array}$	49 17 49 26 51 31 51 18 48 55 45 30 54 55 53 12 60 32 58 31 59 32	$ \begin{array}{r} -34 58 \\ 36 3 \\ 35 35 \\ 36 26 \\ 39 17 \\ 45 9 \\ 41 20 \\ 44 8 \\ 44 9 \\ 45 51 \\ 38 28 \\ -37 56 \end{array} $	4.5 4.5 5.3 4.3 3.3 2.7 3.0 3.9 3.8 3.7 3.8	$ \begin{array}{r} - 23 \\ - 24 \\ + 11 \\ - 2 \\ - 15 \\ - 40 \\ - 55 \\ - 68 \\ - 28 \\ - 29 \\ - 28 \\ - 18 \\ \end{array} $	$ \begin{array}{r} + & 2 \\ + & 27 \\ + & 5 \\ + & 14 \\ - & 2 \\ + & 16 \\ + & 10 \\ + & 12 \\ - & 9 \\ - & 1 \\ - & 8 \\ + & 14 \end{array} $
		/	MAJOR.	1		-9 -		- 6		_
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 10 17 18 10 17 18 10 7 8 9 10 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -39 & 10 \\ 35 & 30 \\ 36 & 37 \\ 40 \\ 41 \\ 15 \\ 42 \\ 30 \\ 41 \\ 20 \\ 46 \\ 30 \\ 45 \\ 50 \\ 46 \\ 30 \\ 45 \\ 51 \\ 30 \\ 45 \\ 51 \\ 30 \\ 55 \\ 46 \\ 10 \\ 47 \\ 48 \\ 45 \\ 51 \\ 30 \\ 25 \\ 53 \\ 45 \\ 57 \\ 40 \\ 57 \\ 40 \\ 59 \\ 30 \\ 57 \\ 40 \\ -59 \\ 30 \\ -59 \\ 30 \end{array}$	$\begin{array}{c} \mathbf{I} \\ 4 \\ 5 \\ 4 \\ 5 \\ $	9 a 14 θ 18 μ 23 γ 20 ι 15 (π^1) 8 ν^3 7 ν^2 2 β 4 ξ^1 5 ξ^2 24 σ^2 16 σ^1 25 δ 21 ϵ 13 κ 13 κ 21 ϵ 13 κ 22 Monocerotis VI 9 θ Columbæ. VI 95 δ Columbæ. VI 65 κ Columbæ. VI 65 κ Columbæ. VI 95 δ Columbæ. VI 95 δ Columbæ. VI 136 λ V 238 μ Col V 297 γ Col V 207 β Col V 140 ϵ Col V 140 ϵ Col	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56 58 55 58 55 56 57 29	-1.6 4.2 5.2 4.1 4.4 4.7 4.6 4.1 2.0 4.3 4.5 3.1 4.1 2.0 1.6 3.8 3.1 2.4 4.1 5.1 4.5 4.0 4.5 5.2 4.9 4.4 3.2 2.7 3.9	$\begin{array}{r} + 20 \\ + 12 \\ - + 50 \\ - + 23 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ 51 \\ + - 51 \\ + 51 \\ +$	$\begin{array}{c} - & \mathbf{i} \\ + & 3 \\ - & 29 \\ + & 29 \\ + & 29 \\ + & 26 \\ - & 15 \\ - & 11 \\ - & 13 \\ - & 14 \\ - & 13 \\ - & 14 \\ - & 13 \\ - & 14 \\ - & 13 \\ + & 13 \\ + & 13 \\ - & 14 \\ + & 13 \\ + & 13 \\ - & 14 \\ + & 13 \\ + & 13 \\ - & 14 \\ + & 13 \\ + & 13 \\ - & 14 \\ + & 14 \\ + & 13 \\ + & 13 \\ + & 13 \\ + & 13 \\ + & 14 \\ +$
		CANIS	MINOR.							
847 848	I 2	85 0 89 10	-14 0 -16 10	4 I	3 β 10 a	85 48 89 40		3.I 0.5	+ 48 + 30	+ 18 + 31

No. in		Ptolemy'	s Catalog	ue.	Modern		ited for . 100.	Magni- tude in Harvard	C—	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	ΔLat.
			NAVIS.	1						
840		° / IOO 2O	• /	-	TT 0		0 /		, + 61	- 17
849 850	I 2	100 20 104 20	-42 30 43 20	5	11 e 15 ρ Pup	101 21 105 12	-42 47 43 29	4·3 2.9	+ 61 + 52	-17 -9
851	3	98 50	45 0	4	<u>7</u> ξ Pup	99 45	45 9	3.5	+ 55	- 9
852	4	98 40	46 O	4	VII 220	99 47	46 15	4.6	+ 67	- 15
853	5	95 20	45 30	4	VII 173	96 29	46 16	4.6	+ 69	- 46
854	6	96 20	47 15	3	VII 175 dup	97 11	47 38	3.8	+ 51	- 23
855	7	95 20	49 30	4	VII_163	96 39	49 20	4.5	+ 79	+ 10
856	8	99 20	49 30	4	3 Pup	99 37	49 25	4.I	+ 17	+ 5
857	9	98 30	49 15	4	VII 200 I Pup	99 18	48 55	4.8	+ 48	+ 20
858	10	104 0	49 50	4	VII 277	104 41	49 53	6.5	+ 4I	-3 - 26
859	II	94 O	53 O	4	{VII 99 group {VII 108	93 53 94 26	53 26 53 14	} 5.0	$\begin{cases} - & 7 \\ + & 26 \end{cases}$	- 14
860	12	94 O	58 40	3	VII 68 π Pup	94 6	58 45	2.7	+ 6	- 5
861	13	100 10	55 30	5	VII 172 / Pup	100 15	55 34	4.6	+ 5	- 4
			55 5-		$d^1 Pup \dots$		55 51	•		•
862	14	102 10	58 40	5	VII 186 $\begin{cases} d^2 \operatorname{Pup} \dots \\ d^3 \operatorname{Pup} \dots \end{cases}$	102 52	58 27	4.2	+ 42	+ 13
863	15	103 40	57 15	4	VII 214 c Pup	104 43	57 56	3.7	+ 63	- 41
864	16	106 30	57 45	4	VII 254 b Pup	107 52	58 16	4.5	+ 82	- 31
865	17	111 10	58 20	2	VII 306 5 Pup	112 29	58 31	2.3	+ 79	— II
866	18	108 10	60 0	5	VII 253 a Pup	108 57	59 53	3.8	+ 47	+ 7
867	19	III O	59 20	5	Lac. 3128 VIII 21 h^1 Pup	113 5	59 42	5.5	+125	- 22
868 869	20 2 I	113 O 114 20	56 40 57{0 40	5	VIII 21 h^2 Fup VIII 35 h^2 Pup	114 45 116 5	57 34 58 1	4.4 4.4	+105 +105	- 54 {- 61
-		1 -	57 140	ľ		5	-		+ 68	l - 21
870 871		125 40 126 10	51 30 55 40	4-3	Lac. 3580 VIII 168 d Vel		53 17 57 29	5.8	+ 87	- 107 - 109
872	23 24	I20 I0 I24 0	57 10	4-3 4-3	VIII 139 <i>e</i> Vel	127 57	57 29 58 23	4.I 4.I	+114	-73
873	25	129 10	60 0	4-3	VIII 176 a Vel	131 28	60 15	4.I	+138	-15
874		129 0	61 15	4-3	VIII 155 b Vel	130 32	61 15	4.I	+ 92	ő
875	27	120 10	51 30	3	VIII 145 $\begin{cases} \beta Pyx \dots \\ b Mal \dots \end{cases}$	}120 <u>3</u> 8	51 18	4.0	+ 28	+ 12
876	28	119 20	49 O	3	VIII 162 $\begin{cases} a Pyx \dots \\ a Mal \dots \end{cases}$	}120 I9	49 4	3.7	+ 59	- 4
877	29	118 0	43 20	4	VIII 193 $\begin{cases} \gamma Pyx \dots \\ c Mal \dots \end{cases}$	}119 1 4	43 26	4.2	+ 74	- 6
878	30	119 0	43 30	4	VIII 220 $\begin{cases} \delta Pyx \dots \\ d Mal \dots \end{cases}$	}120 36	43 0	4.9	+ 96	+ 30
879	31	134 10	54 30	2	IX 1 λ Vel	135 9	55 58	2.2	+ 59	- 88
880	32	137 30	51 15	2-3	$IX_{116} \psi$ Vel	138 38	51 14	3.6	+ 68	+ _ I
881	33	101 10	63 0	4	VII 135 σ Pup	102 43	64 4	3.3	+ 93	- 64
882	34	109 0	64 30	6	$VII 235 P. Pup \dots$		65 45	4.2	+219	- 75
883	35	120 0	63 50	2	γ Vel	121 23	64 37	2.2	+ 83	- 47
884	36	128 30	69 40	2	χ Car	124 54	70 27 66 21	3.6	-216 +220	- 47 - 41
885 886	37 38	135 10 141 20	65 40 65 50	3	δ Vel	138 50 143 1	67 13	4.6 2.0	+220 +101	- 41 - 83
887	39	141 20 146 0	67 20	3	f Car	143 1 147 21	68 26	4.6	+ 81	-66
888	40	151 0	62 50	3	κ Vel	153 0	63 44	2.6	+120	- 54
889	4I	158 0	62 15	3	N Vel	158 21	64 13	3.0	+ 21	-118
890	42	64 0	65 50	4-3	$ $ V 315 η Columbæ	63 11	66 31	4.0	- 49	- 41
891	43	80 10	65 40	3-2	VI 205 v Pup	80 52	66 19	3.2	+ 42	- 39
892	44	77 IO	75 O	I	a Argus (Canopus)	78 46	76 5	-0.8	+ 96	- 65
893	45	89 O	-71 45	3-2	τ Pup	91 34	-73 2	2.8	+154	- 77

No.in	Р	tolemy's	Catalogu	e.	Modern	Compu A. D		Magni- tude in Harvard	C	-Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	∆Long.	ΔLat.
		НУІ	DRA.	·						
-		0 /	0/			0 /	• /		1 70	/
894	I	104 O	-15 0	4	5 σ	104 50	-14 48 12 35	4.5	+ 50 + 38	+ 12 + 35
895 896	23	103 20 105 20	13 IO 11 30	4	4 δ 11 ε	103 58 106 2	12 35 11 14	4.2 3.5	+ 42	+ 16
897	4	105 30	14 45	4	$7 \eta \dots$	105 56	14 26	4.3	+ 26	+ 19
898	56	107 50	12 0	4	16ζ	108 13	11 9	3.3	+ 23	+ 51
899	1	110 20	11 50	5	18 ω	III I		5.4	+ 41	+ 38 + 35
900	78	113 20 118 50	13 40	4	$\begin{array}{c} 22 \ \theta \dots \dots \\ 32 \ \tau^2 \dots \dots \end{array}$	113 47 119 22	13 5 15 6	3.8 4.5	+27 +32	+ 35 + 14
901 902	9	118 50 120 40	15 20 14 50	4	35	119 22	14 23	4.I	+ 28	+ 27
902	10	118 30	17 10	4	$3I \tau^1$	119 7	16 52	4.8	+ 37	+ 18
904	II	119 10	19 45	Ġ	LL 18657,W 9 ^h 439	120 3	20 4	5.4	+ 53	- 19
905	12	120 0	23 0	2	30 a	120 58	22 33	2.2	+ 58	+ 27 - 12
906	13	126 0	26 30 26 0	4	$\begin{array}{c} 38 \ \kappa \dots \\ 39 \ v^1 \dots \\ \end{array}$	126 22 129 22	26 42 26 11	5.0 4.3	+ 22 + 42	- 12 - 11
907 908	14	128 40 131 10	26 0 23 15	4	$40 v^2 \dots$	132 0	23 17	4.3	+ 50	- 2
900	16	138 0	24 40	3	42μ	138 47	24 41	4.I	+ 47	— I
910	17	140 0	23 0	4	φ (2 Crat.)	141 47	23 33	5.1	+107	- 33
911	18	143 0	22 10	3	ν (4 Crat.)	144 3	21 58	3.3	+ 63	+ 12 + 2
912	19	151 30	25 45	4-3	$\begin{array}{c} (11 \ \beta \ Crat.) \dots \\ \chi^1 (9 \ Crat.) \dots \end{array}$	152 12 153 8	25 42 30 14	4 · 5 5 . I	+ 42 + 48	+ 3 - 4
913 914	20 21	152 20 162 10	30 IO 31 20	4	ξ (19 Crat.)	161 47	31 31	3.7	- 23	
914	22	164 30	33 10	4	o (25 Crat.)	164 55	33 24	4.9	+ 25	- 14
916	23	166 10	31 20	3	β (28 Crat.)	167 10	31 25	4 · 4	+ 60	- 5
917	24	180 0	13 40	4-3	$46 \gamma \dots \dots$	180 36	13 37	3.3	+ 36	+ 3
918	25	193 30	17 ²⁰ 40	} 4-3	$49 \pi \cdots $	192 12	12 49	3 · 5	- 78	
919	Inf. I	102 30	23 15	3	30 Monocerotis	103 39 131 37	22 39 10 18	3.9 (6.7)	+ 69 + 37	+ 36 - 8
920	2	131 0	-10 10	3	15 a Sextantis		-11 14	4.5	- 196	- 64
		CRA	TER.						1 =0	1 -0
921	I	146 20	-23 0	4	7 a	147 39	-22 42	4.2 4.I	+ 79 + 26	+ 18 - 10
922	2	152 30	19 30 18 0	4	$15 \gamma \dots $	152 56 150 28	19 40	3.8	+ 28	+ 20
923		150 O 157 O	18 30	4 4-3	27 ζ	1	18 17	4.9	+ 43	+ 13
924 925	4	149 20	13 40	4	Ι4 ε	149 53	13 30	5.1	+ 33	+ 10
926	56	159 10	16 10	4-5	30 n		16 4	5.2	+ 35	+ 6
927	7	151 40	-11 50	4	2Ι θ	152 13	-11 19	4.8	+ 33	+ 31
		COR	vus.							_
928	I	165 20	-21 40	3	Ια		-21 41	4.2	+ 32 + 62	-1 + 3
929	2	164 20	19 40	3	2 ε	165 22 167 30	19 37	3.2 5.3	+ 50	
930	3	166 40 163 30	18 10	5	5 ζ 4 γ		14 26		+ 57	
931	4	163 30	14 50 12 30	3	7δ		12 2	3.1	+ 29	+ 28
932 933	56	167 0	11 45	4	8η	167 38	11 31	4 · 4	+ 38	+ 14
935	7	170 30	-18 10		9β		-17 56	2.8	+ 31	+ 14
			URUS.							
935	I	190 30	-21 40	5-4	2 g		-21 23		+ 69	
936	2	190 0	18 50	5-4	4h		18 48		+ 87 + 83	
937	3	189 10	20 30	4-3	$\mathbf{I} i_1 \dots \dots \dots \dots$		20 15		+ 83 + 96	+ 15 + 9
938	4	190 0	-20 0	5-4	3 k	191 36	1931	4.1	1 90	9

Magni-Computed for C-Pt. Ptolemy's Catalogue. tude in A. D. 100. No.in Modern Harvard Baily. Revised name. Δ Long. Δ Lat. No. Long. Lat. Mag. Long. Lat. Photometry. CENTAURUS—continued. 0 , ٥ , ٥ 1 o 1 1 XIII 53 186 58 -25 46 +48 -25 40 939 186 10 3 2.9 5 6 + + 5 θ.... XIII 99 d.. 196 8 21 33 28 2.3 22 30 195 40 940 3 60 27 190 10 27 28 4.0 7 189 10 30 94 I 4 $\begin{array}{c} \text{XIV } 40 \psi \dots \\ \text{XIV } 55 a \dots \end{array}$ 8 22 20 4.2 +70 198 10 22 20 199 20 942 4 + + 200 27 . 77 62 23 40 $4 \cdot 5$ 9 199 10 23 45 943 4 XIV 150 c1. 18 5 20 48 18 15 203 2 4.I 202 0 10 944 4 +XIV 141 b. . 64 203 34 4.1 945 ΙI 202 30 20 50 4 28 +-90 28 20 XIII 197 v. 194 50 7 3.5 193 20 4-3 12 946 + 28 49 73 4-3 XIII 198 µ. 195 13 3.3 29 20 947 13 194 0 ÷ XIII 246 9. 93 89 948 28 4-3 196 43 27 50 4.0 **I**4 195 10 0 ÷ XIII 288 χ. 26 29 4·5 2.6 26 30 196 20 197 49 4-3 949 15 +65 ıĞ 202 50 25 15 XIV 109 y. 203 55 25 17 3 950 +XIV 216 K. 57 208 27 23 49 3.3 951 17 207 30 24 0 4 39 78 XIII 231 5. ++++++ 32 43 18 198 33 30 3-2 198 39 3.I 952 0 XIII 267 v2. 30 48 198 58 197 40 4.4 3 I 0 953 19 5 72 XIII 249 v1. 30 17 30 20 198 2 4.2 954 20 196 50 5 Cum. ω. . . . +80 55 193 30 35 21 192 10 34 50 4 955 +77 f..... 190 17 37 34 5.0 956 22 189 0 37 40 186 11 39 58 + 21 γ.... 2.4 185 50 957 23 40 0 3 40 20 + 13 τ.... 185 13 39 55 4.0 185 0 4 5 958 24 184 34 4.2 +114182 40 0 σ.... 42 I 2 4I 959 25 +1° _ 44 22 82 182 40 δ..... 181 18 2.9 26 46 10 3 960 183 13 45 28 4.2 17 +1 17183 30 46 45 ρ.... 96I 27 4 + + 55 $+2^{\circ}57$ +2 364.7 2.6 198 20 M...... 8 962 28 40 45 4 199 15 37 2 ε......... 199 17 39 23 963 196 20 43 0 29 5.4 1.6 197 40 Q 200 16 40 15 964 43 45 3 30 ÷ γ Crucis.... 25 965 190 ်ဝ 51 10 2 190 25 47 34 31 48 27 +51 40 β Crucis.... 195 27 1.5 7 <u>966</u> 2 32 195 20 δ Crucis.... +39 186 20 10 4 189 29 50 17 3.I 967 55 33 +4 33 a Crucis.... 195 43 **I**.6 968 191 10 20 2 52 4I 55 34 (218 20 10 44 a Centauri... -238969 I 215 42 41 53 0.3 35 1213 ? 4I IO 207 31 β Centauri. 0.9 +3 21 36 204 IO 45 20 2 43 55 970 μ Crucis... 194 23 -45 55 $4 \cdot 3$ 17 971 37 194 40 -4910 4 LUPUS. XIV 211 β. 2.8 208 41 -24 48 +208 -24 50 3 4I 972 I 0 29 48 207 10 2.9 +Ś0 29 10 3 a.... 205 50 2 973 +++++ 21 13 XV 31 δ.... 77

Catalogue II—continued.

6

57

2

о

5

2

13

31

2

ΙI

I 2

3

14

6

2

25

48

37

30

53

+3 37

+

+

+10

+

+

+10

+Ι

+

+47

+

+

-+ +

÷

____ 72

+3

+3

+336

+313

+4

+239

+2 17

+1 25

+315

+

+

++++

+

+

58

45

71

37

39

33

75

.

+ 38

+ 23

3.4

2.9

3.7

4.4

4.7

4.4

4.I

 $3 \cdot 5$

4.I

4.I

3.8

2

38

2

0

8

41

48

13

44

33

35

+ 30

+ 28

2 I I ο

213 0

214 10

210 IO

210 40

214 40

213 40

215 40

(200 20 206 0?

201 50

202 0

203 0

3

4

56

7 8

9

10

II

12

13

974

975

976

977

978

979

980

981

982

983

984

21 15

25 10

28 30

30 10

33 10

31 20

30 30

-29 20

21 0

27 0

29 0 4

4

5

5

5

4

4-3

212 17

213 45

2II 2I

211 17

214 25

207 19

202 28

203 23

214 I

213 7

. .

8

21 0

26 19

28 12

28 17

29 26

32 37

31 55

30 O

-28 52

2 25

XV 98 7... 215

XV 35 6....

λ....

XV 242 π..

 μ

κ....

ζ....

 $\begin{array}{c} \text{XIV 66 } \tau^1 \\ \text{XIV 67 } \tau^2 \\ \end{array}$

ρ?....

No. in	I	Ptolemy's	Catalogu	ie.	Modern	Compu A. D	1ted for . 100.	Magni- tude in Harvard	C—	Pt.
Baily.	No.	Long.	Lat.	Mag.	name.	Long.	Lat.	Revised Photom- etry.	ΔLong.	∆Lat.
		LUPUS—c	ontinued							
		• /	• /			o /	o /		,	,
985	14	218 50	-17 O	4	$XV_{217} \eta \dots$	219 23	-17 11	3.6	+ 33	- 11
986 987	15 16	219 20 215 40	15 20 13 20	4-3	XV 248 θ XV 174 Fl. 5 χ	220 21 216 27	15 24 12 57	4.3	+ 61	- 4 + 23
988	10	215 40	11 50	4	XV 204 ξ	210 27	12 57 13 1	4 · 4 5 · 4	+ 47 + 65	-71
989	18	207 20	11 30	4-3	XV 10 Fl. 1 $i \dots$	208 18	12 48	4.9	+ 58	- 78
990	19	207 30?		4-3	XV 22 Fl. 2 f	208 37	-11 18	4.4	+ 67	- 78
1	1		RA.	۰.				r		
991	I 2	237 40 243 0	-22 40 25 45	5	σ	239 2 244 45	-2255 2624	4.6 3.9	+1°22 +1 45	-15 -39
992 993	3	236 10	26 30	4-3	α	238 32	26 15	3.0	+222	+ 15
994	4	230 40	30 20	5	ϵ^1	233 II	30 I	4.I	+2 31	+ 19
995	56	235 10	34 10	4-3	γ	237 53	32 52	3·5 2.8	+243	+ 78 + 81
996 997	7	235 O 230 50	33 20 -34 0	4	β ζ	237 48 233 27	31 59 - 32 49	2.8 3.1	+2 48 +2 37	+ 71
			USTRALIS							
998	I	249 10	-21 30	4	XVIII 73 δ^1 Teles .	249 34	-22 20	} 4.4	+ 28	- 46
999	2	251 40	21 0	5	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	249 42 252 58	22 I2 20 23	} 4.9	∫ + 78	+ 37
1000	3	253 10	20 20	5	XVIII 169 η ² Lac. 7909	253 8 254 30	20 9 19 33	5.4	1 + 88 + 80	+ 51 + 47
1001	4	254 50	20 0	4	XVIII 250 5	² 55 54	19 5	4.8	+ 64	+ 55
1002	56	256 10	18 30	5	$\begin{array}{c c} XVIII 291 \delta \dots \\ VVIII 291 \delta \dots \end{array}$	257 8	17 37	4.7	+ 58	+ 53
1003 1004	7	257 0 256 50	17 IO 16 O	4	XVIII 305 β XVIII 300 α	257 37 257 41	16 30 15 4	4.2 4.I	+ 37 + 51	+ 40 + 56
1004	8	256 30	15 10		XVIII 280 γ	257 10	14 8	5.0	+ 40	+ 62
1006	9	255 10	15 20	4	XVIII 230 c	255 36	I4 I	4.9	+ 26	+ 79
1007	10 11	254 40	14 50 14 40	6 5	$\begin{array}{c} \text{XVIII } 222 \ \nu \dots \\ \text{XVIII } 142 \ \lambda \dots \end{array}$	255 9 252 27	14 13	5·4 5.1	+ 29 + 37	+ 37 - 18
1008	11	251 50	14 40	5	Lac. 7748 (§ Bode).	250 3	16 11	5.2	+ 23	-21
1010	13	249 10	- 18 30	5	XVIII 85θ	250 6	- 18 48	4·7	+ 56	- 18
		PISCIS AU	STRINUS.							
1011	I	307 0	- 20 20	I	24 a	307 14	-20 53	I.3	+ 14	- 33
1012	2	300 40	20 20 22 15	4	$17 \beta \dots $	300 4I 304 49	2I I3 23 3I	4 · 4 4 · 5	+ 1 + 39	- 53 - 76
1013 1014	3	304 IO 305 20	22 15	4	23δ	304 49	23 31	4.3	+ 20	- 61
1015	5 6	304 20	16 15	43	Ιδέ	304 51	17 5	4.2	+ 31	- 50
1016		295 10	19 30	5	$14 \mu \dots \mu$	295 32	19 52	4.6	+ 22 + 118	- 22
1017 1018	7 8	301 10 298 50	15 IO 14 40	5	ξ 16λ	303 8 298 55	15 24 15 34	6.5 5.4	+ 118 + 5	- 14 - 54
1018	9	295 10	15 0	4	Ι2 η	295 47	15 6	5.4	+ 37	- 6
1020	IO	291 50	16 30	4	ΙΟ θ	292 8	16 23	5.I	+ 18	+ 7
1021	II	291 0	18 10 22 15	4	9 ι XXI 308 (γ Gruis).	290 43 290 55	18 6	$\begin{array}{c} 4\cdot 3\\ 3\cdot 2\end{array}$	- 17 + 45	+ 4 - 37
1022 1023	12 Inf. 1	290 IO 278 0	22 15	4 3-4	XX 307 (a Micr.).	290 55	15 14	5.0	+ 1° 10	+7° 6
1023	2	281 10	22 10	3-4	XX 403 (γ Micr.)	281 58	14 28	4.7	+ 48	+7 42
1025	3	284 0	21 10	3-4	XXI 46 (e Micr.)	285 27	15 27	4.8	+1 27	+5 43
1026	4	282 0 283 50	20 50 17 0	5	XX 445 XXI 12	283 0 285 56	14 52 10 49	5.3 5.5	+1 0 +2 6	+558 +611
1027 1028	5	283 50 283 50		4	24 A Capric	265 23	- 7 53	4.6	+1 33	+657
1027 1028	6	283 50	-14 50			285 23		4.6		

CATALOGUE III.

Ptolemy's Catalogue, showing the Longitudes reduced by 2° 40' and the Latitudes unaltered, compared with Computed Positions for the Epoch of Hipparchus, B. C. 130, derived from the same Modern Catalogues as used for Catalogue II.

Baily's	Ptolemy's No. and	Pto	lemy.		computed C. 130.	ΔLong.	ΔLat.
No.	modern name.	Long. – 2° 40'.	Lat.	Long.	Lat.	Δ Long.	ΔLat.
I 2 3 4 5 6 7 8	URSA MINOR. I I 2 23 3 22 4 16 5 21 7 I3 7 I3 9 A	59 50 67 30 87 0 91 0 104 30 113 30	$ \begin{array}{c} \circ & , \\ +66 & \circ \\ 70 & \circ \\ 74 & 20 \\ 75 & 40 \\ 77 & 40 \\ 72 & 50 \\ 74 & 50 \\ +71 & 10 \end{array} $, 58 58 61 32 69 25 87 19 90 25 103 7 111 10 98 14 		, $+ 88$ +102 +115 + 19 - 35 - 83 -140 -126	, -10 -16 -43 -49 +1 -2 +14 +3
$\begin{array}{c} 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\end{array}$	I I 0 2 2 A 3 4 π^2 4 8 ρ 5 13 σ^2 6 24 d 7 14 τ 8 23 h \cdots 9 29 υ \cdots 10 30 φ \cdots 11 25 θ \cdots 12 9 υ \cdots 13 12 κ \cdots 14 18 e \cdots 15 15 f \cdots 16 50 a \cdots 16 50 a \cdots 16 50 a \cdots 17 48 β \cdots 18 69 δ \cdots 20 33 λ \cdots 21 34 μ \cdots 22 52 ψ \cdots 23 54 </td <td> 83 10 83 40 83 30 85 0 85 30 85 30 85 30 85 30 85 30 87 50 96 20 98 0 98 0 98 0 93 0 93 0 93 0 93 0 93 0 93 0 120 30 110 0 127 10 147 10 147 10 103 30 102 20 10</td> <td>$\begin{array}{r} +39 50 \\ 43 0 \\ 43 0 \\ 47 10 \\ 50 30 \\ 47 20 \\ 47 20 \\ 47 20 \\ 42 20 \\ 37 15 \\ 29 20 \\ 28 20 \\ 36 0 \\ 44 \\ 30 \\ 29 20 \\ 28 20 \\ 36 \\ 33 0 \\ 49 \\ 30 \\ 29 20 \\ 28 20 \\ 36 \\ 33 \\ 49 \\ 30 \\ 29 20 \\ 28 15 \\ 35 15 \\ 25 5 0 \\ 53 30 \\ 54 0 \\ 39 \\ 45 \\ 41 20 \\ 17 15 \\ 19 10 \\ 20 0 \\ 54 \\ 41 20 \\ 17 15 \\ 19 10 \\ 20 0 \\ 54 \\ 41 20 \\ 17 15 \\ 19 10 \\ 20 0 \\ 54 \\ 20 20 \\ 21 \\ 51 \\ 20 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{r} +40 & 5 \\ 44 & 21 \\ 43 & 44 \\ 47 & 41 \\ 47 & 37 \\ 50 & 59 \\ 44 & 21 \\ 44 & 54 \\ 42 & 37 \\ 38 & 3 \\ 29 & 34 \\ 28 & 49 \\ 35 & 52 \\ 33 & 16 \\ 49 & 33 \\ 44 & 54 \\ 42 & 37 \\ 38 & 3 \\ 29 & 34 \\ 28 & 49 \\ 35 & 52 \\ 33 & 16 \\ 49 & 33 \\ 44 & 54 \\ 51 & 28 \\ 49 & 33 \\ 44 & 54 \\ 51 & 28 \\ 49 & 33 \\ 44 & 54 \\ 51 & 28 \\ 20 & 32 \\ 25 & 2 \\ 54 & 10 \\ 56 & 17 \\ 54 & 25 \\ 40 & 33 \\ 17 & 48 \\ 19 & 58 \\ 20 & 32 \\ 23 & 37 \\ 40 & 33 \\ 17 & 48 \\ 19 & 58 \\ 20 & 32 \\ 23 & 37 \\ 40 & 33 \\ 17 & 48 \\ 19 & 58 \\ 20 & 32 \\ 23 & 37 \\ 40 & 33 \\ 17 & 48 \\ 19 & 58 \\ 20 & 32 \\ 23 & 37 \\ 41 \\ +22 & 55 \end{array}$</td> <td>$+ \frac{42}{74} +$</td> <td>++++++++++++++++++++++++++++++++++++++</td>	83 10 83 40 83 30 85 0 85 30 85 30 85 30 85 30 85 30 87 50 96 20 98 0 98 0 98 0 93 0 93 0 93 0 93 0 93 0 93 0 120 30 110 0 127 10 147 10 147 10 103 30 102 20 10	$\begin{array}{r} +39 50 \\ 43 0 \\ 43 0 \\ 47 10 \\ 50 30 \\ 47 20 \\ 47 20 \\ 47 20 \\ 42 20 \\ 37 15 \\ 29 20 \\ 28 20 \\ 36 0 \\ 44 \\ 30 \\ 29 20 \\ 28 20 \\ 36 \\ 33 0 \\ 49 \\ 30 \\ 29 20 \\ 28 20 \\ 36 \\ 33 \\ 49 \\ 30 \\ 29 20 \\ 28 15 \\ 35 15 \\ 25 5 0 \\ 53 30 \\ 54 0 \\ 39 \\ 45 \\ 41 20 \\ 17 15 \\ 19 10 \\ 20 0 \\ 54 \\ 41 20 \\ 17 15 \\ 19 10 \\ 20 0 \\ 54 \\ 41 20 \\ 17 15 \\ 19 10 \\ 20 0 \\ 54 \\ 20 20 \\ 21 \\ 51 \\ 20 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +40 & 5 \\ 44 & 21 \\ 43 & 44 \\ 47 & 41 \\ 47 & 37 \\ 50 & 59 \\ 44 & 21 \\ 44 & 54 \\ 42 & 37 \\ 38 & 3 \\ 29 & 34 \\ 28 & 49 \\ 35 & 52 \\ 33 & 16 \\ 49 & 33 \\ 44 & 54 \\ 42 & 37 \\ 38 & 3 \\ 29 & 34 \\ 28 & 49 \\ 35 & 52 \\ 33 & 16 \\ 49 & 33 \\ 44 & 54 \\ 51 & 28 \\ 49 & 33 \\ 44 & 54 \\ 51 & 28 \\ 49 & 33 \\ 44 & 54 \\ 51 & 28 \\ 20 & 32 \\ 25 & 2 \\ 54 & 10 \\ 56 & 17 \\ 54 & 25 \\ 40 & 33 \\ 17 & 48 \\ 19 & 58 \\ 20 & 32 \\ 23 & 37 \\ 40 & 33 \\ 17 & 48 \\ 19 & 58 \\ 20 & 32 \\ 23 & 37 \\ 40 & 33 \\ 17 & 48 \\ 19 & 58 \\ 20 & 32 \\ 23 & 37 \\ 40 & 33 \\ 17 & 48 \\ 19 & 58 \\ 20 & 32 \\ 23 & 37 \\ 41 \\ +22 & 55 \end{array}$	$+ \frac{42}{74} + $	++++++++++++++++++++++++++++++++++++++

Catalogue III-continued.

Baily's	Pt	olemy's No. and	Pto	lemy.	Positions for B.	computed C. 130.		∆Lat.
No.		modern name.	Long. – 2° 40'.	Lat.	Long.	Lat.	Δ Long.	ΔL/at.
		DRACO.	0 /	o /	o /	0 /	,	,
44	I	21 µ	. 204 0	+76 30	204 46	+76 28	+ 46	- 2
45	2	25 v		78 30	219 57	78 23	$+ \frac{1}{47}$	- 7
46	3	23β	-	75 40	222 4	75 33	+ 94	- 7
47	4	32 £	. 234 40	80 20	234 36	80 32	- 4	+ 12
48		$33 \gamma \cdots \cdots$		75 30	238 22	75 14	+ 82	- 16
49	56	39 b		82 20	263 29	82 I	+ 29	- 19
50	7	46 c	. 269 40	78 15	271 I	78 7	+ 81	- 8
51	8	$45 d \dots$		80 20	266 47	80 2	+ 37	- 18
52	9	47 0	. 286 50	81 10	286 24	81 I	- 26	- 9
53	10	58π		81 40	335 46	81 48	+ 26	+ 8
54	11	57 δ		83 0	349 29	82 50	+ 99	— IO
55	12	63 ε		78 50	4 19	79 22	- 41	+ 32
56	13	67 ρ		77 50	352 9	78 4	+119	+ 14
57	14	6Ισ		80 30	8 34	80 50	+ 34	+ 20
58	15	52 v	19 0	81 40	22 16	83 2	+196	+ 82
59	16	δο τ	. 23 30	80 15	25 54	80 26	+144	+ 11
60	17	31 V	. 70 40	84 30	73 13	83 46	+153	- 44
61	18	44 x · · · · · · · · · · · · · ·	47 40	83 30	49 38	83 11	+118	- 19
62	19	43 <i>φ</i>		84 50	42 27	84 36	+197	— I4
63	20	27 f	. 116 0	87 30	113 25	86 46	-155	- 44
64	21	28 ω		86 50	101 15	86 48	-465	- 2
65	22	18 g		81 15	152 41	81 39	-219	+ 24
66	23	$19 h \dots $		83 0	152 38	83 12	-242	+ 12
67	24	22 5	. 155 40	84 50	150 40	⁸ 4 47	- 300	- 3
68	25	14 η	. 157 20	78 O	163 43	78 30	+383	+ 30
69	26	13 θ		74 40	166 56	74 31	+396	- 9
70	27	12 <i>t</i>	. 160 0	70 0	¹ 54 33	71 7	-327	+ 67
71	28	10 <i>i</i>		64 40	I24 44	65 15	+ 4	+ 35
72	29	II a		65 30	127 18	66 16	- 72	+ 46
73	30	5 к		61 15	106 19	61 36	- 11	+ 21
74	31	Ιλ	100 30	+56 15	100 27	+57 3	- 3	+ 48
		CEPHEUS.						
75	I	Ι κ	. 32 20	+75 40	33 58	+75 13	+ 38	- 27
76	2	$35 \gamma \cdots $. 30 20	64 15	30 48	64 15	+ 28	0
77	3	$8 \beta \dots \dots \dots \dots$		71 10	6 41	70 59	+121	- 11
78	4	5 a	. 344 0	69 0	343 44	68 56	- 16	- 4
79	5 6	3η		72 0	334 47	71 33	-113	- 27
80		2 θ		74 0	336 19	73 56	- 61	- 4
81	7	17 ξ		65 30	355 4	65 44	- 46	+ 14
82	8	32 1	· 4 50	62 30	4 19	62 27	- 31	-3
83	9	23 E		60 15	343 36	60 3		- 12
84	IO	21 5		61 15	344 55	61 5	+ 15	-10
85		22 λ	- ·	61 20	347 0	61 48	+ 40	+ 28
86	Inf. 1	13μ		64 0	340 43	64 9	- 17	+ 9
87	2	27 δ	. 348 40	+59 30	348 30	+59 27	- 10	- 3
		BOOTES.		1 - 0				
88	I	I7 к		+58 40	149 44	+5851	+ 4 - 16	+ II $+$ 22
89	2	21 <i>i</i>		58 20	151 14	58 52 60 24	-36	+ 32 + 14
90	3	$23 \theta \dots$		60 10	152 24		+ 12	-
91	4	19 λ	. 157 0	+54 40	157 12	+54 40	T 12	0

Catalogue	III	continued.	
Guiulogui	***	continucu.	

	modern name. TES—continued. 27 γ 42 β 49 δ 51 μ.	Lon - 2° /	ıg. 40'. ,	Lat	t.	Lor	ıg.	Lat		ΔLo	ing.	ΔL	at.
5 6 7 8 9 10 11	27γ 42β 49δ	167	,				~		•		ł		
7 8 9 10 11	42 β 49 δ	167	· (0	,	0	,	0	,		,		,
7 8 9 10 11	42 β 49 δ	174	0	+49		167		+49		-+-	1	+	
8 9 10 11	5T U		0		50	174		54		+	18		2 6
9 10 11	$5I\mu$		0	48	40	183		49	8		46		
10 11	J	183	0	53	15	183	14	53	30	+	14	+	15
II	$\begin{cases} 52 \ \nu^1 \\ 53 \ \nu^2 \\ \ldots \\ \end{cases}$	182	20	57	30	182	4I	57	18	+	21	_	I 2
II	2η Coronæ	185	0	46	30	187	a	47	2	+1	20	+-	32
12	I o Coronæ	185		45		186		46		+			38
	45 c	185		41		185	22	40			8	-	60
13	$43 \psi \cdots $		0	41	•	183		42		-	- 1	+	
14	46 <i>b</i>	184		42	•	185		42	2		48 67	-	28
15 16	4Ιω 36 ε	185	0	40		183 178		40 40		+	61	++	2 34
10	28 σ	177 173	20	40 41	40	173		40	49 7		58	-	54 27
18	25 ρ	172		-	10		4	42			44		20
19	30 5				0	183	19	28	2	+	39	+	2
20	8 η			28		169		28			52		23
21	4 <i>τ</i>		50		30	168		26			40		11
22 nf. 1	5υ 16α			$^{25}_{+31}$	20	169 174	- 1	25 + 32	4		49 17		18 34
	ORONA BOREALIS.	*/4	20	1.31	30	-/4	57	132	4		-/	I	34
I	5 a	192	0	+44	20	192	21	+44	22	+	24	+	3
2	$\beta \beta \ldots \beta \beta \ldots \beta \ldots \beta \beta \ldots \beta \beta \ldots \beta \beta \beta \beta \beta \beta$		ŏ		10	189		46			26	÷	2
3	4 <i>θ</i>		10	48		189		48			28	+	46
4	9π	191	0	50	30	192	14	50			74	+	9
5 6	8γ		-	44		195	_5	44		-+-	35	_	4
	10 δ 13 ε				50 10	197 199		44 46			44	++	8 7
7 8	14 <i>t</i>	190		+49		199		+49			40 12	4	2
	HERCULES.												
I	64 a	225	0	+37	30	226	31	+37	33		91	+	3
2	$27 \beta \ldots \ldots$	211	0	43	0	211	26	42	58		26	-	2
3	20 γ	209	0	40		209		40		+	29	-+-	3
4	7 κ 65 δ	205 224	20 0	37 48	10 0	206 225	0	37 48			40 65	+	17
5	76 λ				30	225	5 14		3 34		54	+	3 4
7	86 μ	235	0	52	ఀ	235	52	51			52	<u> </u>	9
8	103 0	242	50	52	50	243	6	52	31	+	ĭ6	_	19
9		0.2	0	54	0						51	-	5
		-	-							+		_	I
											. 1		0
													0
14	6í c											+	14
15	67π	1				222	19	59	49	+	59	-	I
16	69 <i>e</i>											+	3
17					-	225	44						60
								60	59				I I2
18	•											- -	13 57
	8 9 10 11 12 13 14 15 16 17						$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Catalogue	IIIcontinued.
-----------	---------------

Baily's	P	tolemy's No. and		Pto	emy.		Positio for	ons co B. C.	mput 130.	ted			• T	
No.		modern name.	Lon – 2° 2		Lat	: .	Long	5.	Lat.		ΔLo	ng.	ΔL	at.
	HER	CULEScontinued.	0	,	0	,	0,	,	0	,		,		,
139	21	77 ×	224	10	+71	15	222 4		-71 3	30		82	+	15
140	22	82 y		0	72	0	227 4	5	72	3	+	45	+	3
141	23	$44 \eta \cdot \cdot$	208	0	60	•	208 5		60 3	33	+	50		18
142	24	35 σ	202 193	40 0	63 65	20	203 I 194 2		63 2 66	22 I		38 80	++++	22
143 144	25 26	$II \varphi \dots \dots \dots \dots \dots \dots \dots$	195	0		30 40	194 2		63 5			45		31 17
145	27	6υ	187		64		188 1	I	64 3	ŝī		41	÷	16
146	28	Ι χ	188		60	ŏ	188	9	· · ·	I		21	÷	I
147	29	$\int 52 \nu^1$ Bootis	182	20	57	30	182 4	I	57 I	18	+	21	-	I 2
148	Inf. 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	+38		211 5		-35 2		+1			166
		LYRA.			. 5				55	Т		- 5		
149	I	3 a	254	40	+62	0	255 3	6 4	-61 5	53	+	56	_	7
150	2	$\left\{\begin{array}{c} \boldsymbol{\epsilon}^1 \dots \dots \\ \boldsymbol{\epsilon}^2 \dots \dots \end{array}\right.$	}257	40	62	40	259 1	1	62 3	34		91	_	6
151	3		}257	40	61	ο	258 3	8	60 3	37	+	58	_	23
152	4	$\mathbf{I2} \ \delta^2 \dots \dots \dots \dots \dots$	261	0	60	0	262 1	4	59 3	34	+	74	_	26
153	56	20 η	269	20	61		270 4	2	60 5	55	+	82	-	25
154		$21 \theta \dots \dots$		0	60			9	59 4	18	+	69		32
155	7	$10 \beta \dots \dots \dots$	258 258		56		259 2		56 I		+		+	6
156 157	8 9	9 ν^2	250 261		55 55	0 20	259 262 2	7	55 2 55 1	28		57 58	+	
158	10	15λ	261	20	+54		262 4		-54 4			81	-	43
		CYGNUS.						Ì						
159	I	6β	271		+49		271 4		-49 1		_	I	_	8
160	2	$12 \varphi \dots$	276		50	- 1	275 3		50 5		_	46	+	20
161 162	3	$\begin{array}{c} \mathbf{2I} \ \eta \dots \dots \\ 37 \ \gamma \dots \dots \end{array}$	283 295		54	-	283 3		54 2		_	5	_	2
162	4	50 a	306		57 60	20 0	295 3 306 1		57 I 60	2		14 19	- +	2 2
164	5 6	18 δ	287	o	64			I	64 3		+	I	_	3
165	7	13 θ	289		69		289 2	5	69 4	o	_	25		ŏ
166	8	ΙΟ ι	288		71	-	288 5	2	71 3		+		+	5
167	9	I к 53 е	284 208		74		285 5 298	5	73 5		+1	15 8	+	2
168 169	10 11	$53 \epsilon \dots 53 \epsilon \dots 54 \lambda \dots$	298 301		49 52		300 2		49 3 51 4		_	8 41	_	0 24
170	12	64ζ	-	0	52 44	0	303 4			0		20	_	24 10
171	13	58ν	307	20	55		306 4	9	55	2		31	_	8
172	14	62ξ	311	50	57	0	311 3	6	56 4	0	_	14	-	20
173	15	$\begin{cases} 30 \ o^1 \dots \\ 31 \dots \\ \dots $	}298 ∶	30	64	0	298 5	6	63 4	9	+	26	-	11
174	16	$32 o^2 \dots \dots$	•	0	64	30	300 4		64 2		+	42	_	4
175	17	$46 \omega^2 \dots$	309		63	45	307 4	4	64 I		— I	<u>6</u> 6	+	33
176	Inf. 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	308 311	0 10	49 +51			2 5 +	50 3 -51 3		+	62 5	+	50
177	2		J**		- J -	ŦŬ		J I	5- 5	5		J		5
178	I	CASSIOPEIA. 17 ζ	5	10	+45	20	5 A	2 +	-44_3	4	+	32	_	46
170	1	1/ s	8	10	46	45	54 82	5	46 2			15	_	17
180	3	$24 \eta \dots$	10 :		+47		IO 2		-47 2		÷	5	—	28

Baily's	Ptolemy's No. and	Ptol	emy.	Positions co for B. C.	mputed 130.	ΔLong.	ΔLat.
No.	modern name.	Long. 2° 40'.	Lat.	Long.	Lat.	ΔLong.	
	CASSIOPEIA-continued.	0 /	0 /	o /	• /	,	,
181 182 183 184 185 186 187 188 189 190	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 0 18 0 24 20 29 0 12 0 15 0 359 40 12 20 5 10 1 0	$\begin{array}{rrrrr} +49 & 0 \\ 45 & 30 \\ 47 & 45 \\ 47 & 20 \\ 44 & 20 \\ 45 & 0 \\ 50 & 0 \\ 50 & 0 \\ 52 & 40 \\ 51 & 40 \\ +51 & 40 \end{array}$	18 23 25 21 32 49 12 22 16 7 0 50 13 16 5 33	48 38 46 20 47 20 48 42 42 58 44 55 49 17 52 6 51 20 51 1	+ 33 + 23 + 61 + 229 + 22 + 67 + 70 + 56 + 23 + 45	$ \begin{array}{r} - 22 \\ + 50 \\ - 25 \\ + 82 \\ - 82 \\ - 5 \\ - 43 \\ - 34 \\ - 20 \\ - 39 \end{array} $
	PERSEUS.						
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219	I 7 χ . 2 15 η . 3 23 γ . 4 13 θ . 5 18 τ . 6 18 Hev. ι . 7 33 a . 8 35 σ . 9 37 ψ . 10 39 δ . 11 27 κ . 12 26 β . 13 28 ω . 14 25 ρ . 15 22 π . 16 72 b 21 Hev. 17 47 λ . 18 48 c . 19 51 μ . 20 53 d . 21 58 e . 22 41 ν . 23 45 ϵ . 24 46 ξ . 25 38 o . 26 44 ζ . 27 36 ρ^1 .	25 0 24 10 42 10 40 20 39 40 41 20 41 30 43 40 34 10	$\begin{array}{r} +40 & 30 \\ 37 & 30 \\ 34 & 30 \\ 32 & 20 \\ 34 & 30 \\ 31 & 10 \\ 30 & 0 \\ 27 & 50 \\ 27 & 40 \\ 27 & 20 \\ 27 & 20 \\ 27 & 0 \\ 21 & 0 \\ 11 & 0 \\ 11 & 0 \\ 31 & 0 \\ +20 & 40 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 49 + 44 + 31 + 26 + 11 + 24 + 25 - 16 + 124 + 25 - 16 + 122 +	$\begin{array}{r} + & 2 \\ - & 15 \\ - & 13 \\ - & 21 \\ - & 31 \\ - & 7 \\ - & 3 \\ + & 37 \\ - & 48 \\ - & 34 \\ - & 48 \\ - & 34 \\ - & 44 \\ + & 59 \\ + & 11 \\ - & 1 \\ - & 4 \\ + & 59 \\ + & 11 \\ - & 23 \\ - & 4 \\ + & 5 \\ + & 9 \end{array}$
220 221 222 223 224 225 226 227 228	AURIGA. 1 33 δ 2 30 ξ 3 13 a 4 34 β 5 32 ν 6 37 θ 7 7 ϵ 8 10 η 9 8 ζ	59 40 52 20 60 10 58 30 60 10 49 20 49 30	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	59 33 52 15 60 21 58 42 60 19 49 16 49 51	30 39 31 59 22 48 21 13 15 26 13 32 20 40 18 2 17 57	$ \begin{array}{r} + 28 \\ - 7 \\ - 5 \\ + 11 \\ + 12 \\ + 9 \\ - 4 \\ + 21 \\ - 17 \end{array} $	$ \begin{array}{r} + & 39 \\ + & 9 \\ + & 18 \\ + & 73 \\ + & 11 \\ + & 12 \\ & 0 \\ + & 2 \\ - & 3 \end{array} $

Catalogue III-continued.

Baily's	Pt	colemy's No. and	Ptol	emy.	Positions for B.	computed C. 130.	ΔLong.	ΔLat.
No.		modern name.	Long. 2° 40'.	Lat.	Long.	Lati.	ΔLong.	ΔLat.
	AU	RIGA—continued.	o /	o /	o /	o /	,	,
229	10	3	47 10	+10 10	47 3	+10 12	- 7	+ 2
230	II	$23 \gamma = 112 \beta$ Tauri	53 0	5 0	52 59	5 11	— İ	+ 11
231	I 2	25χ	53 20	8 30	54 33	8 35	+ 73	+ 5
232	13	24 φ	53 40	12 10	53 37	10 57	- 3	- 73
233	14	I4	50 20	+10 20	50 55	+ 9 20	+ 35	- 60
		OPHIUCHUS.						
234	I	55 a	232 10	+36 o	232 45	+36 14	+ 35	+ 14
234	2	60β .	235 20	27 15	235 42	28 18	+ 22	+ 63
236	3	62γ .	236 20	26 30	237 0	26 27	+ 40	-3
237	4	25	220 40	33 0	221 0	32 47	+ 20	- 13
238		27 K	222 0	31 50	222 24	32 8	+ 24	+ 18
239	5 6	ιόλ	215 40	23 45	215 57	23 49	+ 17	+ 4
240	7	Ιδ	212 20	170	212 41	17 34	+ 21	+ 34
24I	8	2 ε	213 20	16 30	213 51	16 40	+ 31	+ 10
242	9	57 <i>µ</i>	234 0	15 0	234 43	15 30	+ 43	+ 30
243	10	$64 \nu \dots \dots$	239 40	13 40	240 10	I4 I	+ 30	+ 2I
244	II	$69 \tau \dots \dots \dots \dots$	240 40	14 20	241 IO	15 34	+ 30	+ 74
245	12	$35 \eta \cdots $	228 30	7 30	228 22	7 26	- 8 + 8	-4 + 10
246	13	40 ξ	231 0	+ 2 15	231 8	+ 2 25	+ 19	+ 10 - 18
247	14	36 A	230 20	-215	230 39	- 2 33	+ 8	- 4
248	15	$42 \theta \dots $	231 40	I 30 0 20	231 48	I 34 0 36	+ 23	- 19
249	16 17	44 b	232 20 233 IO	- 0 15	233 53	-024	+ 43	- 9
250 251	17	52	234 30	+ 1 0	234 40	+136	+ 10	+ 36
251	10	13 (11 50	219 38	11 39	+ 8	- 11
253	20	8φ	219 0	5 20	219 4	5 28	+ 4	+ 8
254	21	$7 \mathbf{x} \cdots \mathbf{x} \cdots \mathbf{x}$	218 O	3 10	218 23	3 29	+ 23	+ 19
255	22	4ψ	217 10	I 40	217 57	I 49	+ 47	+ 9
256	23	9ω		+ 0 40	220 2	+ 0 42	+ 22	+ 2
257	24	5.ρ	218 0	- 0 45	218 51	-128	+ 51	- 43
258	Inf. I	66	239 20	+28 10	240 28	+28 6	+ 68	- 4
259	2	67	240 0	26 20	240 35	26 40	+ 35	+ 20 + 2
260	3	68	240 20	25 0	1 35	25 2 26 53	+ 33 + 46	-7
261	4	70		$\begin{vmatrix} 27 & 0 \\ +33 & 0 \end{vmatrix}$		+33 17		+ 17
262	5	72	242 0	1 3 3 0	~4~ 54	1 3 3 - 1	J J T	
	-	SERPENS.	196 10	+38 0	197 26	+38 18	+ 76	+ 18
263	I	21 ι 38 ρ	-	40 0		40 12		
264 265	2	$\begin{array}{c} 38 \ \rho \dots \dots \dots \dots \\ 41 \ \gamma \dots \dots \dots \dots \end{array}$	201 40	36 0		36 2	+ 58	+ 12 + 2
205	3	$\frac{41}{28}\beta$	-	34 15		34 33		
200		$35 \kappa \dots $		37 15	-	37 19		+ 4
267	56	$44 \pi \cdots	200 30	42 30		42 40	1 :	+ 10
269	7	13 δ	. 199 0	29 15	1 -	29 6		
209	8	27λ	202 10	26 30		26 47		
270	9	24 a	201 40	25 20	-	25 42	+ 39	+ 22
272	10	$37 \epsilon \dots$	203 40	24 0		24 9	+ 55	
273	II	32μ		16 30	206 21	16 29	+ 11	— I
274	12	3 v Ophiuchi		13 15	? 216 56	13 28	+ 86	
275	13	53 v		10 30		10 32		
276	14	55 ξ		+ 8 30	234 59	+ 8 15	+ 39	- 15
	·							

Catalogue III-continued.

Baily's		olemy's No. and	Pto	lemy.	Positions for B.	computed C. 130.	ΔLong.	ΔLat.	
No.		modern name.	Long. - 2° 40'.	Lat.	Long.	Lat.	Δ Long.	ΔL/at.	
277 278 279 280	SER 15 16 17 18	PENS—continued. 56 ο 57 ζ 58 η 63 θ	°, 235 10 241 0 246 0 255 40	$ \begin{array}{c} \circ , \\ +10 50 \\ 20 0 \\ 21 10 \\ +27 0 \end{array} $	°, 235 48 240 30 246 28 256 11	$^{\circ}$ / + 10 47 20 5 21 9 + 27 9	+ 38 - 30 + 28 + 31	-3 +5 -1 +9	
281 282 283 284 285	1 2 3 4 5	SAGITTA. 12 γ 8 ζ 7 δ 5 α 6 β.		+39 20 39 10 39 50 39 0 +38 40	277 35 274 36 273 51 271 36 271 44	+39 25 38 39 39 9 39 2 +38 27	+ 5 + 36 + 41 - 24 + 64	+ 5 - 31 - 41 + 2 - 13	
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300	1 2 3 4 56 7 8 9 Inf. 1 2 3 4 56	AQUILA. 63τ 60β $53 a$ 59ξ 50γ 51φ 50γ 51φ 51φ 51φ 51φ 51φ 52γ 55γ 50δ 30δ 41ι 39κ 16λ	272 IO 271 IO 272 O 270 30 273 20	$\begin{array}{r} +26 50 \\ 27 10 \\ 29 10 \\ 30 0 \\ 31 30 \\ 31 30 \\ 28 40 \\ 26 40 \\ 36 20 \\ 21 40 \\ 19 10 \\ 25 0 \\ 15 30 \\ +18 10 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+27 15 $27 8$ $29 24$ $29 1$ $31 29$ $31 44$ $29 1$ $26 43$ $36 31$ $21 46$ $18 57$ $25 2$ $20 16$ $14 37$ $+17 54$	+ 71 + 46 + 42 + 60 + 55 + 67 + 8 - 14 + 46 - 7 - 50 + 34 + 47 - 103 + 17	$\begin{array}{r} + 25 \\ - 2 \\ + 14 \\ - 59 \\ - 1 \\ + 21 \\ + 21 \\ + 3 \\ + 11 \\ + 6 \\ - 13 \\ + 2 \\ + 16 \\ - 53 \\ - 16 \end{array}$	
301 302 303 304 305 306 307 308 309 310	1 2 3 4 5 6 7 8 9 10	DELPHINUS. 2 ϵ 5 ι 7 κ 6 β 9 a 11 δ 12 γ 3 η 4 ζ 8 θ	286 0 286 0 285 50	$\begin{array}{r} +29 & 10 \\ 29 & 0 \\ 27 & 45 \\ 32 & 0 \\ 33 & 20 \\ 33 & 20 \\ 33 & 10 \\ 30 & 15 \\ 31 & 50 \\ +31 & 30 \end{array}$	284 35 285 50 285 33 286 51 287 51 288 39 289 59 285 19 286 17 286 46	$\begin{array}{r} +29 & 17 \\ 29 & 1 \\ 27 & 44 \\ 32 & 9 \\ 33 & 14 \\ 32 & 9 \\ 32 & 59 \\ 30 & 51 \\ 32 & 21 \\ +30 & 48 \end{array}$	$\begin{array}{r} - 25 \\ - 10 \\ - 27 \\ + 61 \\ + 21 \\ - 1 \\ - 31 \\ + 29 \\ + 87 \\ + 26 \end{array}$	$ \begin{array}{r} + & 7 \\ + & 1 \\ - & 1 \\ + & 9 \\ - & 6 \\ + & 9 \\ - & 11 \\ + & 36 \\ + & 31 \\ - & 42 \end{array} $	
311 312 313 314	1 2 3 4	EQUULEUS. 8 α 10 β 5 γ 7 δ	293 40 295 20 293 40 295 0	$ \begin{array}{r} +20 & 30 \\ 20 & 40 \\ 25 & 30 \\ +25 & 0 \end{array} $	293 35 295 54 293 56 294 59	$ \begin{array}{c} +20 & 21 \\ 21 & 12 \\ 25 & 30 \\ +25 & 6 \end{array} $	$ \begin{array}{r} - & 5 \\ + & 34 \\ + & 16 \\ - & 1 \end{array} $	$ \begin{array}{r} - & 9 \\ - & 28 \\ & 0 \\ + & 6 \end{array} $	
315 316 317 318	1 2 3 4	PEGASUS. $\delta = 2I \ a \ Andromed \approx$ $88 \ \gamma \dots \dots \dots$ $53 \ \beta \dots \dots \dots$ $54 \ a \dots \dots \dots$	345 10 339 30 329 30 324 0	$+26 \circ 12 30 \\ 31 \circ +19 40$	344 50 339 37 329 48 323 59	$ \begin{array}{r} +25 & 44 \\ 12 & 34 \\ 31 & 6 \\ +19 & 28 \end{array} $	- 20 + 7 + 18 - 1	- 16 + 4 + 6 - 12	

Baily's	Ptolemy's No. and	Pto	lemy.	Positions for B.	computed C. 130.		٨T
No.	modern name.	Long. - 2° 40'.	Lat.	Long.	Lat.	ΔLong.	ΔLat.
	PEGASUS-continued.	0 /	0 /	0 /	0 /	,	,
319	1	331 50	+25 30	331 36	+25 34	- 14	+ 4
320	$5 62 \tau \qquad \dots \qquad \dots \qquad 6 68 v \qquad \dots \qquad$		25 0	332 23	24 50	+ 3	- 10
321	$7 44 \ \eta \cdots \cdots \cdots \cdots$		35 O	326 17	35 8	- 3	+ 8
322	8 43 0		34 30	325 30	34 27	-20	-3
323	9 47 λ 10 48 μ		29 O 29 30	323 37 324 52	28 50 29 30	+ 7 + 32	- 10 0
324 325	$10 40 \mu$.		18 0	316 36	17 46	+ 26	- 14
325	$12 46 \xi$		19 0	318 28	18 48	+38	- 12
327	I3 50 p	1 0	15 O	318 59	14 33	+ ĭ9	- 27
328	14 49 σ		16 O	318 28	15 51	+ 38	- 9
329	15 26θ	306 40	16 50	307 9	16 31	+ 29	- 19
330	$16 22 \nu \dots \dots \dots$	305 20	16 O	305 41	15 47	+ 21	-13
331	$17 \qquad 8 \epsilon \dots \dots \\ 17 \qquad 10 = 10$	302 40	22 30	302 23	22 13	- 17	-17 -8
332	$18 29 \pi \dots $	321 0	41 10	320 11 314 47	4I 2 34 23	-49 -13	+ 8
333	19 24 ι 20 ΙΟ κ		34 15 + 36 50	314 47	+36 44	$-\frac{13}{8}$	- 6
334		Jey 40	1 90 90	5-7 5-	- J- 1 1		
	ANDROMEDA. Ι 31δ	252 40	+24 30	352 17	+24 19	- 23	- 11
335	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		27 0	353 13	27 3	-27	$+ \frac{1}{3}$
336 337	$3 \qquad 30 \in \ldots $		23 0	351 38	23 0	- 2	ŏ
338	4 25σ		32 0	350 59	31 30	— I	- 30
339		1	33 30	351 47	33 17	- 13	- 13
340	$5 \qquad 24 \ \theta \dots \qquad \dots$. 352 20	32 20	352 12	32 17	- 8	- 3
341	<u>7</u> Ι7 ι		41 0	346 43	40 57	- 17	-3 - 22
342	8 19 <i>к</i>		42 0	347 56	41 38	-4 - 27	- 22 - I
343	9 16λ		44 0 17 30	349 3 351 8	43 59	-22	+ 2
344	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15 50	352 53	15 50	- 7	0
345	$12 43 \beta \dots \dots \dots \dots$		26 20	0 52	25 53	- 18	- 27
346 347	$13 37 \mu$		30 0	359 38	29 33	+ 28	- 27
348	$14 35 \nu \dots \dots \dots$	359 20	32 30	359 43	32 27	+ 23	- 3
349	15 57 γ	. 14 10	28 O	I4 44	27 39	+ 34	- 21
350	16 $54 = \varphi$ Persei		37 20	15 9	36 40	+ 39	- 40
351	17 $51 = v$ Persei	-	35 40	13 0	35 18	+ 30 - 22	- 22 - 1
352	18 50 v		29 O 28 O	9 18 9 26	28 59 27 46		-14
353	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 9 20 . 7 30	35 30	9 20 7 2	36 11	-28	+ 41
354	20 $42 \varphi \dots \dots \dots$ 21 $49 A \dots \dots \dots$		34 30	10 40	34 23	+ 40	- 7
355 356	22 49 11 12 12 12 12 12 12 1		32 30	11 3	31 18	- 27	- 72
357	23 1 0	-	+44 0	338 28	+43 44	- 32	- 16
	TRIANGULUM.						
358	I 2 a		+16 30	7 22	+16 45	- 58	+ 15
359	$2 \qquad 4 \beta \dots \dots \dots$		20 40	12 46			-13
360	3 8δ		19 40	13 31	19 27 +18 45		
361	4 9 γ · · · · · · · · · · · · · · · · · · ·	. 14 10	+19 0	14 0	1 7 10 45		- 5
	ARIES.			-			
362	$\mathbf{I} = 5 \boldsymbol{\gamma} \dots \dots$. 4 0	+ 7 20			- 24	- 15
363	$2 \qquad 6\beta$		8 20	1 2 2	8 24		
364	$3 17 \eta. \ldots \ldots$. 8 20	+ 7 40	0 20	+ 7 16		-4

Baily's	Р	tolemy's No. and	Pto	lemy.	Positions for B.	computed C. 130.	ΔLong.	ΔLat.
No.		modern name.	Long. – 2° 40′.	Lat.	Long.	Lat.	A Long.	A Dat.
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379	A 4 5 6 7 8 9 10 11 12 13 1nf. 1 2 3 4 5	RIES continued. 22 θ	$\begin{array}{c} \circ & \prime \\ 8 & 50 \\ 3 & 50 \\ 15 & 0 \\ 18 & 40 \\ 21 & 10 \\ 22 & 40 \\ 24 & 20 \\ 17 & 0 \\ 15 & 20 \\ 15 & 20 \\ 15 & 20 \\ 16 & 0 \\ 17 & 0 \\ 16 & 30 \end{array}$	$\begin{array}{c} \circ & \prime \\ + & 6 & \circ \\ & 5 & 30 \\ & 6 & \circ \\ & 4 & 50 \\ & 1 & 40 \\ & 2 & 30 \\ & 1 & 50 \\ & 1 & 50 \\ & - & 1 & 30 \\ & - & 5 & 15 \\ + & 10 & 0 \\ & - & 5 & 15 \\ + & 10 & 0 \\ & 11 & 10 \\ & + & 10 & 40 \end{array}$, ,<	$\begin{array}{c} \circ & ' \\ + & 5 & 35 \\ 5 & 59 \\ 3 & 57 \\ 1 & 38 \\ 2 & 40 \\ 1 & 54 \\ + & 1 & 8 \\ - & 1 & 29 \\ - & 5 & 41 \\ + & 9 & 54 \\ 10 & 19 \\ 12 & 22 \\ 11 & 7 \\ + & 10 & 43 \end{array}$	$ \begin{array}{c} & , \\ + & 28 \\ + & 7 \\ - & 26 \\ + & 16 \\ - & 1 \\ - & 19 \\ - & 17 \\ + & 12 \\ 0 \\ - & 9 \\ + & 23 \\ + & 23 \\ + & 3 \end{array} $	$ \begin{array}{c} & , \\ - & 25 \\ - & 11 \\ - & 53 \\ - & 53 \\ - & 53 \\ - & 53 \\ + & 10 \\ + & 4 \\ - & 2 \\ + & 10 \\ + & 4 \\ - & 26 \\ - & 4 \\ - & 18 \\ - & 3 \\ + & 3 \end{array} $
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414	I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Inf. I 2	TAURUS. 5 f	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} - \ 6 \ 0 \\ 7 \ 15 \\ 8 \ 30 \\ 9 \ 30 \\ 9 \ 30 \\ 12 \ 40 \\ 14 \ 50 \\ 13 \ 0 \\ 5 \ 45 \\ 5 \ 50 \\ 3 \ 0 \\ 14 \ 50 \\ 13 \ 0 \\ 5 \ 5 \\ 5 \ 10 \\ 0 \\ 13 \\ 4 \ 5 \\ 5 \ 5 \\ 10 \\ 0 \\ 13 \\ 10 \\ 14 \\ 5 \\ 5 \\ 5 \\ 10 \\ 0 \\ 13 \\ 10 \\ 0 \\ 14 \\ 5 \\ 5 \\ 10 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 15 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 0 \\ 15 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} - \ 6 \ 8 \\ 7 \ 39 \\ 9 \ 32 \\ 8 \ 52 \\ 8 \ 52 \\ 8 \ 52 \\ 8 \ 52 \\ 8 \ 52 \\ 8 \ 52 \\ 8 \ 52 \\ 8 \ 52 \\ 12 \ 25 \\ 14 \ 40 \\ 9 \ 46 \\ 12 \ 58 \\ 4 \ 13 \\ 0 \ 5 \ 39 \\ 2 \ 49 \ 46 \\ 12 \ 58 \\ 4 \ 13 \\ 0 \ 5 \ 39 \\ 2 \ 49 \ 46 \\ 12 \ 2 \ 2 \ 22 \\ 2 \ 22 \ 22 \ 22 \\ 2 \ 22 \ 22 \ 22 \\ 2 \ 22 \ 22 \ 22 \ 22 \\ 2 \ 22 \ $	+ 19 9 + - 16 5 + + 36 - 11 + +	$\begin{array}{c} - & 8 \\ - & - & - \\ - & - & + \\ - & + & + \\ + & + & + \\ + & + & + \\ + & + &$

Catal	ogue II.	I—contir	nued.				
tolemy's No. and	Pto	lemy.	Positions computed for B. C. 130.				
modern name.	Long. – 2° 40′.	Lat.	Long.	Lat.	Δ		
urus—continued.	o /	0 /	0 /	0 /			
10 9 <i>n</i>	51 20	- I 45	50 55	— I I7			
II4 o	53 20	2 0	52 54	I 34			
126	56 20		55 53	77			
129	56 20		57 11	- 7 52			
I2I	54 20	+ 0 40	54 4 ⁸	+ 0 27			

Baily's	Ptolemy's No. and	Pto	lemy.		computed C. 130.		4 T -+
No.	modern name.	Long. – 2° 40′.	Lat.	Long.	Lat.	ΔLong.	ΔLat.
415 416 417 418 419 420 421 422 423	TAURUS—continued. 3 109 n	. 53 20 56 20 56 20 54 20 56 20 56 20 58 20 58 20 59 40	$ \begin{array}{r} $	 50 55 52 54 55 53 57 11 54 48 55 51 57 55 58 56 59 57 	$ \begin{array}{c} \circ & ' \\ - & 1 & 17 \\ & 1 & 34 \\ 7 & 7 \\ - & 7 & 52 \\ + & 0 & 27 \\ 2 & 16 \\ 0 & 52 \\ 3 & 53 \\ + & 2 & 13 \end{array} $	$ \begin{array}{r} & - & 25 \\ - & 26 \\ - & 27 \\ + & 51 \\ + & 28 \\ - & 29 \\ - & 25 \\ - & 44 \\ - & 43 \end{array} $	+ 28 + 26 - 47 - 12 - 13 + 76 - 28 + 33 + 58
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448	I 66 a 2 78 β 3 34 θ 4 46 τ . 5 60 ι 6 9 υ 7 77 κ 8 57 A 9 58 10 27 ϵ 11 43 ζ 12 55 δ 13 54 λ 14 7 η 15 13 μ 16 18 υ 17 24 γ 18 31 ξ 19 36 d 36 d 36 d 36 d 581 g 7 16 ζ Cancri	. 84 0 . 74 0 . 76 0 . 76 0 . 76 0 . 79 20 . 81 20 . 81 20 . 84 0 . 79 0 . 70 20 . 79 0 . 79 0 . 63 50 . 67 30 . 63 50 . 63 50 . 63 50 . 63 50 . 63 50 . 83 40 . 83 40 . 83 20	$\begin{array}{r} + 9 40 \\ 6 15 \\ 10 0 \\ 7 20 \\ 5 30 \\ 4 50 \\ 2 40 \\ 0 20 \\ + 1 30 \\ - 2 30 \\ 0 30 \\ - 2 30 \\ 0 30 \\ - 30 \\ 1 30 \\ 1 30 \\ - 30 \\ - 2 40 \\ - 2 40 \\ - 2 40 \end{array}$	80 42 83 55 71 31 75 25 81 43 84 4 79 33 70 21 75 24 78 56 79 33 70 21 75 24 78 56 79 13 63 52 65 40 67 13 69 29 71 40 61 21 63 46 72 22 87 29 85 33 84 1 91 42	$\begin{array}{r} + 9 53 \\ 6 29 \\ 10 45 \\ 7 29 \\ 5 32 \\ 5 2 50 \\ 2 42 \\ 0 47 \\ + 1 47 \\ - 2 19 \\ 0 28 \\ 5 54 \\ 1 10 \\ 1 4 \\ 3 19 \\ 7 1 \\ 10 17 \\ - 0 24 \\ + 5 58 \\ - 1 25 \\ 1 7 \\ 2 52 \\ - 2 28 \end{array}$	$\begin{array}{r} + & 2 \\ - & 149 \\ - & + & 23 \\ + & + & 23 \\ + & + & - & + \\ - & + & - & + \\ - & + & - & + \\ - & + & - & + \\ - & + & - & + \\ - & - & - & - \\ - & - & + & - \\ + & - & - & - \\ - & - & + & + \\ - & - & - & - \\ - & - & + & + \\ - & - & - & - \\ - & - & - & + \\ - & - & - & - \\ - & - & - & + \\ - & - & - & - \\ - & - & - & + \\ - & - & - & - \\ - & - & - & + \\ - & - & - & - \\ - & - & - & - \\ - & - &$	+ 13 + 14 + 45 + 92 + 100 + 2777 + 11 + 260 + 111 + 27777 + 111 + 260 + 1111 + 111
449 450 451 452 453 454 455 456 457 458 459 460 461	CANCER. I 4I ϵ 2 33 η 3 31 θ 4 43 γ 5 47 δ 6 65 α 7 48 ι 8 10 μ 9 17 β 1 nf. 1 62 o^1 3 69 ν 4 77 ξ	. 95 0 . 95 20 . 95 20 . 97 40 . 98 40 . 103 50 . 95 40 . 95 40 . 95 40 . 90 0 . 94 30 . 103 0 . 108 30 . 101 20	$\begin{array}{r} + & 0 & 40 \\ + & 1 & 15 \\ - & 1 & 10 \\ + & 2 & 40 \\ - & 0 & 10 \\ - & 5 & 30 \\ + & 1 & 0 \\ + & 1 & 0 \\ - & 10 & 30 \\ - & 5 & 40 \\ + & 7 & 15 \\ + & 4 & 50 \end{array}$	97 48 95 49 96 9 97 58 99 6 104 4 96 44 89 53 94 43 102 47 106 36 101 26 103 36	$\begin{array}{r} + & 0 & 57 \\ + & 1 & 22 \\ - & 0 & 57 \\ + & 3 & 0 \\ - & 5 & 17 \\ + & 10 & 14 \\ + & 1 & 7 \\ - & 10 & 29 \\ 2 & 2 \\ - & 5 & 46 \\ + & 7 & 4 \\ + & 5 & 13 \end{array}$	$ \begin{array}{r} + 8 \\ + 49 \\ + 49 \\ + 18 \\ + 26 \\ + 14 \\ + 64 \\ - 7 \\ + 13 \\ - 13 \\ - 114 \\ + 6 \\ - 44 \end{array} $	$ \begin{array}{r} + & 17 \\ + & 7 \\ + & 13 \\ + & 20 \\ + & 10 \\ + & 13 \\ - & 96 \\ + & 7 \\ + & 18 \\ - & 6 \\ - & 11 \\ + & 23 \\ \end{array} $

Catalogue	III—	continu	ed.
Gararozaro		continu	ou.

Baily's	Ptolemy's No.	and	Ptol	emy.	Positions for B.	computed C. 130.	Δ Long.	ΔLat.
No.	modern name		Long. - 2° 40'.	Lat.	Long.	Lat.	Δ Long.	Δ Laι.
462 463 464 465 466 467 468 469 470 471 472 473 473 474 475 476 477 478 479 480 481	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, ,<	$ \begin{array}{c} \circ & , \\ +10 & 0 \\ 7 & 30 \\ 12 & 0 \\ 9 & 30 \\ 11 & 0 \\ 8 & 30 \\ 4 & 30 \\ + & 0 & 10 \\ - & 1 & 50 \\ 0 & 15 \\ 0 & 0 \\ 4 & 10 \\ - & 1 & 50 \\ 0 & 0 \\ 4 & 10 \\ 4 & 15 \\ - & 0 & 10 \\ 4 & 15 \\ - & 0 & 10 \\ 4 & 15 \\ - & 0 & 10 \\ 4 & 15 \\ - & 2 & 20 \\ 12 & 15 \\ 12 & 10 \\ \end{array} $, 105 40 108 15 111 53 111 6 117 55 119 49 118 18 120 21 120 52 117 45 113 54 112 5 114 44 119 44 126 48 124 51 128 6 130 4 129 12 121 22 	$ \begin{array}{c} \circ & ' \\ +10 & 14 \\ 7 & 42 \\ 12 & 14 \\ 9 & 32 \\ 11 & 42 \\ 8 & 41 \\ 4 & 43 \\ + & 0 & 23 \\ - & 1 & 37 \\ - & 0 & 7 \\ + & 0 & 12 \\ - & 3 & 20 \\ 3 & 53 \\ - & 4 & 4 \\ + & 0 & 1 \\ 4 & 27 \\ 5 & 53 \\ 2 & 43 \\ 12 & 48 \\ 14 & 16 \\ \end{array} $, $0 = 15$ + 13 + 25 + 19 + 31 + 25 + 46 + 35 + 46 + 31 + 25 + 46 + 35 + 68 + 31 + 24 + 46 + 31 + 25 + 25 + 25 + 25 + 25 + 25 + 24 + 25 + 25 + 25 + 25 + 25 + 25 + 25 + 25	, + 14 + 12 + 14 + 42 + 11 + 13 + 13 + 13 + 12 + 11 + 13 + 13 + 12 + 11 + 13 + 12 + 12 + 14 + 14 + 14 + 14 + 12 + 14 + 12 + 14 + 13 + 13 + 12 + 12 + 11 + 13 + 12 + 12 + 11 + 13 + 12 + 12 + 11 + 13 + 12 + 12 + 12 + 11 + 12 + 23 + 33 + 32 + 33 + 32 + 33 + 32
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496	21 $? \dots ?$ 22 $70 \theta \dots ?$ 23 $78 \iota \dots ?$ 24 $77 \sigma \dots ?$ 25 84τ 26 $91 v \dots ?$ 27 $94 \beta \dots ?$ Inf. 1 41 Leo M 2 54 \dots ? 3 $63 \chi \dots ?$ 5 $58 d \dots .$ 6 $15 c$ Com.		131 30 131 40 133 40 137 40 137 40 139 0 142 0 144 50 123 20 124 50 134 50 135 20 142 10 143 50 134 50 135 20 142 10 145 50	$ \begin{array}{r} 13 \ 40 \\ 11 \ 10 \\ 9 \ 40 \\ 5 \ 50 \\ + 1 \ 15 \\ - 0 \ 50 \\ - 3 \ 0 \\ + 11 \ 50 \\ 13 \ 20 \\ 15 \ 30 \\ + 1 \ 10 \\ - 0 \ 30 \\ - 2 \ 40 \\ +30 \ 0 \\ 25 \ 0 \\ +25 \ 30 \end{array} $	131 33 133 48 137 50 139 7 141 55 145 28 142 12 123 54 125 49 134 47 135 21 144 8 143 54 148 44	$ \begin{array}{r} 14 & 16 \\ 9 & 40 \\ 6 & 2 \\ + & 1 & 39 \\ - & 0 & 36 \\ - & 3 & 5 \\ + & 12 & 23 \\ & 13 & 51 \\ & 16 & 22 \\ + & 1 & 23 \\ - & 0 & 19 \\ - & 2 & 35 \\ + & 28 & 25 \\ & 23 & 26 \\ + & 24 & 6 \end{array} $	$\begin{array}{r} + 3 \\ + 8 \\ + 10 \\ + 7 \\ - 5 \\ + 38 \\ + 22 \\ + 34 \\ + 19 \\ - 3 \\ - 13 \\ + 1 \\ + 118 \\ + 134 \\ + 174 \end{array}$	$\begin{array}{r} + 36 \\ 0 \\ + 12 \\ + 24 \\ + 14 \\ - 5 \\ + 33 \\ + 31 \\ + 52 \\ + 13 \\ + 11 \\ + 5 \\ - 95 \\ - 94 \\ - 84 \end{array}$
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	I I I I I I I I I I I I	144 20 143 40 148 0 147 30 146 20 155 35 160 30 164 30 168 20 161 40 55 30 57 30 59 30 74 0 72 10	$\begin{array}{r} + 4 15 \\ 5 40 \\ 8 0 \\ 5 30 \\ 0 10 \\ 1 10 \\ 2 50 \\ 2 50 \\ 2 50 \\ 1 40 \\ 8 30 \\ 13 50 \\ 11 40 \\ + 16 0? \\ - 2 0 \\ + 8 40 \end{array}$	144 29 143 43 148 11 147 57 147 9 155 15 160 49 165 40 168 39 162 3 155 47 157 50 160 23 174 16 172 39	$\begin{array}{r} + 4 39 \\ 6 5 \\ 8 32 \\ 6 8 \\ 0 39 \\ 1 24 \\ 2 58 \\ 2 55 \\ 1 50 \\ 8 48 \\ 13 37 \\ 11 38 \\ + 16 18 \\ - 1 55 \\ + 8 47 \end{array}$	$\begin{array}{r} + & 9 \\ + & 3 \\ + & 11 \\ + & 27 \\ + & 49 \\ - & 20 \\ + & 19 \\ + & 70 \\ + & 19 \\ + & 23 \\ + & 17 \\ + & 20 \\ + & 53 \\ + & 16 \\ + & 29 \end{array}$	+ 24 + 25 + 32 + 38 + 29 + 14 + 8 + 5 + 10 + 18 - 13 - 2 + 18 + 5 + 7

Catalogue	III	continued.
-----------	-----	------------

Baily's	Ptolemy's No. a		Ptolemy.		computed C. 130.	ΔLong.	ΔLat.
No.	modern name.		g. 0'. Lat.	Long.	Lat.	Δ Long.	ΔLat.
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528	VIRGO—continue 16 74 l 17 76 h 18 82 m 19 68 i 20 86 i 21 90 p 23 98 κ 24 105 φ 25 100 λ 26 107 μ 3 49 3 4 53 5 6 89 6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , 173 59 175 40 177 10 175 14 179 26 177 34 184 7 184 55 185 50 187 22 190 24 162 35 166 38 170 10 173 5 175 45 182 27 	$ \begin{array}{c} \circ & ' \\ + & 3 & 14 \\ - & 0 & 18 \\ + & 1 & 52 \\ - & 3 & 11 \\ - & 1 & 15 \\ + & 9 & 455 \\ 7 & 36 \\ 3 & 1 \\ 11 & 56 \\ 0 & 40 \\ + & 10 & 0 \\ - & 3 & 24 \\ 3 & 20 \\ 3 & 10 \\ 7 & 40 \\ - & 3 & 24 \\ 3 & 20 \\ 7 & 40 \\ - & 6 & 11 \end{array} $	+ 19 + 65 - 10 - 26 + 134 + 7 + 15 + 10 2 4 + 358 + 35 - 157 + 7 + 157 + 10	$\begin{array}{r} & & & \\ & - & 28 \\ & + & 22 \\ & + & 15 \\ & + & 75 \\ & + & 16 \\ & + & 16 \\ & + & 16 \\ & + & 10 \\ & + & 10 \\ & - & 7 \\ & 99 \end{array}$
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	LIBRA. I 9 a 2 7 μ 3 27 β 4 19 δ 5 24 ι 7 38 γ 7 38 γ 8 46 θ 1 af. 1 37 2 48 ψ 3 51 = ξ Scorp 4 45 λ 5 43 κ 6 0 ^h Arg. 14 7 20 = γ Scorp 8 39 9 40 τ	194 199 195 201 201 201 201 201 201 201 201 201 201 201 201 203 210 203 211 211 211 210 211 210 211 210 211 210 210 210 211 210 210 210 210 210 210 210 210 207 782. 208 201 203 203 203 203 203 203 203 203 203 203	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	195 31 194 35 199 46 195 40 201 25 199 11 205 32 210 14 203 51 210 47 211 42 208 9 208 32 201 9 209 3 209 47	$\begin{array}{r} + & 0 & 36 \\ 2 & 13 \\ 8 & 44 \\ + & 8 & 26 \\ - & 1 & 38 \\ + & 1 & 24 \\ 4 & 36 \\ 3 & 36 \\ 9 & 12 \\ 6 & 19 \\ 9 & 29 \\ 0 & 19 \\ + & 0 & 17 \\ - & 1 & 11 \\ 7 & 23 \\ 8 & 16 \\ - & 9 & 45 \end{array}$	+ 11 + 15 + 16 + 40 + 5 + 31 + 22 - 6 + 21 - 13 + 29 + 33 + 29 + 49 + 33 + 27	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
546 547 548 549 550 551 552 553 554 555 556 557	I 8 β 2 7 δ 3 6 π 4 5 ρ 5 14 ν 6 $9 \omega^1$ 7 20 σ 8 21 a 9 23 τ 10 13 c^1 11 XVI 31 d 12 26 ϵ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	213 36 213 0 213 21 213 34 215 3 214 4 218 13 220 10 221 52 216 40 218 6 226 4	$\begin{array}{r} + & 1 & 16 \\ - & 1 & 42 \\ 5 & 12 \\ - & 8 & 19 \\ + & 1 & 55 \\ + & 0 & 28 \\ - & 3 & 45 \\ 4 & 18 \\ 5 & 50 \\ 6 & 25 \\ 6 & 51 \\ - & 11 & 17 \end{array}$	$ \begin{array}{c} - & 4 \\ & 0 \\ + & 2I \\ + & I4 \\ + & 43 \\ + & 24 \\ + & I3 \\ + & I0 \\ + & 2 \\ - & 0 \\ + & 6 \\ + & I4 \end{array} $	$ \begin{array}{c} - & 4 \\ - & 2 \\ - & 12 \\ - & 29 \\ + & 15 \\ - & 2 \\ 0 \\ - & 18 \\ - & 20 \\ - & 15 \\ - & 11 \\ - & 17 \\ \end{array} $

Baily's No.	Ptolemy's No. and modern name.		Ptolemy.		Positions computed for B. C. 130.		ΔLong.	A T
			Long. -2° 40'.	Lat.	Long.	Lat.	Δ Long.	ΔLat.
	scc	RPIUS—continued.	• •	0 /	0 /	• /	,	,
558	13	$\left\{\begin{array}{cccc}\mu^1\ldots\ldots\ldots\ldots\\\mu^2\ldots\ldots\ldots\ldots\end{array}\right.$	226 10	-15 O	226 37	-15 8	+ 27	- 8
559	14	XVI 198 $(1, \dots, 1)$	227 20	18 40	227 33	19 23	+ 13	- 43
560	15	$\begin{array}{c} \text{XVI} 206 \zeta^2 \dots \dots \\ \text{VVI} \end{array}$	227 30	19 0	227 44	19 14	+ 14	- 14
561 562	16 17	XVI 302 η XVII 138 θ	230 30 235 30	19 30 18 50	231 9 236 0	19 45 19 20	+ 39 + 30	- 15 - 30
563	18	XVII 210 (237 50	16 40	237 56	16 25	+ 6	+ 15
564	19	XVII 174 к	236 20	15 10	236 53	15 20	+ 33	- 10
565	20	35λ	234 50	13 20	235 0	13 29	+ 10	- 9
566 567	21 Inf. 1	34 v	234 20 238 30	13 30 13 15	234 26 238 17	13 41 13 21	+ 6 - 13	-11 - 6
568	2	45 d Ophiuchi	232 50	6 10	233 19	6 17	+ 29	- 7
569	3	3 Sagittarii	236 50	- 4 10	237 39	- 4 8	+ 49	+ 2
	SAGITTARIUS.							
570	I	το γ	1 5	- 6 20	241 42	- 6 35	- 8	- 15
571	2	19δ	245 0	6 30	244 58	6 10	- 2	+ 20
572 573	3 4	$\begin{array}{c} 20 \ \epsilon \dots \\ 22 \ \lambda \dots \end{array}$	245 20 246 20	10 50 - 1 30	245 30 246 45	10 41 - 1 45	+ 10 + 25	+ 9
574	5	$13 \mu^1$	240 20 244 0	+250	240 45 243 38	+ 2 39	+ 25 - 22	— 15 — 11
575	6	34 σ	252 40	- 3 IO	252 47	- 3 7	+ 7	+ 3
576	7	$\begin{array}{c} 27 \ \varphi \dots \\ (32 \ \nu^1 \dots \\ \end{array}$	250 20	- 3 50	250 33	- 3 40	+ 13	+ 10
577	8	$35 \nu^2 \dots \dots$	252 30	+ 0 45	252 57	+ 0 25	+ 27	- 20
57 ⁸	9	$37 \xi^3 \cdots \cdots \cdots$	253 O	2 10	253 51	1 58	+ 51	- 12
579 580	10 11	39 0	255 O	I 30	255 23	III	+ 23	- 19
581	12	$\begin{array}{c} 4\mathbf{I} \ \pi \dots \dots \dots \\ 43 \ d \dots \dots \dots \end{array}$	256 30 258 40	2 O 2 50	256 40 258 45	I 45 3 32	+ 10 + 5	-15 + 42
582	13	44 ρ	259 40	4 30	259 53	4 29	+ 5 + 13	- 1
583	14	46 v	260 10	6 30	260 8	6 22	- 2	- 8
584	15	$\begin{cases} 54 \ e^1, \dots, \\ 55 \ e^2, \dots, \\ \end{cases}$	263 0	5 30	264 50	5 23	+110	- 7
585	16	61 g	266 50	5 50	268 52	5 24	+122	- 26
586	17	56 f	265 O	+ 2 0	265 25	+ 1 42	+ 25	- 18
5 ⁸ 7	18	17 /2	259 40	— I 50	259 48	- 2 0	+ 8	- 10
588	19	$\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$	262 10	2 50	262 11	2 53	+ 1	- 3
589	20	$42\psi\ldots$	257 20	2 30	257 27	2 39	+ 7	- 9
590	21	40 <i>τ</i>	255 O	4 30	255 17	4 40	+ 17	- 10
591	22	$38 \zeta \dots \qquad \dots$	253 40	6 45	² 54 4	6 54	+ 24	- 9
592	23	$\left[\begin{array}{c} \beta^2 \dots \end{array} \right]$	255 0	23 0	256 12	22 0	+ 72	+ 60
593 594	24 25	$\begin{array}{c} \text{XIX 68 } a \dots \\ \text{XVIII 17 } \eta \dots \end{array}$	254 20 244 0	18 O	257 I	18 2	+161	- 2
595	26	∫XIX 330	244 0 264 40	13 0 13 30	244 7 265 19	13 1	+ 7	- I
596	20 27		264 40 264 10			13 50	+ 39	- 20
590	28	58ω	264 10 265 0	20 10 4 50	262 56 266 8	20 24	-74 + 68	- 14 - 15
598	29	60 A	266 10	4 50	266 58	5 5 5 5 5 12	+ 48	-15 -22
599	30	59 <i>b</i>	266 10	5 50	266 19	6 3	+ 9	- 13
600	31	62 <i>c</i>	267 0	- 6 30	267 27	- 6 51	+ 27	- 21

Catalogue III—continued.

Baily's	P	rtolemy's No. and	Pto	lemy.	Positions for B.	computed C. 130.		Α.Τ
No.		modern name.	Long. – 2° 40'.	Lat.	Long.	Lat.	ΔLong.	ΔLat.
		CAPRICORNUS.	0 /	• /	0 /	0 /	,	,
601	I	$\left\{\begin{array}{c}5 \ a^1 \dots \dots \dots \\ 6 \ a^2 \dots \dots \dots \end{array}\right.$	}274 40	+ 7 20	274 13	+ 7 11	- 27	- 9
602	2	8 <i>v</i>		640	274 52	6 49	8	+ 9
603	3	$\begin{array}{c} 9 \ \beta \dots \dots \\ \int \mathbf{I} \ \xi^1 \dots \dots \dots \end{array}$	274 40	50	274 27	4 50	- 13	- 10
604	4	$\lfloor 2 \xi^2 \dots \dots$	273 20	80	272 50	7 35	- 30	- 25
605 606	56	I2 ο ΙΟ π	276 20 276 0	045 145	275 38 275 7	037 18	-42 -53	$\begin{array}{c c} - & 8 \\ - & 37 \end{array}$
607	7	11 ρ	276 10	I 45 I 30	275 34	1 26	- 36	$-\frac{37}{4}$
608	8	$7 \sigma \dots \dots$	273 30	o 40	273 5	0 42	- 25	+ 2
609	9	$\begin{cases} 13 \ \tau^1, \ldots, \ldots, \ldots \\ 14 \ \tau^2, \ldots, \ldots \end{cases}$	}279 O	3 50	278 27	3 32	- 33	- 18
610	10	15 v	279 10	+ 0.50	278 4	+ 0 27	- 66	- 23
611 612	11 12	16ψ	278 10 279 0	- 6 30 8 40	277 36 278 21	- 6 43 8 45	-34 -39	-13 -5
613	13	24 A	284 O	7 40	282 13	7 52	- 107	- 12
614 615	14 15	34 5 · · · · · · · · · · · · · · · · · ·	287 30 287 40	650 60	287 19 287 52	6 48 6 20	-11 + 12	+ 2 - 20
616	15 16	28φ	286 O	4 15	285 25	4 20	- 35	$-\frac{20}{5}$
617	17	$25 \times$	284 O	4 0	283 41	4 21	- 19	- 2I
618 619	18 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	284 O 284 O	2 50 0 0	283 9 284 12	² 47 0 20	-51 + 12	+ 3 - 20
620	20	32 1	288 20	0 50	288 5	I IO	- 15	- 20
621 622	2I 22	39 ε 43 κ	290 40 292 20	4 45 4 30	290 35 291 58	4 4 ⁸ 4 38	-5 -22	-3
623	22	$40 \gamma \dots$	292 20 292 10	4 30 2 10	291 50	2 20	- 4	- 10
624	24	49 δ	293 40	- 2 0	293 51	- 2 14	+ 11	- 14
625 626	25 26	$42 \ d \dots	294 IO 296 O	+ 0 20	293 30 296 2	+ 0 6 - 0 29	- 40 + 2	- 14 - 29
627	27	48 λ	295 0	2 50	295 26	+ 2 7	+ 26	- 43
628	28	$46 c^1 \dots \dots$	296 0	+ 4 20	295 48	+ 4 22	- 12	+ 2
		AQUARIUS.						
629	I	$25 d \dots \dots$	297 40	+15 45	298 25	+15 30	+45	- 15
630 631	2	34 a 31 o	303 40 302 30	940	303 48 302 33	10 48 9 19	+ 8 + 3	-12 -21
632	3 4	$22 \beta \dots	293 50	8 50	293 50	8 47	ŏ	- 3
633	56	23 ξ	294 40	6 15	294 29	6 10	— 11 +106	-5 -31
634 635	о 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	285 0 283 30	530 80	286 46 283 28	4 59 8 28	~ 2	-31 + 28
636	8	2 E	282 O	8 40	282 9	8 19	+ 9	— 2I
637	9	$48 \gamma \dots \gamma$	306 50 309 0	8 45 10 45	307 6 309 3	8 23 10 35	+ 16 + 3	- 22 - IO
638 639	10 11	52π	309 20	90	309 14	8 58	- 6	- 2
640	12	$62 \eta \ldots \ldots \ldots$	310 40	8 30	310 49	8 17	+ 9	- 13
641	13 14	$\begin{array}{c} 43 \ \theta \dots \\ 46 \ \rho \dots \end{array}$	303 30 304 20	$\begin{vmatrix} 3 & 0 \\ + 3 & 10 \end{vmatrix}$	303 37 304 27	+ 2 53 + 2 30	+ 7 + 7	- 7 - 40
642 643	14	$57 \sigma \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	306 0	— o 50	305 48	- 1 ⁶	- 12	- 16
644	16	33	299 O	- I 40	299 7 300 54	155 08	+ 7 + 24	-15 -23
645 646	17 18	38 <i>e</i> 76 δ	300 30 309 0	+ 0 15 - 7 30	300 54	8 4	+ 16	-23 -34
647	19	7Ι τ	308 40	- 5 0	308 59	- 5 33	+ 19	- 33
				l				

Catalogue III-continued.

Catalogue III-continued.

Baily's	Ptolemy's No. and modern name.		Р	tol	emy.	Positions for B.	computed C. 130.	ΔLong.	ΔLat.
No.			Long - 2° 40	;. oʻ.	Lat.	Long.	Lat.	Δ Long.	ΔLaι.
	AQI	JARIUS—continued.	• •	,	0 /	o /	0 /	,	,
648	20	$53 f \dots$		0	- 5 40	302 29	- 6 19	+ 29	- 39
649	21	$\begin{array}{c} 68 \\ \mathbf{g}^2 \\ $	305 4		10 0	306 17	10 49	+ 37	- 49
650	22	$66 g^1 \dots \dots$		0	- 9 0	305 36	- 9 50	+ 26	- 50
651 652	23 24	63 κ 73 λ	312 2 312 1	0	+ 2 0 + 0 10	309 55 311 58	+ 4 16 - 0 19	-145 -12	+136 - 29
653	24 25	83 h		0	- 1 10	314 43	I 35	- 17	-29 -25
654	2 6	90 φ		20	0 30	317 34	0 54	+ 14	- 24
655	27	92χ	317 5	1	I 40	317 28	2 46	- 22	- 66
656	28	$91 \psi^1 \dots \dots$			3 30	316 30	3 49	+ 10	- 19
657	29	$\begin{cases} 93 \psi^2 \dots \dots \\ 13 \psi^3 \end{pmatrix}$	317 1	0	4 10	317 9	4 27	— I	- 17
658	30	$\begin{array}{c} 1 \\ 93 \\ \psi^3 \\ \cdots \\ 94 \\ \cdots \\ $	315 1	- 1	8 15	315 32	86	+ 22	+ 9
659	31	$102 \omega^1 \dots \dots \dots$		0	11 Õ	320 1	10 59	+ I	+ í
660	32	$105 \omega^2 \dots$	320 3	;0	10 50	320 31	11 31	+ I	- 4I
661	33	$ \{ \begin{matrix} 103 & A^1 & \dots & \dots \\ 104 & A^2 & \dots & \dots \\ \end{matrix} $	319	0	14 0	318 52	14 33	- 8	- 33
662	34	$106 i^1 \dots \dots$	319 3	30	I4 45	319 17	15 7	- 13	- 22
663	35	$108 i^3 \ldots \ldots \ldots \ldots$	320 3	30	15 40	320 37	16 24	+ 7	- 44
664	36	$98 b^1 \dots \dots$		20	I4 IO	313 54	14 41	- 26	- 3I
665	37	99 b^2		·	15 0	314 14	15 30	- 36	- 30
666	38	$\begin{array}{c} \text{IOI} \ b^3 \dots \dots \dots \dots \dots \\ {}^{94} \ {}^{1} \end{array}$	315 4	- 1	15 45	315 43	16 27	+ 3	- 42
667	39	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	16 15 15 20	308 39 309 56	16 28 15 36	-31 -4	-13 -16
669	40 4 I	$88 c^2 \dots \dots \dots$			13 20	310 19	IS 50 I4 24	- 1I	- 24
670	41	$79 = \alpha$ Pis. Aust	304 2	20	20 20	304 2	20 51	- 18	-31
671	Inf. I	2 Ceti		0	15 30	324 5	16 12	+ 5	- 42
672	2	6 Ceti		0	14 40	326 42	15 7	— 1Š	- 27
673	3	7 Ceti	326 2	20	-18 İ5	325 51	-18 44	- 29	- 29
		PISCES.							
674	I	4 β		0	+ 9 15	319 2	+96	+ 2	- 9
675	2	6γ	321 3	30	7 30	321 29	7 30	— I	0
676	3	$7 b \dots \dots \dots$		20	9 20	323 28	8 55	+ 8	- 25
677	4	ΙΟ θ			9 30	325 42	94	+ 12	- 26
678	5	$17 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15	0	7 30	327 58	7 31	- 2	+ 1
679 680	7	8 κ 18 λ	00	20 0	4 30 3 30	323 18 327 8	4 34 3 30	-2 + 8	+ 4
681	8	28 ω		20	6 20	332 58	3 30 6 27	- 22	+ 7
682	9	4I d		20	5 45	338 24	5 27	$+ \frac{22}{4}$	- 18
683	10	51	340 2	1	3 45	340 36	3 8	+16	-37
684	II	δ3 δ	344 3	1	2 15	344 34	2 7	+ 4	- 8
685	I 2	$7\mathbf{I} \epsilon$	347 5	;0	+ 1 10	347 56	+ 1 0	+ 6	- 10
686	13	86 5	350 2		- 0 10	350 14	— o 16	- 6	- 6
687	14	80 <i>e</i>	349 4		2 0	348 30	I 33	- 70	+ 27
688	15	89 f	350 2		5 0	349 43	4 4I	- 37	+ 19
689	16	98 μ 106 ν		;0 0	2 20	353 24	3 6	-26 -8	- 46
690 691	17 18	III ξ	1	0	4 40	355 52	4 53 8 3		-13 -18
692	19	III 2 II3 a		;0	745 830	357 53 359 45	83 911	-7 -5	-10 - 41
693	20	IIO 0		;0	- 1 40	359 45	-145	$+ 15^{3}$	- 5
694	21	102π			+150	357 20	+ 146	- IO	- 4
695	22	99 η		io	+ 5 20	357 14	+ 5 15	- 26	- 5

Baily's	Pt	colemy's No. and	Ptol	emy.	Positions for B.	computed C. 130.	ΔLong.	∆Lat.
No.		modern name.	Long. - 2° 40'.	Lat.	Long.	Lat.	Δ Long.	ΔLat.
·	PI	sces-continued.	0 /	o /	0 /	o /	,	,
696	23	$\begin{cases} 93\\ 94 \end{cases} ho \dots \dots \dots$	357 50	+90	357 35	+ 9 17	- 15	+ 17
697	24	82 g	359 20	21 45	359 18	21 53	- 2	+ 8
698	25	83τ .	359 0	21 40	358 47	20 38	- 13	- 62
699	26	$68 h. \ldots \ldots$	00	20 0	355 25	20 51	- 35	+ 51 - 26
700	27	67 k		19 50 20 20	354 I3 353 9	19 24 20 25	-47 -71	-26 + 5
701 702	28 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	354 20	14 20	353 9	13 15	+ 52	- 65
702	30	74ψ	555	13 0	354 5	12 27	+ 5	- 33
704	31	$81 \psi^3 \dots$		12 0	354 5	II I2	- 55	- 48
705	32	90 v		17 0	359 16	17 20	- 14 - 14	+ 20
706	33	$85 \varphi \ldots \ldots \ldots$		15 20 +11 45	356 56 354 58	15 24 +12 19	-14 -142	+ 4 + 34
707	34 Inf. 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-240	328 40	-34	+ 10	- 24
708 709	2	29		2 30	329 36	2 57	+ I	- 27
710	3	30	0	5 30	328 26	5 42	+ 26	- 12
711	4	33	329 40	- 5 30	329 19	- 5 45	- 21	- 15
		CETUS.						
712	I	91 λ	. 15 0	- 7 45	15 26	- 7 56	+ 26	
713	2	92 a	. 15 O 10 O	12 20 11 30	¹⁴ 43 9 54	12 45 12 8	- 17 - 6	$-25 \\ -38$
714	3	86 γ 82 δ	7 50	14 0	7 55	14 38	+ 5	-38
715 716	4	?		8 10				
717	5 6	?	. 10 0	6 20				
718	7	$65 \xi^1 \ldots \ldots \ldots$		4 10		4 25	- 14 - 20	-15 -52
719	8	$72 \rho \ldots \dots \dots \dots$. 0 20 0 40	24 30 28 0		25 22 28 35	- 14	-32
720 721	9 10	76 σ	4 0	25 10		25 59	- 25	- 49
722	10	89 π	. 4 20	27 30		28 24	- 18	- 54
723	12	52 τ	349 20	25 20		25 42	- 30	- 22
724	13	59 v	350 20	30 50		31 5	- 44	-15 -26
725	14	555	. 352 20 . 347 0	20 0 15 20		15 46		- 26
726 727	15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	342 20	15 40		16 5	- 20	- 25
728	10	$19 \varphi^2 \dots \dots$. 338 20	13 40	337 50	I4 4I	- 30	- 61
729	18	<i>O</i> . 198		14 40	336 11	17 21	- 109	-161 -63
730	19	$17 \varphi^1 \dots$. 336 40	13 0		14 3 15 22	- 24 - 47	- 82
731	20	0. 161		14 0 9 40		10 I	- 42	- 21
732 733	2 I 22	16 β		-20 20		- 20 46		- 26
		ORION.						
734	I	39 λ		-13 50		-13 40		+ 10
735	2	58 a		17 0	59 8	16 19		+ 41 + 24
736	3	$24 \gamma \dots \dots$		17 30 18 C	-	17 35	1 4	$1 + 2^{1}$
737	4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14 30		I/ 55	- 39	
738	5 6	$74 k \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots $		11 50	64 30	II 24	+ 50	+ 20
739 740	7	70 E	. 63 50	10 0	63 20	9 29	-30 - 64	
740 741	8	$67 \nu \dots \dots$	63 20	9 45	62 16			$+ 4^{2}$ + 43
742	9	$72 f^2 \dots \dots$. 64 40	- 8 15	64 8	- 7 32	- 32	 4 .

Catalogue III-continued.

ontinued.

Baily's	Ptolemy's No. and	Pto	lemy.	Positions computed for B. C. 130.		ΔLong.	ΔLat.
No.	modern name.	Long. – 2° 40'.	Lat.	Long.	Lat.	a Long.	
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757	ORION—continued. 10 $69 f^1$ 11 $54 \chi^1$ 12 $62 \chi^2$ 13 47ω 14 $38 n^2$ 15 $33 n^1$ 16 $30 \psi^2$ 17 $15 y^2$ 18 $11 y^1$ 19 $9 o^2$ 20 $7 \pi^1$ 21 $2 \pi^2$ 23 $3 \pi^4$ 24 $8 \pi^5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \circ & \prime \\ - & 8 & 15 \\ 3 & 45 \\ 4 & 15 \\ 19 & 40 \\ 20 & 20 \\ 20 & 20 \\ 20 & 40 \\ 8 & 0 \\ 20 & 20 \\ 8 & 10 \\ 10 & 15 \\ 12 & 50 \\ 14 & 15 \\ 15 & 50 \\ 17 & 10 \\ 20 & 20 \end{array}$, ,<	 <l< th=""><th>$\begin{array}{c} & - & 40 \\ + & 13 \\ - & 20 \\ - & 16 \\ - & 5 \\ + & 5 \\ + & 22 \\ + & 16 \\ - & 34 \\ + & 17 \\ + & 11 \\ - & 7 \\ + & 20 \\ + & 12 \end{array}$</th><th>, + 41 + 18 + 40 + 10 + 12 + 6 + 18 + 25 + 30 + 55 + 17 + 31 + 11 + 7 + 3</th></l<>	$ \begin{array}{c} & - & 40 \\ + & 13 \\ - & 20 \\ - & 16 \\ - & 5 \\ + & 5 \\ + & 22 \\ + & 16 \\ - & 34 \\ + & 17 \\ + & 11 \\ - & 7 \\ + & 20 \\ + & 12 \end{array} $, + 41 + 18 + 40 + 10 + 12 + 6 + 18 + 25 + 30 + 55 + 17 + 31 + 11 + 7 + 3
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771	25 $10 \pi^6$ 26 34δ 27 46ϵ 28 50ζ 29 28η 30 c 31 θ 32 $44 t$ 33 $49 d$ 34 $36 v$ 35 19β 36 20τ 37 29ϵ 38 53κ	43 40 52 40 54 40 55 30 51 10 53 50 54 20 55 30 54 20 55 0 53 30 47 10 48 20 50 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 43 & 55 \\ 52 & 45 \\ 53 & 52 \\ 53 & 52 \\ 53 & 23 \\ 53 & 23 \\ 53 & 23 \\ 53 & 23 \\ 54 & 18 \\ 52 & 17 \\ 47 & 12 \\ 48 & 13 \\ 49 & 56 \\ 56 & 47 \end{array}$	21 8 23 51 24 48 25 35 25 49 28 25 28 58 29 29 30 49 30 49 31 25 30 7 31 12 -33 21	$\begin{array}{r} + 15 \\ + 5 \\ - 48 \\ - 26 \\ - 37 \\ - 24 \\ - 37 \\ - 57 \\ - 42 \\ - 73 \\ + 2 \\ - 7 \\ - 44 \\ - 43 \end{array}$	+ 22 + 19 + 2 + 5 + 15 + 12 + 15 + 12 + 12 + 12 +
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 785 786 787 788 789 790 791 792	ERIDANUS. 1 69λ 2 67β 3 65ψ 4 61ω 5 57μ 6 48ν 7 42ξ 8 $40 o^2$ 9 $38 o^1$ 10 34γ 11 26π 12 23δ 13 18ϵ 14 13ζ 15 $9 \rho^2$ 16 3η 17 ? 18 $t \tau^1$ 19 $2 \tau^2$ 20 $11 \tau^3$ 21 $16 \tau^4$	46 10 45 20 42 0 37 30 37 30 32 50 30 10 24 20 21 40 19 20 14 30 12 10 9 30 7 50 230 3 30 10 9 30 7 50 3 10 6 10	$\begin{array}{c} -31 & 50 \\ 28 & 15 \\ 29 & 50 \\ 28 & 15 \\ 25 & 50 \\ 25 & 20 \\ 26 & 0 \\ 27 & 50 \\ 32 & 50 \\ 27 & 50 \\ 31 & 0 \\ 28 & 50 \\ 23 & 50 \\ $	45 35 45 43 43 35 41 24 39 39 37 10 33 41 32 14 29 46 21 6 19 2 14 8 11 6 9 3 2 10 2 56 4 52 10 20	$\begin{array}{c} -31 & 49 \\ 28 & 7 \\ 30 & 2 \\ 28 & 4 \\ 25 & 58 \\ 25 & 23 \\ 25 & 12 \\ 27 & 7 \\ 27 & 42 \\ 33 & 23 \\ 31 & 20 \\ 29 & 15 \\ 28 & 3 \\ 24 & 35 \\ 32 & 4 \\ 35 \\ 32 & 51 \\ 35 & 39 \\ 39 & 3 \\ -38 & 41 \end{array}$	$ \begin{array}{r} - & 5 \\ - & 27 \\ - & 105 \\ - & 36 \\ - & 51 \\ - & 20 \\ + & 16 \\ - & 24 \\ - & 24 \\ - & 24 \\ - & 24 \\ - & 24 \\ - & 26 \\ - & 27 \\ - & 20 \\ - & 14 \\ - & 78 \\ - & 50 \\ \end{array} $	$ \begin{array}{r} + & \mathbf{I} \\ + & 8 \\ - & 12 \\ + & \mathbf{I1} \\ - & 8 \\ - & 33 \\ + & 48 \\ - & 78 \\ - & 33 \\ - & 25 \\ - & 38 \\ - & 25 \\ - & 38 \\ - & 13 \\ - & 45 \\ - & 41 \\ - & 49 \\ - & 33 \\ - & 31 \end{array} $

Catalogue	IIIcont	inued.
-----------	---------	--------

Baily's	Ptolemy's No. and	Ptol	emy.		Positions computed for B. C. 130.		ΔLat.
No.	modern name.	Long. 2° 40'.	Lat.	Long.	Lat.	ΔLong.	ΔLat.
	ERIDANUS—continued.	0 /	0 /	0 /	0 /	,	,
793 794 795 796 797 798 799 800 801 802 803 804 805	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 40 18 50 19 30 22 0 31 30 32 20 25 30 23 10 15 10 9 10	$\begin{array}{ccccc} -39 & 0 \\ 41 & 20 \\ 42 & 30 \\ 43 & 15 \\ 43 & 20 \\ 50 & 20 \\ 51 & 45 \\ 53 & 50 \\ 53 & 10 \\ 53 & 0 \\ 53 & 30 \\ 52 & 0 \\ -53 & 30 \end{array}$	14 27 17 49 17 35 18 59 21 13 29 53 30 8 24 40 22 40 14 8 11 53 9 1 353 22	$\begin{array}{c} -39 & 37 \\ 41 & 51 \\ 42 & 45 \\ 43 & 50 \\ 43 & 41 \\ 51 & 3 \\ 52 & 3 \\ 54 & 46 \\ 54 & 12 \\ 53 & 26 \\ 54 & 30 \\ 55 & 0 \\ -53 & 56 \end{array}$	$\begin{array}{r} - 23 \\ - 51 \\ - 75 \\ - 31 \\ - 47 \\ - 97 \\ - 132 \\ - 50 \\ - 30 \\ - 62 \\ - 17 \\ - 9 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	LEPUS.					•	
806 807 808 809 810 811 812 813 814 815 816 817	I 3ι 2 4κ 3 7ν 4 6λ 5 5μ 6 2ϵ 7 II a 8 9β 9 I5 δ 10 I3 γ 11 I4 ζ 12 I6 η	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	56 22	$\begin{array}{cccccc} -35 & 0 \\ 36 & 5 \\ 35 & 37 \\ 36 & 28 \\ 39 & 19 \\ 45 & 11 \\ 41 & 22 \\ 44 & 10 \\ 44 & 11 \\ 45 & 53 \\ 38 & 30 \\ -37 & 58 \end{array}$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c} 0 \\ + 25 \\ + 3 \\ + 12 \\ - 4 \\ + 4 \\ + 8 \\ + 10 \\ - 11 \\ - 3 \\ - 10 \\ + 12 \end{array} $
	CANIS MAJOR.						
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840	I 9 a 2 14 θ 3 18 μ 4 23 γ 5 20 ι 6 15 π^1 7 8 ν^3 8 7 ν^2 9 2 β 9 2 β 10 4 ξ^1 11 5 ξ^2 12 24 σ^2 13 16 σ^1 14 25 δ 15 21 ϵ 16 13 κ 17 1 ζ 18 31 η 2 Monocerotis 2 VI 9 θ Columbæ 3 VI 65 κ Columba 4 VI 95 δ Columba 5 VI 136 λ	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -39 & 10 \\ 35 & 0 \\ 36 & 30 \\ 37 & 45 \\ 40 & 0 \\ 42 & 40 \\ 41 & 15 \\ 42 & 30 \\ 41 & 20 \\ 46 & 30 \\ 45 & 50 \\ 46 & 10 \\ 47 & 0 \\ 48 & 45 \\ 51 & 30 \\ 55 & 10 \\ 53 & 45 \\ 50 & 40 \\ 25 & 15 \\ 61 & 30 \\ 58 & 45 \\ 57 & 0 \\ -56 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -39 & 13 \\ 34 & 59 \\ 36 & 56 \\ 38 & 16 \\ 39 & 56 \\ 43 & 8 \\ 41 & 32 \\ 42 & 34 \\ 41 & 33 \\ 46 & 51 \\ 46 & 22 \\ 46 & 24 \\ 47 & 3 \\ 48 & 42 \\ 51 & 39 \\ 55 & 25 \\ 53 & 40 \\ 50 & 51 \\ 23 & 0 \\ 60 & 58 \\ 58 & 47 \\ 57 & 0 \\ -56 & 0 \end{array}$	$ \begin{array}{r} + 37 \\ + 189 \\ - 52 \\ - 105 \\ - 93 \end{array} $	$ \begin{array}{c} - & 3 \\ + & 1 \\ - & 26 \\ - & 31 \\ + & 4 \\ - & 28 \\ - & 17 \\ - & 4 \\ - & 13 \\ - & 21 \\ - & 32 \\ - & 14 \\ - & 3 \\ + & 3 \\ - & 9 \\ - & 15 \\ + & 32 \\ - & 11 \\ + & 135 \\ + & 32 \\ - & 2 \\ $

Catalogue III—continued.

Baily's	Ptolemy's No. and	Ptol	emy.	Positions for B.	computed C. 130.	ΔLong.	ΔLat.	
No.	modern name.	Long. – 2° 40'.	Lat.	Long.	Long. Lat.			
841 842 843 844 845 846	CANIS MAJOR—continued. 6 μ Columbæ	57 40 59 40 56 20 53 20	- 55 30 57 40 59 30 59 40 57 40 - 59 30	° , 55 6 57 44 59 24 56 46 52 31 48 59	$ \begin{array}{r} $	$ \begin{array}{r} & - & 14 \\ + & 4 \\ - & 16 \\ + & 26 \\ - & 49 \\ - & 31 \end{array} $, + 9 + 29 + 11 + 1 + 36	
847 848	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-14 0 -16 10	82 38 86 30	-13 43 -15 40	+ 18 0	+ 17 + 30	
849 850 851 852 853 854 855 856 857 858 856 857 858 856 861 862 863 864 865 866 867 868 867 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 885 885 885 885 885 885 885 885	ARGO NAVIS. 1 11 e	101 40 96 10 96 0 92 40 93 40 92 40 95 50 101 20 91 20 97 30 903 101 103 50 105 30 105 30 110 20 111 40 123 0	$\begin{array}{c} -42 & 30 \\ 433 & 200 \\ 456 & 301 \\ 457 & 493 \\ 493 & 493 \\ 493 & 493 \\ 493 & 493 \\ 558 & 405 \\ 577 & 450 \\ 577 & 570 \\ 611 & 300 \\ 613 & 500 \\ 633 & 500 \\ 655 & 500 \\ 655 & 500 \\ 657 & 500 \\ $	98 12 102 3 96 36 96 38 93 20 94 2 93 30 96 28 96 9 101 32 90 44 90 57 97 6 99 44 101 35 104 44 109 21 105 49 109 57 111 37 123 40 124 29 122 46 128 21 127 25 117 30 117 11 116 5 117 27 132 1 135 30 99 35 109 32 118 16 121 48 135 44 139 55 144 15 149 53	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} +32\\ ++++++++++++++++++++++++++++++++++$	- 18 - 100 - 16 - 147	

Baily's	Pte	olemy's No. and	Ptol	emy.	Positions for B.	computed C. 130.	ΔLong.	ΔLat.
No.		modern name.	Long. – 2° 40'.	Lat.	Long.	Lat.	ΔLong.	ΔLat.
	ARGO	NAVIS—continued.	o /	o /	0 /	o /	,	,
889	41	N Velæ	155 20	-62 15	155 14	-64 13	- 6	-118
890	42	V 315 η Columbæ	61 20	65 50	60 I	66 33	- 79	- 43
891	43	VI 205 v Puppis	77 30	65 4 0	77 43	66 21	+ 13	- 41
892	44	a Argus Canopus τ Puppis		75 0 -71 45	75 38 88 27	76 7 -73 3	+ 68 + 127	- 67 - 78
893	45	τ Puppis	80 20	/1 45	00 27	-73 3	12/	70
		HYDRA.						
894	I	5 σ	IOI 20	-15 O	101 40	-14 49	+ 20 + 8	+ 11 + 34
895	2	4 δ	100 40 102 40	13 IO 11 30	100 48 102 52	12 36 11 15	+ 12	+ 34 + 15
896	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	102 40	II 30 I4 45	102 32	14 27	- 4	+ 18
897 898	4	7η		I2 0	105 3	11 10	-7	+ 50
899	5	18 ω	107 40	11 50	107 51	11 13	+ 11	+37
900	7	$22 \theta \dots \dots \dots \dots$	110 40	13 40	110 37	13 Č	- 3	+ 34
901	8	$32 \tau^2 \ldots$	116 io	15 20	116 12	15 7	+ 2	+ 13
902	9	35	118 O	14 50	117 58	IĄ 24	- 2	+ 26
903	IO	$3I \tau^1 \dots \dots$	115 50	17 10	115 57	16 53	+ 7	+ 17
904	II	Ľl. 18657 W. 9 ⁴ 439		19 45	116 53	20 5	+ 23	- 20
905	I 2	30 a		23 0	117 49	22 34	+ 29	+ 26
906	13	<u>38 к</u>	123 20	26 30	123 13	26 43 26 12	-7 + 13	-13 -12
907	14	$39 v^1 \dots \dots \dots$	0	26 O 23 I5	126 13 128 51	23 17	+ 13 + 21	-12
908	15	$40 v^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$		23 13	135 38	23 17 24 4I	+ 18	- ī
909	16 17	$\begin{array}{c} 42 \ \mu \dots \\ \varphi \ (2 \ \mathrm{Crat.}) \dots \end{array}$		23 0	138 38	23 33	+ 78	- 33
910 911	18	ν (4 Crat.)		22 10	140 54	21 58	+ 34	+ 12
912	19	$(11\beta$ Crat.)		25 45	149 3	25 42	+ 13	+ 3
913	20	χ^1 (9 Crat.)		30 10	149 59	30 14	+ 19	- 4
914	21	ξ (19 Crat.)	159 30	31 20	158 38	31 31	- 52	- 11
915	22	o (25 Crat.)		33 10	161 46	33 24	- 4	- 14
916	23	β (28 Crat)		31 20	164 1	31 25	+ 31	- 5
917	24	$46 \gamma \dots \dots \dots$. 177 20	13 40		13 36	+ 6 -108	+ 4
918	25	49π	. 190 50	17 40	189 2 100 29	12 48 22 40	+ 39	+ 35
919	Inf. 1	30 Monocerotis	-	23 15	100 29 124 34	11 15	-262	-65
920	2	{15 a Sextantis	128 20	-10 10	124 34	-10 19	+ 7	- 9
		CRATER.						
921	I	7 a	143 40	-23 O		- 22 42	+ 50	+ 18
922	2	15γ	149 50	19 30		19 40		- 10
923	3	12 δ	. 147 20	18 0		17 40		+ 20
924	4	27 ζ · · · · · · · · · · ·	. 154 20	18 30		18 17		+ 13 + 10
925	5	Ι4 ε	. 146 40	13 40		13 30 16 4		+ 6
926		30 η	. 156 30	16 10		-11 19		+ 31
927	7	$2I \theta \dots \dots \dots \dots$. 149 0	-11 50	149 5	11 19	1 3	1
	-	CORVUS. I a	. 162 40	-21 40	162 43	-21 41	+ 3	— I
928	I	1 α	-6- 10	19 40		19 37	+ 33	+ 3
929	2	5 ζ	164 0	18 10		18 12	+ 20	- 2
930	3	$4 \gamma \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots $	160 50	14 50	161 17	14 26	+ 27	+ 24
931	4 5	7 δ	. 164 0	12 30	163 59	12 2	1	+ 28
932	56	8η		11 45	164 28	11 31	1 1	+ 14
933 934	7	9β	1	-18 10	167 51	-17 55	+ I	+ 19
734	'	2.						

Catalogue III—continued.

, my many of 4

١.

ð

Baily's	Ptolemy's No. and		Pto	lemy.	Positions computed for B. C. 130.		ΔLong.	ΔLat.
No.		modern name.	Long. -2° 40′.	Lat.	Long.	Lat.	ΔLong.	ΔLat.
		CENTAURUS.	0 /	0/	0 /	0 /	,	,
935	I	2 g	187 50	-21 40	188 29	-21 22	+ 39	+ 18
936	2	$4 \tilde{h} \dots \dots$	187 20	18 50	188 17	18 47	+57	+ 3
937	3	I <i>i</i>	186 30	20 30	187 23	20 14	+53	+ 16
938	4	$3 k \dots \dots$	187 20	20 0	188 26	19 50	+ 66	+ 10
939	5	XIII 53 \ldots	183 30	25 40	183 49	25 45	+ 19	- 5
940	6	5θ		22 30	192 58	21 32	- 2	+ 58
941	7	XIII 99 <i>d</i>	186 30	27 30	187 1	27 27	+ 31	+ 3
942	8	$\underset{\text{WIV}}{\text{XIV}}$ 40 ψ	195 30	22 20	196 10	22 19	+ 40	+ 1
943	9	$XIV_{55} a$	196 30	23 45	197 17	23 39	+ 47	+ 6
944	10	$\begin{array}{c} \text{XIV} 150 \ c^1 \ \dots \dots \end{array}$	199 20	18 15	199 52	18 4	+ 32	+ 11
945	II	$\begin{array}{c} \text{XIV} 141 \ b \dots \dots \\ \text{XIV} 167 \ a \end{array}$	199 50	20 50	200 24	20 47	+ 34	+ 3
946	I 2	XIII 197 v XIII 198 "	190 40	28 20	191 41	28 6 28 48	+ 61	+ 14 + 22
947	13 14	XIII 198 μ	191 20 192 30	29 20 28 0	192 4 193 34	28 48 27 40	+ 44 + 64	+ 32 + 11
948 949	14	$\begin{array}{c} \text{XIII} 240 \ \varphi \dots \dots \\ \text{XIII} 288 \ \chi \dots \dots \end{array}$	192 30	26 30	193 34 194 40	27 49 26 28	+ 60	+ 2
949	16	XIV 109 η	200 10	25 15	200 45	25 16	+35	- I
951	17	XIV 216 <i>к</i>	204 50	24 0	205 17	23 48	+ 27	+ 12
952	18	XIII 231 ζ	195 20	33 30	195 30	32 42	+ 10	+ 48
953	19	XIII $2\check{6}7$ v^2	195 0	31 0	195 49	30 47	+ 49	+ 13
954	20	XIII 249 v^1	194 10	30 20	194 53	30 16	+43	+ 4
955	21	ω cum	189 30	34 50	190 21	35 3	+51	- 13
956	22	f	186 20	37 40	187 8	37 33	+48	+ 7
957	23	γ	183 10	40 0	183 2	39 57	- 8	+ 3
958	24	au	182 20	40 20	182 4	39 54	- 16	+ 26
959	25	σ	180 0	41 0	181 25	42 II	+ 85	- 71
960	26	δ	180 0	46 10	178 9	44 21	-111	+109
961	27	ρ	180 50	46 45	180 4	45 27	- 46	+ 78
962 963	28 20	$M \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	195 40 193 40	40 45 43 0	196 6 196 8	37 7 39 22	+ 26 +148	+218 +218
903	29 30	Q	193 40 195 0	43 0 43 45	190 0 197 7	39 22 40 14	+127	+210 +211
965	31	γ Crucis	187 20	51 IO	187 16	47 33	+ 4	+217
966	32	β Crucis	192 40	51 40	192 18	48 26	- 22	+194
967	33	δ Crucis	183 40	55 10	186 21	50 16	+161	+294
968	34	a Crucis	188 30	55 20	192 35	52 40	+245	+160
969	35	a Centauri	215 40	44 10	212 33	41 51	-187	+139
970	36	β Centauri	201 30	45 20	204 22	43 54	+172	+ 86
971	37	μ Crucis	192 O	-49 10	191 14	-45 54	- 46	+196
		LUPUS.						
972	I	ΧΙΥ 211 β	205 20	-24 50	205 31	-24 47	+ 11	+ 3
973	2	a	203 10	29 10	204 1	29 47	+51	-37
974	3	XV 31 δ	208 20	21 15	209 7	21 12	+ 47	$+ \frac{3}{3}$
975	4	XV 98 γ	211 30	21 0	211 58	20 58	+ 28	+ 2
976	5 6	XV $35 \epsilon \dots$	210 20	25 10	210 35	25 0	+ 15	+ 10
977		λ	207 30	27 0	208 11	26 18	+ 41	+ 42
978	7	XV 242 π	208 O	29 0	208 7	28 11	+ 7	+ 49
979	8	μ	212 0	28 30	210 51	28 15	- 69	+15
980	9	К	211 0	30 10	209 57	29 24	- 63	+ 46
981	10	ξ	213 0	33 10	211 15	32 35	- 105	+ 35
982	11	ρ?	100 10		T00		-	
983	I 2	$^{\iota}_{\text{XIV 66 }\tau^1}$	199 10	30 30	199 19	29 59	+ 9	+ 31
984	13	$\begin{cases} XIV \ 66 \ \tau^1 \\ XIV \ 67 \ \tau^2 \\ \dots \\ \end{cases}$	200 20	-29 20	200 14	-28 51	- 6	+ 29

Catalogue III—continued.

Baily's	Ptolemy's No. and	Ptol	Ptolemy.		computed C. 130.	A Long	Alat	
No.	modern name.	Long. - 2° 40'.	Lat.	Long.	Lat.	ΔLong.	ΔLat.	
985 986 987 988 989 990 990 991 992 993 994 995 996	LUPUS—continued. 14 XV 217 η 15 XV 248 θ 16 XV 174 Fl. 5 χ 17 XV 204 ξ 18 XV 10 Fl. 1 i 19 XV 22 Fl. 2 f ARA. 1 σ 2 θ 3 a 4 ϵ^1 5 γ 6 β	216 40 213 0 214 0 204 40 204 50 235 0 240 20 233 30 228 0 232 30 232 20	$\begin{array}{c} \circ & , \\ -17 & 0 \\ 15 & 20 \\ 13 & 20 \\ 11 & 50 \\ 11 & 30 \\ -10 & 0 \\ \end{array}$ $\begin{array}{c} -22 & 40 \\ 25 & 45 \\ 26 & 30 \\ 30 & 20 \\ 34 & 10 \\ 33 & 20 \\ \end{array}$, , 216 13 217 11 213 17 214 35 205 8 205 27 235 52 241 35 235 22 230 1 234 43 234 38 	$\begin{array}{c} \circ & \prime \\ -17 & 9 \\ 15 & 22 \\ 12 & 55 \\ 12 & 59 \\ 12 & 47 \\ -11 & 17 \\ \end{array}$ $\begin{array}{c} -22 & 53 \\ 26 & 22 \\ 26 & 13 \\ 29 & 59 \\ 32 & 50 \\ 31 & 57 \end{array}$	$ \begin{array}{r} $	$ \begin{array}{r} $	
997	7 ζ Corona Australis.	. 228 10	-34 0	230 17	-32 47	+127	+ 73	
998	$\mathbf{I} \begin{cases} \mathbf{XVIII} \ 73 \ \delta^1 \dots \\ \mathbf{XVIII} \ 76 \ \delta^2 \dots \end{cases}$. 1240 30	-21 30	246 28	-22 14	- 2	- 44	
9 99	2 $\begin{cases} XVIII \ 166 \ \eta^1 \\ XVIII \ 169 \ \eta^2 \end{cases}$:]}24 9 0	21 0	249 53	20 14	+ 53	+ 46	
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 252 IO . 253 30 . 254 20 . 254 IO . 253 50 . 252 30 . 252 0 . 252 0 . 249 IO	20 20 20 0 18 30 17 10 16 0 15 10 15 20 14 50 14 40 15 50 - 18 30	252 44 253 58 254 27 254 31 254 0 252 26 251 59 249 17 246 53	$ \begin{array}{c} 19 & 31 \\ 19 & 3 \\ 17 & 35 \\ 16 & 28 \\ 15 & 2 \\ 14 & 6 \\ 13 & 59 \\ 14 & 11 \\ 14 & 56 \\ 16 & 9 \\ -18 & 46 \end{array} $		$ \begin{array}{c} + 49 \\ + 57 \\ + 55 \\ + 42 \\ + 58 \\ + 64 \\ + 81 \\ + 39 \\ - 16 \\ - 19 \\ - 16 \\ \end{array} $	
	PISCIS AUSTRINUS.							
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	298 0 301 30 302 40 301 40 292 30 298 30 298 30 298 30 298 30 298 30 298 30 298 10 288 20 287 30 275 20 281 20 281 20	$ \begin{array}{c ccccc} -20 & 20 \\ 20 & 20 \\ 22 & 15 \\ 22 & 30 \\ 16 & 15 \\ 19 & 30 \\ 15 & 10 \\ 14 & 40 \\ 15 & 0 \\ 16 & 30 \\ 18 & 10 \\ 22 & 15 \\ 22 & 20 \\ 21 & 10 \\ 20 & 50 \\ 17 & 0 \\ -14 & 50 \\ \end{array} $	297 30 301 38 302 29 301 40 292 21 299 58 292 37 292 37 288 58 287 33 287 44 276 0 278 48 282 17 282 46	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} -52 \\ -75 \\ -60 \\ -49 \\ -21 \\ -13 \\ -53 \\ +8 \\ +65 \\ +7^{\circ} \\ 77 \\ +5 \\ +5 \\ +5 \\ +5 \\ +5 \\ -36 \\ +7 \\ +5 \\ +5 \\ +5 \\ +6 \\ 12 \\ \end{array} $	

Catalogue III—continued.

NOTES TO THE CATALOGUE OF STARS.

The following notes to the stars include all those found in Dr. Peters' manuscripts. These consisted of brief notes and remarks all written in pencil on various papers. Some of his earlier notes, communicated to Harvard Annals, Vol. XIV, are superseded by later researches.

- 3. Long. Most authorities have 16° o', an error of $1 s = 16^{\circ}$, for $1 s' = 10^{\circ} 10'$.
 - Lat. Most Greek manuscripts have 74° 20', and the Arabs 74° 0'—either $O\Delta\Gamma'$ or $O\Delta$; it is more likely that the Γ' was omitted than that it was added.
- 6. Long. Paris 2389, Vat. 1594, and all the Arabs give 17° 10'. Manitius has 17° 30'.
- 12. Long. Baily gives 26° 30'.
- 13. Long. Baily and most Greek and Arab manuscripts have 26° 40'. Trapezuntius and Gerard of Cremona give 27° 40', which has been adopted. Confusion in Arabic between 6 and 7 is very common, but it is not easy to explain an error in Greek of s=6 for Z=7.
- 18. Lat. Baily and all Greek manuscripts give 44° o'. Sûfi, B. M. Reg. 16, and Bod. 369 have 45° o'. All are clearly erroneous. Sûfi finds no fault with the position. The star is certainly Fl. 30 φ , which is described by Sûfi and was observed by Ulugh Beg. Peters conjectures that in the original uncial Greek $\Lambda Z \Delta' = 37^{\circ}$ 15' was written as shown in the Facsimiles (page 23) and thus resembled $M\Delta = 44^{\circ}$ o'.
- 25. Long. Baily gives 22° 30'.
- 26. Long. Baily gives 3° 30'.
- 37. Lat. All authorities agree. Latitude is 1° too large; it should be $M\Gamma' = 40^{\circ} 20'$, not $MA\Gamma' = 41^{\circ} 20'$.
- 41. Long. Baily gives 12° 10'. No star exists corresponding with the position in the Almagest. It was not identified by Baily or Schjellerup. Manitius considers it to be Fl. 8 Leo Minor. Peters conjectured that there was confusion in the Greek between $|Bs' = 12^\circ 10'$ and $|\varepsilon s' = 15^\circ 10'$, which he adopts, and so arrives at the same star observed by Ulugh Beg (see photograph of Venice Codex 313, where ϵ in the abbreviation for $M\epsilon i \zeta \omega \nu$ might possibly be taken for β). Bod. 3374 has similar error of ϵ for β in the latitude, noted by Bernard about 1684. All the Arabs give latitude 22° 45', Vat. 1594, 22° 30'.

	Tran	Sr		TCHT		Π
u.	luce luce luce	+ 10 + (13 10	use use use	λς λr θ	ん ん 8	
	Ling Koy Koy	ICB S T T	ene ene	NÀ	B. B.	
muon	ταρ ταρ λ6ομ	ICB TO ICA S A TO	use use	ICH Z ICH Z AE Z	x re	
	Yeoh Yeoh Yeoh	θ(Γ ΪΓ Γ 18 S	une vie	104 F 106 1075	L'L'B	
	λ6ογ λ6ογ	14	yog	HE TO HA	B, B	

FIG. 3.—Venice Codex 313.

- 42. Lat. Most authorities give 23° o', but Ven. 313, Vat. 1594 and the Arabs have 20° 20', which is right. Baily and Schjellerup could not identify. Manitius considers it to be Fl. 10 Leo minor. Peters finds that the star is VIII 245.
- 57. The large proper motion of 61 σ , R. A.+o'.0973, Dec.-1".766, makes the identification of this star right.
- 58. Lat. Baily and all Greek manuscripts have 81° 20'; all the Arabs 81° 40', which is adopted.
- 66. Lat. All Greek manuscripts have the incorrect latitude; the Arabs are right. $\Pi\Gamma' = 80^{\circ} 20'$ for $\Pi\Gamma = 83^{\circ} 0'$.
- 69. Long. All the Greek manuscripts have the erroneous longitude of 10° 20'; the Arabs are right. $I\Gamma'$ for $I\Gamma$.
- 75. Long. Baily adopts 5° 10' from Gerard of Cremona. All the Greek manuscripts have the erroneous longitude of 9° 0'. The Arabs have 5° 0, which is correct. One of the numerous errors of $\Theta = 9^\circ$ 0' for $\varepsilon = 5^\circ$ 0'.
 - 79. Proper motion makes the disagreement in longitude much worse.
 - 90. Long. Nearly all Greek manuscripts have the erroneous longitude 9° 40'. The Arabs are correct with 5° 40'. A similar error to No. 75.
 - 96. This is the same star as No. 147.
 - 97. Peters, Peirce, and Schjellerup identify this star as η Coronæ, which accords with the description, but the position agrees better with χ Bootis, adopted by Bode, Halma, Delambre, and Manitius. Baily is undecided between η and o Coronæ.

Positi	ons A. D.	100.	
		η Coronæ.	χ Bootis.
	o /	o /	0 /
Ptolemy Longitude Latitude	187 40 46 30	190 20 47 I	188 35 45 1

- 98. Not identified by Bode and Manitius. Baily and Schjellerup consider it to be χ Bootis, and Halma η Coronæ. The description accords best with Fl. 1 o Coronæ.
- 99 to 102. There is much diversity of opinion as to the identification of these stars. Peters considered that they were in the following order: ω , b, ψ , and c; Schjellerup as b, ω , ψ , and c; Bode, Baily, and Manitius, c, ψ , b, and ω . The last accords best with the description and has been adopted. The comparisons for A. D. 100 are:

	Long.	Lat.		Long.	Lat.	Δl	Δb		Long.	Lat.	Δl	Δb
14	186 40	41 40 42 30	$\downarrow b$ $\downarrow \psi$	188 19 186 59	42 I 42 30	+99 - 1	+21 0	$\frac{\psi}{b}$	188 19	42 30 42 I	+19 +79	+50 -29

112. Lat. Baily and all Greek manuscripts have 46° 30'; the Arabs have 46° 10, which agrees best.

- 129. Baily has Long. 3° 40', Lat. 53° 0'. He remarks that there is no authority for latitude 50° 40' adopted by Halma, but reference to the Table of Collations shows that nearly all Greek manuscripts have that latitude. Peters adopts 53° 10' as in Sûfi and B. M. Reg. 16.
- 131. Lat. Baily gives 56° 30'.

- 134. Lat. All the Greek manuscripts give 63° o', which is wrong; the Arabs have the correct latitude, 60° 20'. Error of $\Xi\Gamma$ for $\Xi\Gamma'$.
- 135. Ptolemy's place is largely in error.
- 138, 139. Ptolemy's errors here are very large, and it is singular that the errors of the positions of these stars in Ulugh Beg are about as large. The identification of the stars is probably correct, but differs from Baily and Manitius.
- 140. Lat. Baily gives 72° 15'. The latitude 72° 0' of the Arabs is adopted.
- 141. Lat. All the Greeks give 64° o', and the Arabs 60° 15', which is correct. An error of $\Xi \Delta$ for $\Xi \Delta'$.
- 146. Long. The longitude agrees closely with the computed position, but considering the large errors in Ptolemy's longitudes of the stars in Hercules, it is probably 1° too large.
- 147. This is the same star as No. 96.
- 148. The identification of this star is probably correct, but the longitude and latitude are largely in error and no explanation of the discrepancy is available from the numerous manuscripts examined. Ulugh Beg has the correct latitude.
- 154. Long. There is no authority for the longitude $2^{\circ} 40'$ assigned by Peters to this star. All the manuscripts give $1^{\circ} 40'$. The very numerous errors in Greek of A = 1 for $\Delta = 4$ would suggest that here the longitude should be $4^{\circ} 40'$, which agrees closely with the computed place; but seeing the large errors in longitude common to all the stars in Lyra, it is doubtful if this explanation is available.
- 156. Identified as Fl. 9 v², which agrees a little better and also is brighter than 8 v¹, which Baily has taken.
- 159. Lat. Baily gives the latitude 49° 0'.
- 164. Long. Baily gives 19° 20'.
- 175. Peters considers this star the combination of 43 ω^1 and 45 ω^2 . All the Greek and Arabic manuscripts give the latitude as 63° 45', though 64° 45', adopted by Baily, agrees closer; Halley gives 64° 50'.
- 184. Baily, Bode, Peirce, and Peters agree that this is ι Cassiopeia. Suff remarks that it is in a straight line with the two preceding stars δ and ϵ , which proves the identification correct. The longitude is 4° in error. All Greek and Arab authorities agree in Long. $1^{\circ} 40'$. The only explanation is an error in the earliest manuscripts of $A=1^{\circ}$ for $\Delta=4^{\circ}$, of which there are numerous instances in the manuscripts under discussion. Upon this explanation the difference of the computed place would be +78', harmonizing with the general errors of the longitudes in Cassiopeia. The latitude is 1° in error, which is less easy to explain.
- 206. Lat. Baily and the Greek authorities give 28° 0', and the Arabs 28° 15', which is adopted.
- 221. Lat. Vatican 1594, Laurentian 1, Venice 313, and Paris 2390 are alike in giving the latitude as $\lambda \alpha \iota \Gamma'$. It is not clear what this means, but probably the iota has been written by mistake for the sign for $\eta \mu \iota \sigma v$; thus it would be 31° 50′, as in Paris 2389 and Bod. 3374.
- 223. Lat. All authorities, except B. M. Arabic 7475, have latitude 20° 0'; the latter has 22° 0', which is more nearly correct. Ulugh Beg has 21° 30'.
- 230. This is the same star as No. 400.
- 231. Long. All authorities, except B. M. Arabic 7475, have 26° 0′, which is 1° too small. B. M. 7475 has 27° 0′, which is correct. See note to No. 13.
- 233. Long. Baily gives longitude 20° 40', latitude 16° 20'. Most of the Greek manuscripts have 20° 40', an error conjectured of KF for KF. Paris Cod. 2394, 23° 0', which is adopted. Grynæus 20° 20', error of KF' for KF. For

latitude there are the readings 16° 20' and 10° 20'; the latter is adopted. Sûfi remarks upon the erroneous position of Ptolemy, and Ulugh Beg did not find the star. The nearest star to the position is Fl. 5, but this is only 6.7 mag. The largest star in the neighbourhood is Fl. 2 of 5.0 mag., identified by Manitius, but this gives the large errors of Long. -56' and Lat. -150'.

- 235. Lat. All authorities have 27° , which is 1° too small.
- 236. Lat. The Greek authorities have 26° 30' and the Arabs 26° 45'.
- 239. There is great discordance in the manuscripts as to the coördinates of this star. The identification by Baily, Peirce, and Peters as Fl. 10 λ is probably correct. The Arabs have the correct longitude. The latitudes, as appear in the table, are very discordant. Peters considered the latitude as 23° 30' or 23° 50'. Cod. Ven. Greek 311, B. M. Reg. 16, and the Laurentian Arabic 156 have 23° 45'. Bodleian Arabic 369 has 28° 45', which by the common error in Arabic of $\tau = 8$ for $\tau = 3$ may well accord. Probably 23° 45' is the best to adopt. Baily has latitude 33° 50'.
- 246. Long. Baily and the Greek manuscripts give 26° 40', which is erroneous; the Arabs and one reading of Paris 2389 have 23° 40', which is correct. Peters remarks that if the Greek longitude is right, the star might be the Nova 1604, but Ulugh Beg observed the star 40 ξ. This identification is confirmed by Peters, Baily, and Manitius.
- 247 to 250. Peirce states that these stars present one of the greatest perplexities of the whole catalogue. On reference to the Table of Collations, it will be seen that the manuscript authorities are about equally divided as to the latitude being north or south. Paris Codex 2389 gives both, which indicates that it is a compilation from more than one manuscript. Grynæus gives 247 as *north*, and omits any designation to 248-250, and it is singular that these are the only omissions in his whole catalogue of designation of the latitude, probably from the conflicting evidence in the manuscripts he used. The only printed editions which give the latitude of all these stars as *south* are Copernicus and Clavius. Peirce has discussed these stars in H. A. Vol. IX, but he is in error in stating that Baily has altered the latitude of the 16th star, No. 249. Peters' investigation leaves little room for doubt of his correct identification of the stars, and of their latitudes being *south*. The longitude of 250 is largely in error.
- 250. Lat. Baily has 0° 45', which is found only in Liechtenstein and B. M. 7475.
- 251. There is some uncertainty as to the identification of this star. All manuscripts agree in longitude and latitude. Schjellerup and Manitius identify as Fl. 58, which would make the longitude erroneous by 2° and the latitude 1°. Bode and Halma give Fl. 2 e (Sagittarius). The nearest star to the position is Fl. 52 (adopted by Baily), which is 6.6 mag. It has been conjectured that the star may have been Nova 1604, the position of which for A. D. 100 is longitude 236° 44', latitude +2° 2', a difference of 1° in each coördinate. Peters does not decide between 52 Ophiuchi and 2 Sagittarii.
- 255. The Arabs have the correct latitude 1° 40'; Baily has 1° 50'.
- 262. Sûfi calls this a double star, which is Fl. 71 and 72 together.
- 268. Long. Most authorities and Baily give 23° 10', which is 1° too small. Paris 2389 gives 26° 10', which is nearer the computed place but is discordant with the other longitudes as being too large.
- 274. Lat. All authorities, Greek and Arabic, have latitude 16° 15'. But there is no suitable star in latitude 16°. Baily states that Bode and Delambre give it as 13° 15', but without authority. Bode, however, gives it as 13° 0'.

There is no doubt that 13° 15' is taken from Halley's edition of the Catalogue (*Geographiæ Veteris Scriptores Græci Minores*, 1712) which is a copy in which the positions of the stars have been corrected by computation.* It is probable that the identification of the star as Fl. 3v Ophiuchi is correct, and Ulugh Beg certainly observed this star. The latitude should be 13° 15', and so it has been adopted by Peters. No explanation of the error in Greek is available.

- 285. Lat. Baily has 37° 40', but the Arabs have 38° 40', which is adopted.
- 289. Bode, Halma, Delambre, Baily, and Manitius make this star Fl. 54 o. Peters remarks that Fl. 59 ξ is Ulugh Beg's star and probably that of Ptolemy, but the latitude is 1° too large; besides ξ is 1 magnitude brighter than o.
- 296. Long. Bod. 3374 and Ven. 302 have 50° 50', error of ν for η .
- 299. Longitude is 2° too large and latitude 1° too large.
- 300. Long. All authorities give 21° 10', which is 1° too large. The position of this and the preceding star in Ulugh Beg are quite erroneous. Peters has adopted 20° 10'.
- 304 and 309. Long. In these stars longitude is 1° too small.
- 305. Lat. Adopted from Grynæus and Paris 2394. Most authorities give 33° 50', which Baily adopts.
- 308. Lat. Several Greek and Arab authorities have 34° o'. Error of $\Lambda\Delta$ for $\Lambda\Delta'$.
- 329. Long. Baily gives 9° 10'.
- 332. Long. Comparison with Ulugh Beg seems to indicate an error of 1° too large in Ptolemy's longitude.
- 346. Lat. Vat. 1594, Ven. 310 and 313, and all the Arabs have the correct latitude.
- 356. Lat. All authorities have 32° 30', which is 1° too large, which is confirmed by comparison with Ulugh Beg.
- 357. Peters confirms Peirce in identifying this star as Fl. 1 o.
- 360. Long. There appears to be no authority for 16° 40' adopted by Baily.
- 368. Latitude appears to be 1° too large; Ulugh Beg has 3° 12'; all authorities give 4° 30' or 4° 50'.
- 371. The position of 63 τ^2 Arietis agrees much better than 61 τ^1 , and was certainly the star observed by Ulugh Beg.
- 372. Lat. Baily has 1° 30'.
- 374. The position agrees well with Fl. 87 μ Ceti (see note to 716 and 717, Ptolemy's 5 and 6 Ceti). Schjellerup, following Bode, identifies both 374 and 717 as μ Ceti. The agreement of Ulugh Beg with Ptolemy is so good that there can be no doubt that they observed here μ Ceti, while 717 does not agree at all. Manitius identifies 374 as Fl. 38, but the position for A. D. 100 is discordant. Δ long. = +70'; Δ lat. = +107'.
- 375. Lat. Baily has 10° 30'.
- 382. Long. Baily has 24° 20', but the Arabs have probably the more correct longitude, 24° 40'.
- 383. Long. All Greek manuscripts, except Ven. 311, have erroneously 21° 20'. An error of $K\Delta = 21^{\circ}$ for $K\Delta = 24^{\circ}$.
- 389. Both longitude and latitude about 1° too large. Vat. Reg. 90 and Manitius give longitude as 10° 20', an error of $|\Gamma' = 10^\circ 20'$ for $|\Gamma = 13^\circ$.
- 392. Ptolemy probably observed θ^1 and θ^2 as one mass.
- 394. Longitude 11° 50' is adopted from all the Arabs, one reading of Paris 2389 and Ven. 312. Baily has 12° 50', also from a variant in Paris 2389.

^{*}The only available information about Halley's edition is the following paragraph from the preface to the above work: "Quod vero hisce omnibus subjungere placuerit Ptolemæi Catalogum Fixarum Stellarum, alicui forsan mirum videatur, cum sit argumenti plane dissimilis, minime tamen dubito quin hoc mihi ignoscat, qui norit quot ab illis syderibus maculas abstersit, quantamque eis lucem affundit Cl. Hallejus; eandem scilicet, qua, Ptolemæo illa contemplante, enituerunt: cum diu in libris, tam Mss. quam editis, ob voces perturbatas numerosque confusos, illa cœli lumina crassis obvoluta fuissent tenebris."

- 395. Long. The Arabs give 17° 10' and the Greeks 17° 30', as adopted by Baily; the first is preferable. Latitude in Paris 2389 is erroneously 0° 15'; error of $\Delta'=0^\circ$ 15' for $\Delta=4^\circ$ 0'.
- 399. Lat. All authorities have 4° o', which is wrong; error of $\Delta = 4^{\circ}$ o' for $\Delta' = 0^{\circ}$ 15'. B. M. 7475 makes the latitude *north*, all the others *south*. Latitude $+0^{\circ}$ 15' would give the best accordance.
- 400. This is the same star as No. 230.
- 402. Lat. The Arabic Bod. 369 and B. M. Reg. 16 are the only authorities which have the correct latitude 0° 15'; all others, including Sûfi, have 4° 0'. Sûfi remarks that "Ptolemy's latitude is false, as the latitude places the star *north* of the preceding star, whereas the description states that it is *south*." This shows that the manuscript of Ptolemy used by Sûfi had the same error as in No. 399 above, viz., $\Delta = 4^\circ$ 0' for $\Delta' = 0^\circ$ 15'.
- 404. Paris 2390, and the two Venice codices, 310 and 313, give the latitude correctly south.
- 405. Long. All manuscripts agree in giving 8° 0'; Manitius has 8° 30'.
- 406. The identification of this star is not free from doubt. Baily and Halma considered it to be 42 \$\nothin\$ Tauri and this star was finally adopted by Peters, but he remarks that Ulugh Beg's position of Ptolemy's 27th star in Taurus agrees fairly with 41 Tauri, but badly with 42 \$\nothin\$. Ptolemy's star is in better harmony with 41 Tauri if we could assume an error of 1° in the latitude. The errors for A. D. 100 are:

	∆Long.	ΔLat.	Mag.
	,	,	
41 Tauri 42 ψ		-57 + 32	$5 \cdot 3$ $5 \cdot 3$

Baily adopts latitude 7° 20'.

- 410. Long. Baily has 2° 20'.
- 412. Peters considered that there was no doubt that this star is III 170 and not Fl. 18 as Baily has, which gives errors for A. D. 100 of Long. -27', Lat. -19', mag. 5.6. III 170 gives errors of Long. +51', Lat. +9', mag. 5.4. The star can not be Alcyone. Ptolemy describes it distinctly as $\mu \kappa \rho \delta s$ (small). Gerard of Cremona gives mag. 5; all other authorities mag. 4.
- 415. The longitude 24° o' is adopted from one reading in Paris 2389, Venice 303, 311, 312, and the Arabs. The difference with other manuscripts is the common confusion of the alpha and delta. Baily has 21° 0'.
- 418. Peters, Peirce, and Manitius identify as Fl. 129 observed by Ulugh Beg, but the star is rather small and the longitude is too small. Peirce suggests that it might be better to make 418 as Fl. 126, and to suppose that 417 had disappeared. The position of Fl. 126 for A. D. 100 would accord very well with Ptolemy's star No. 418, but the identifications adopted accord best with the description.
- 419 to 423. Sûfi remarks that the longitudes and latitudes of these stars are grossly in error. There seems little doubt that Peters' identification is correct. Ulugh Beg's positions agree fairly well with them. They are all small stars.
- 424. Lat. Baily and all the Greeks have 9° 30', and the Arabs 9° 40', which is more correct.
- 426. Long. All authorities agree, but the longitude is 2° too large. The latitude is too small. Bod. Arabic 369 gives 11° 0', which is more nearly correct.
- 432. Baily adopts longitude 26° 10', latitude 3° 0'. The Greek manuscripts give longitude 26° 10', and the Arabs 23° 10'; the latter is certainly the better to

adopt. The latitudes are either $\Gamma = 3^{\circ}$ o' or $\Gamma' = 0^{\circ} 20'$. Adopting the latter, the position agrees with Fl. 58. Baily identifies as 76 c. Peirce as 52 Tauri, Schjellerup as b, and Manitius as 63.

- 434. Lat. Baily adopts 18° 15' from all authorities. Peters gives the longitude as 18° 10' for the reasons given on page 12 for believing that the instrument used for measuring longitudes was not graduated to 15'.
- 436. Long. Baily has 21° 20'. There is great uncertainty in the latitude of this star in all Greek manuscripts and in the printed Greek of Grynæus and Halma. In all cases it is represented by the character for $\frac{1}{2}$ followed by that for $\frac{1}{6}$, or in Paris 2389 and Laurentian 1, by 6. There is a slight indication in Paris 2389 (though not in Laurentian 1) of a separation of 6 from $\frac{1}{2}$, in which case it may be possibly $\frac{1}{2}$ with 6° as a variant. Peters considered the majority of cases he examined to be 0° 30' with variant 0° 10', not 0° 40'. All the Arabs agree in latitude 6° 0', which is adopted.
- 438. Long. The better reading is that given by the Arabs and Vienna 14.
- 445 and 446. Baily, who took the Greek descriptions of the stars from Grynæus, did not perceive the error in the descriptions of these two stars, which are equally erroneous in Paris 2389. He gives:
 - 445. τῶν ἐπομένῶν τῆ δεξια χειρὶ τοῦ ἐπομένους (?ἐπομένου) διδύμου ὁ μέσος τῶν γ. (τριῶν).
 - 446. $\epsilon \pi' \epsilon \upsilon \theta \epsilon \iota as \delta \beta \delta \rho \epsilon \iota os.$ It is obvious that these descriptions should be as in Vatican 1594 thus:
 - 445. τῶν ἐπομένῶν τη δεξιᾶ χειρὶ τοῦ ἐπομένου διδύμου τριῶν ἐπ' εὐθείας ὁ βόρειος.
 - 446. $\delta \mu \epsilon \sigma \sigma \tau \omega \tau \tau \rho \iota \omega \tau$. Baily also states that the latitude of 445 in Paris 2389 is -2° 40', but in that manuscript it is clearly -1° 20'.
- 445 to 448. The longitudes of these stars are all in error. The authorities give longitude of 448 as 0° 40', except Laurentian 39, Vienna 14, and Vatican Reg. 90, which give 3° 0', and Gerard of Cremona, B. M. Sloane 2795, which gives 5° 40', the same as Liechtenstein; the last has been adopted. Peters remarks, "There is no other star than ζ Cancri that suits the position," hence the longitude is 1° too large.
- 449. Lat. Baily has 0° 20'. The value 0° 40' given by the Arabs has been adopted as agreeing better with the computed position, and also by comparison with Ulugh Beg.
- 455. Ptolemy's position is erroneous. Ulugh Beg is right.
- 457. Lat. Baily and all authorities give 7° 30'. The error in latitude is remarked on by Sûfi and must be very old. Peters has adopted 10° 30' without authority.
- 458. Long. All authorities have 19° 10' (adopted by Baily) or 19° 40', except Bodleian Arabic 369, and B. M. Reg. 16, which have 15° 10'. Sûfi remarked the error in longitude. There is little doubt the Arabs are correct, and we have another instance of error in the Greek of $\Theta = 9$ for $\varepsilon = 5$. Peters identifies the star as the combination of 62 o¹ and 63 o². Sûfi and Ulugh Beg both observed o Cancri. Baily, Schjellerup, and Manitius consider the star to be π Cancri.
- 459. Sûfi speaks of the error in longitude, which is 2° too large.
- 460 and 461. The latitudes of these two stars are wrongly transposed in all the authorities.
- 472. Long. All authorities agree, still the longitude is 1° too large. Ulugh Beg also has the longitude too large.
- 479. Long. Baily gives 12° 10'.
- 482. The identification of this star is one of the most difficult in the catalogue. Ptolemy states that it is the northern of two stars, the southern, No. 483, being well identified as θ Leonis. Fl. 81 is possibly the star, in which case Ptolemy's

latitude would agree, but the longitude would be 4° in error. Peters remarks, "if we will not assume that a star disappeared near X 251, mag. 6.8, then the correction of longitude $IH\Gamma' = I8^{\circ} 20'$ for $I\Delta\Gamma' = I4^{\circ}$ 20' is the most plausible conjecture that can be made." There is, however, no evidence in the uncial Greek of papyri or of vellum manuscripts, nor in cursive Greek, of a confusion between H=8 and $\Delta=4$. "Sûfi speaks of the error in latitude of Ptolemy, but this can not be Ptolemy's star, and Sûfi had another star in view, while Ulugh Beg in his observations was guided by Sûfi." "Baily's identification with 71 Leonis is entirely to be rejected, since Baily himself has shown that the R. A. of 71 Leonis in Flamsteed by mistake is 2° too small."

- 486. Long. The authorities have either 24° 40' or 21° 40'. The former is adopted, the latter is an error of A = 1 for $\Delta = 4$. The star is identified as 84τ . Ulugh Beg observed 69 p^5 . Sûfi's description points to 74 φ .
- 487. Lat. All the Greek manuscripts, with the exception of Vat. Reg. 90, give the latitude as 3° 12', which is clearly erroneous. There is no other instance in the whole catalogue of the fraction $\frac{1}{5}$. The error is doubtless of very ancient date. The magnitude of the star is $\epsilon' = 5$, and the latitude and magnitude are written thus: $\Gamma \epsilon' \epsilon'$. It is probable that in an early manuscript the magnitude was written by mistake within the latitude column, whence the mistake arose. Manitius has latitude 3° 10' as Vat. Reg. 90. The Arabs have either 3° 0' or 0° 20', a confusion of Γ and Γ' . Latitude 3° 0' is correct and so no doubt it was given in the original Greek.
- 494 to 496. The identification of these stars seems correct, and these were the stars observed by Ulugh Beg. The large error they have in common makes it look as if they were determined either differentially or by some other observer. Thus may be explained also why they are called ἀμαυρός, while not smaller than many others.

$$\begin{array}{c} C-Pt.\\ \Delta l & \Delta b\\ \circ & \prime & \circ & \prime\\ 494. & +2 & 29 & -1 & 35\\ 495. & +2 & 45 & -1 & 34\\ 496. & +3 & 25 & -1 & 24 \end{array}$$

The following are the several identifications of the stars:

	Peters.	Baily.	Bode.	Halma.	Schjellerup	. Manitius.
494 ·	5		С	e	15 c	15 c
495 · 496.	7 h	4 Comœ.	h	h	I 2	7
496 <i>.</i>	23 k	21 Comœ.	g	g	21	23

494 is given of magnitude 5, and is described by Ptolemy as $\lambda a \mu \pi \rho \delta s$. In Paris 2389 and Vat. 1594 it is $\lambda a \mu \pi \rho \delta s$ a $\mu a \nu \rho \delta s$; in the Trapezuntius edition "splendida," and in Liechtenstein, "luminosa." Ptolemy designates as $\lambda a \mu \pi \rho \delta s$, six stars mag. 1, thirteen mag. 2, seven mag. 3, and eleven mag. 4. He does not apply the word to any other star so faint as 494. It seems probable that here is a variable star.*

^{*}These three stars of the *informata* of Leo, and described by Ptolemy as in the figure $\pi\lambda\delta\kappa\mu\mu\sigma$, are three of the 12 stars which he designates as $\dot{\alpha}\mu\alpha\nu\rho\sigma$, the others being Nos. 40 to 43, among the *informata* of Ursa major, 219, the last of the *informata* of Perseus, and 311 to 314, the four stars in Equuleus. It is difficult to conjecture why these stars should have been designated $\dot{\alpha}\mu\alpha\nu\rho\sigma$ (obscure). The magnitudes range from 4.1 to 5.1, the mean magnitude being 4.7. The constellations Equuleus and $\pi\lambda\delta\kappa\mu\mu\sigma\sigma$ are not mentioned by Aratus, Eratosthenes, Manilius, or Hipparchus in his commentary on Aratus. But Geminus (circa B. C. 77), in his work reminov $\dot{\epsilon}\sigma\dot{\alpha}\gamma\sigma\gamma\eta$ is ra $\phi alsouera$, in his enumeration of the constellations, includes the constellation $\pi\rho\sigma\sigma\mu\eta$ impov, sectio equi, "according to Hipparchus"; and he also includes $\beta\epsilon\rho\epsilon\nu\kappa\eta$ s $\pi\lambda\delta\kappa\mu\mu\sigma$ s, Coma Berenices. (Petavius, Uranologion, p. 12.)

- 497, 498. The longitudes of these stars are interchanged in all the manuscripts. Baily has not corrected them. The longitude 25° 20' he gives to 497 should be that of 498. All the Greeks have 25° 20', and the Arabs 26° 20', which is adopted.
- 504. Peters remarks that the stars Fl. 44, 46, and 48, Virginis, mags. 5.9, 6.1, and 6.5, are near together, which may explain the greater brightness, mag. 5, estimated by both Ptolemy and Sûfi. Combined mag. 5.0.
- 509. Lat. Greek authorities give 20° 10', the Arabs 15° 10'. Ulugh Beg's latitude is 16° 15'. Peters has adopted 16° 0' from Halma, who is copied by Baily, and he remarks that Halma gives no authority. It is clear that Halma took 16° 0' from Halley. It is of course correct, but is not supported by any manuscript.
- 513. Long. This is 1° too small; all authorities agree.
- 515. Peters and Baily agree that Ptolemy's position indicates 68 *i*, and both remark that it is clear that this position can not form the south following corner of the quadrilateral Ptolemy speaks of. But it is evident that the position of Ptolemy's 20th star in Virgo (correctly identified as 86) is exactly in the south following corner of the quadrilateral formed by 74, 76, and 82. The descriptions of Nos. 515 and 516 should be therefore interchanged.
- 517. Ptolemy's longitude is 2° too small, and the latitude error is similar in Ulugh Beg. This casts much doubt upon the identification of the star as 90 p, which, however, is not discordant with the description "in dextro crure posteriori." Peters questions whether there is here a variable or a star lost.
- 526. The identification as 53 is right, but Ptolemy's longitude is 2° too large. Ulugh Beg is also 1° too large. Baily gives latitude 7° 10'.
- 527. Ptolemy calls this star διπλούs; Sûfi likewise. The proper motion of Fl. 61 is so great, its distance from Fl. 63 (73' in 1800) is reduced to 35'.4 in Ptolemy's time. But could these two together appear double?
- 528. Peters agrees with Peirce in identifying this as 89, but the latitude is 1° too far south; Ulugh Beg likewise. Paris 2389, Vat. 1594, and the Arabs have the correct longitude, 5° 0'. Baily has 0° 0'.
- 529. The star is probably $\frac{a^1+a^2}{2}$ Libræ.
- 532. Long. Baily has 19° 40', probably a misprint.
- 541. Ulugh Beg, misled by Sûfi, here probably observed 44 η , but Ptolemy's description does not admit this star. Greek authorities give latitude 3° 0', which is probably an error of $\Gamma = 3^\circ$ 0' for $\Gamma' = 0^\circ$ 20'. Bod. Arabic 369 and B. M. Reg. 16 have the latitude which has been adopted.
- 542. Peters identifies the position of this star as Oeltzen's Argelander, 14782, which has been found to be variable. Pickering remarks that it has not been observed brighter than mag. 9.
- 544. Lat. The Greek manuscripts have 8° 30' and the Arabs 8° 10', which latter is adopted. Baily has 8° 30'.
- 551. The star is $\omega^1 + \omega^2$
- 553. This star, a Scorpii, is one of the six stars designated by Ptolemy as ὑπόκιῥρός; the others being a Bootis, a Tauri, β Geminorum, a Orionis, and a Canis Majoris. Questions relating to the color of these stars have been fully discussed by Nallino,* Schiaparelli,† Schjellerup,‡ and Knobel,§ including particular reference to the words used in Arabic texts as translation of the Greek. The word ὑπόκιῥρός has been erroneously considered as

signifying red, its true meaning being "yellow, fire or wax-colored, cereus." and in that sense it has been correctly translated in the British Museum Arabic Almagest 7475, where the Greek word is expressed by the word شمعى shemai, "wax-like;" but not so in Sufi and all other Arabic texts. In these the Greek word is rendered by the sentence meaning "inclines towards" some color المخوصي or يضرب الج الحوصي expressed by . It is clear that this particular word is quite unknown to Arabs generally, and is not in any Arabic dictionary. All efforts to obtain a solution from scholars, and from the authorities at the Al Azhar Mosque at Cairo, have failed. Causin de Perceval,* speaking of another word used in Arabian Astronomy, says, "On chercherait en vain dans les dictionaires Arabes et Latins l'explication de ce mot, et en général de presque tous les termes d'astronomie Arabe."[†] Ptolemy's designation of Sirius as $\vartheta \pi \delta \kappa \rho \dot{\rho} \partial s$ has been exhaustively investigated by Schiaparelli and Schjellerup, who have shown the strong improbability of the term "Rubra Canicula" having been correctly applied to that star, or of there being any sound evidence of change in color. Though Sûfi omits all reference to the color of Sirius, yet in Bod. 369 and B. M. Reg. 16 the star is described by the same words indicating color as in the other five stars.

- 555. Lat. The Arabs 6° 10' agrees a little better than the Greek 6° 30' adopted by Baily.
- 560. Lat. All authorities, except Sûfi and Ulugh Beg, have 18° 0'; Sûfi 19° 30'. The star, according to Ptolemy's description, should be *south* of the preceding star and 18° does not agree at all; 19° 0' has therefore been adopted.
- 567. Identified correctly by Peters as γ Telescopii. Ulugh Beg also observed this star. Ptolemy calls it nebulous. Peters says, "I can not see any nebulosity around it and Sûfi seems to doubt the same." There is, however, close to this star, the cluster N. G. C. 6441, described by Dreyer as "a globular cluster, very bright and pretty large." This seems to be the explanation of Ptolemy designating the object as nebulous.
- 569. The Greek authorities give the longitude as 25° 30', which Baily has, and the Arabs 29° 30', an error in the Greek of $\epsilon = 5$ for $\Theta = 9$. The Greek latitude is 1° 10', and the Arabs 4° 10', a common error in Greek of A = 1 for $\Delta = 4$. In both elements the Arabs are right.
- 570. Long. All the Greek manuscripts give 9° 30', except Ven. 312, 5° 30' (same error as in the preceding note). The Arabs have 4° 30', which is right. The confusion of Θ or ϵ for $\Delta = 4$ is not easily explicable.
- 577. The star is $\frac{\nu^1 + \nu^2}{2}$. Ptolemy describes it as $\nu\epsilon\varphi\epsilon\lambda\epsilon\iota\delta\eta$'s $\kappa\alpha\iota$ $\delta\iota\pi\lambda\epsilon\iota$'s. There are several small stars close.

578. Fl. 37 ξ^2 agrees better for position and is brighter than ξ^1 .

584 and 585. Ptolemy's large errors in longitude appear also in Ulugh Beg. Baily gives longitude of 584 as 25° 20'. There are no other stars corresponding.

587. Long. The Greek give longitude 22° 40′ and the Arabs 22° 20′, which latter is to be preferred. It is probable that 47 χ¹ and 49 χ³ were observed as one mass.
592. Lat. The latitude is 1° too far south.

593. Long. Ptolemy's longitude is 2° too small. Sûfi remarks the error; Ulugh Beg is right. 596. Long. All the Greek authorities have 23° 50' and the Arabs 26° 50'—the latter is

^{*}Notices et Extraits. Tome VII.

[†]M. D'Abbadie informed the writer that Fresnel told him that he learned in the Red Sea many current expressions not found in any native dictionaries.

adopted. Peters had 24° 50' from Halley. The latitude in all the Greeks and some Arabs is 26° 0'. The only manuscript that gives the right latitude is B. M. Arabic 7475, 20° 10'. In the Greek there is an error of Ks for Ks'.

- 597. Long. Baily has 27° 20'.
- 604. Long. All authorities give the longitude either 9° o' or 5° o'; similar error in the Greek, of which several examples have been given. Peters' adopted longitude of 6° o' is mere conjecture. It is more probable that the original was 5° o' and this was the opinion of Halley. Peters remarks that the proper motion of 2 ξ^2 would bring the stars ξ^1 and ξ^2 quite close together in Ptolemy's time, only 5'.5 apart, and that it was the combination of these stars that was observed.
- 609. As τ^2 is a little larger it was more likely to be the star observed, but perhaps $\frac{\tau^1 + \tau^2}{2}$ was observed as one mass.
- 610. Lat. Baily has 0° 10' from Trapezuntius. The Arabs have 0° 50', which is adopted.
- 611,612,613. See Baily's note on the confusion of these stars in different manuscripts. The description adopted agrees with Baily and Gerard of Cremona. Manitius adopts a different order.
- 613. Ptolemy's longitude is 1° too large.
- 615. Baily identifies as 35 Capricorni, mag. 6.0. Peters adopts 36 b, mag. 4.5, as being larger and more probable.
- 624. Liechtenstein and Sûfi erroneously designate the latitude north.
- 625. Ptolemy's longitude is too large.
- 626. Table of Collations shows that four Greek authorities (as well as Grynæus and Halma) have the erroneous longitude 20° 40'.
- 634. 13 ν was the star observed by Ptolemy, whose longitude, however, needs a correction of $+2^{\circ}$.
- 635. The latitude appears to be 1° too small, though it agrees with Ulugh Beg.
- 642. Baily adopts latitude 2° 10', which is erroneous.
- 645. Most of the authorities have latitude 4° o'. Paris 2389 is correct; error of $\Delta = 4^{\circ}$ o' for $\Delta' = 0^{\circ}$ 15'. Peters identifies as 38 e, Baily as 37 e¹. Sûfi, misled by the erroneous latitude 4° o', observed Fl. 30. Manitius makes the latitude south.
- 649. Sûfi's observations point to 68 g² as the star which was observed by Ulugh Beg. Baily's identification as 59 v supposes an error of 3° in Ptolemy's longitude.
- 651 and 652. Peters identifies 651 as Fl. 63 κ , but longitude and latitude are largely in error. The description of 651 is "Antecedens duarum quæ sunt in ipso aquæ fluxu a manu"; and the description of the following star, 652, is "Quæ istam adhuc sequitur." The latter star is correctly identified as Fl. 73 λ . The star which precedes it and forms the pair referred to by Ptolemy is perhaps Fl. 67, though very uncertain, and it is smaller than 63 κ . In the case of 63 κ we have errors, longitude -115', latitude +136', and for Fl. 67 the errors are longitude -106', latitude -51'. Baily identifies 651 as 67 and adds that a correction of $+2^\circ$ should be made to the longitude. Schjellerup identifies as Fl. 67. Sûfi omits 651 altogether.
- 657. The position is equally good for either $93 \psi^2$ or $95 \psi^3$. The first is the larger star. 658. The star is probably Fl. 94. Sûfi seems to have observed Fl. 97, which gives errors of longitude -113', and latitude -106', and is smaller than 94. Ulugh Beg observed 94. All authorities give longitude 20° 50', which is 3° too large. Upon this assumption Peters adopts 17° 50'.
- 659, 660. Baily gives the longitude of 659 as 22° 20'. There is no doubt that Ptolemy and Ulugh Beg observed ω^1 and ω^2 . It is curious that Sûfi remarks that

near one of these stars there is a star of mag. 6, which makes it double. Peters says it can hardly be the variable R Aquarii, which is 1° distant. It is probable that Sûfi really observed R at its maximum. The positions of ω^2 and R for 1875 are:

661. It is probable that the two stars A¹ and A² were observed as one mass $\frac{A^1+A^2}{2}$.

- 663. Baily identifies as 106 i¹, but 108 i³ agrees better; it is also described by Sûfi. Ulugh Beg seems to have observed 107.
- 665 and 666. The longitudes and latitudes are transposed in nearly all the manuscripts.
- 667. Lat. Peters' latitude, 16° 15', is a conjecture; there is no authority for it, and there is no ready explanation of confusion in the Greek letters for 14° 45' or 14° 50' and 16° 15'.
- 668. Long. Baily has 12° 20'.
- 670. This is the same star as No. 1011.
- 685. Long. Baily has 20° 10'.
- 687. Longitude 1° too large, latitude 1° too far south.
- 688. Longitude adopted from Paris 2389, one reading, and Arabs. Baily has 23° 20'. Latitude 1° too far south.
- 689. Here Ulugh Beg has the south latitude too small.
- 690. Longitude of the Arabs adopted as more correct. Baily has 28° 20'.
- 694. Lat. Baily has 1° 45', which is found only in Trapezuntius, Schreckenfuchs, and the Crawford manuscript of Gerard of Cremona.
- 695. Longitude of Arabs 0° 20' is better than the Greek 0° 40', which Baily adopts.
- 696. Peters identifies as the combination of 93, mag. 5.3, and 94, mag. 5.6, and adds that these two stars viewed as one mass would appear about mag. 4.7, so that the mean differences should be taken.
- 702 to 704. These are the stars observed by Ptolemy and described by Sûfi, but the positions are in error, as was noted by Sûfi. Manitius identifies 704 as χ , but though the position would suit, it is discordant with the description. Peters considered there was no doubt that No. 707 is correctly identified as χ , though the longitude is 2° too large.
- 716, 717. Baily gives the longitude of 716 as 10° 20'. These two stars present much difficulty. It is suggested that 716 may be either 78 ν , or 73 ξ^2 , but both give large errors in both elements. No star harmonizes with Ptolemy's position of 717. Schjellerup and Manitius identify as μ Ceti, but this star is more probably 374, Ptolemy's 13th star in Aries. The question of these two stars remains undecided.

	Ptol	emy.		Position	A. D. 100.
	Long.	Lat.		Long.	Lat.
	o /	0 /	-0	o /	0 /
716.	10 10	-8 10	7 ⁸ ν 73ξ ²	11 58 11 2	-921 -61
717.	12 40	-6 20	87 µ	15 21	-5 40

- 726. The latitude 15° 20' of the Arabs has been adopted in preference to 15° 40' of the Greek, which Baily has.
- 728 to 731. The identification of these 4 stars seems correct; they accord with the description. Longitude and latitude of 729 are largely in error. Ulugh Beg's latitude also in error.

- 734. Lat. The Greek manuscripts all have 16° 30', with the exception of one reading of Paris 2389, and Cod. Ven. 303, which are 13° 30'. Sûfi and the Arabs have 13° 50', or 18° 50', which are equivalent by the common error of $\tau = 8$ and $\tau = 3$. Baily remarks upon the error of 3° in the Greek authorities. Ptolemy describes this star as $\nu\epsilon\varphi\epsilon\lambda\epsilon\iota\delta\eta$ s, probably from it making with φ^1 and φ^2 Orionis a small cluster.
- 738. Ptolemy's longitude seems 1° too large.
- 739. Ptolemy's longitude is too small, also when compared with Ulugh Beg.
- 740. Peters' identification is right. Ptolemy calls it διπλούs, probably from LL 11748 and LL 11884 being near and south of ξ.
- 741. Ptolemy's longitude 1° too large.
- 742 and 743. As Gore has correctly pointed out, the description of these stars should be reversed.
- 748. Lat. Baily has 20° 10'.
- 752. Baily denotes this as 6 g. Peters identifies as 9 o². The same deviations in longitude and latitude are found here as in Ulugh Beg. Baily's star 6 g. does not agree at all.
- 763. Lat. The Greek 28° 20', which Baily has; the Arabs 28° 40', which is adopted.
- 767. Long. The Greek 26° 30', except Vienna 14, the Arabs 26° 10', adopted, but longitude still too large.
- 774. Long. All the authorities have 48° 0', which is 1° too large, also in comparison with Ulugh Beg.
- 775. Long. Paris 2394 has $\iota\delta u'$ in which the "u" is an old cursive form of β , and in this manuscript it would signify 14° 40′. Grynæus has $\iota\delta \epsilon' = 14° 12'$.
- 777. Long. Several Greek manuscripts have 16° 0' for 10° 10'; error of 1s for 1s'. Baily has 18° 20', for which there is no authority.
- 778. Lat. Halma has 25° 20', which he has taken from Halley.
- 779. Baily has longitude 3° 30', and latitude 28° 30'. Peirce considers the star to be 98 Heis. Peters agrees with Baily and Schjellerup in identifying as 40 o².
- 781. Lat. All authorities give 32° 50'. Halma gives 33° 10', which he has taken from Halley.
- 786. It is not possible to decide whether the star is ρ^2 or ρ^3 . Ptolemy observed them as one mass.
- 787. Lat. The Greek authorities give 23° 30', while the Arabs have 23° 50'. Halma alone has 24° 30', taken from Halley, and Baily adopts it. Peters did not notice the extracts from Halley made by Halma and Baily, and which he had adopted. In the present case the reading of the Arabs is taken.
- 788. Flamsteed remarks that a star noted by Ptolemy as of the 4th magnitude, and which is the 17th of the constellation Eridanus in his catalogue, could not be found now. About the position of the star all editions agree; it is the same in all existing manuscripts, both Greek and Arabic, and was the same also in the manuscript used by Sûfi. Sûfi says of this star: "The 17th, which precedes the 16th, is the last of the four, and at the western extremity of the series, near the four stars situated on the breast of Cetus. It is of the smaller ones of the 5th mag., almost of the 6th, and there is between it and the nearest star of the four situated on the breast of Cetus, that is, the 10th of Cetus, less than one 'coudée.' " Bode takes the star to be σ Eridani (Bayer and Ideler likewise), but says that since Flamsteed it is wanting upon all star charts and in the sky. Manitius takes it to be η , and the preceding star ρ^3 . According to Ptolemy's difference with η Eridani, the star could be Heis 10, 6.7 mag. = W. B. 2^h 788. According to Sufi's description, the star seems to be nearer to ϵ Ceti (moins d'une coudée) than to η Eridani. He puts the distance between ρ and η Eridani as one coudée.

Ptolemy's star.		Ptolen	ny.		gh Beg uced.	Name.	Computed.	
	Mag.	Long.	Lat.	Long.	Lat.		Long.	Lat.
16 Eridani 17 Eridani 10 Ceti		° / 12 10 10 30 6 40	$\begin{array}{r} \circ & \prime \\ -23 & 30 \\ -23 & 15 \\ -25 & 10 \end{array}$	。 , 12 37 11 35 7 46	° ' -24 35 -24 17 -26 20	η Eridani W. B. 2 ^h 788. ε Ceti	° ' 12 14 11 7 6 48	$ \begin{array}{r} \circ & ' \\ -24 & 41 \\ -24 & 56 \\ -26 & 7 \end{array} $

The following table shows the comparison between Ptolemy, Ulugh Beg, and computed positions, for A. D. 100, assuming the star to be W. B. 2^h 788:

We get the differences:

	17—η F	Eridani.	17–e Ceti.		
	Long.	Lat.	Long.	Lat.	
Ptolemy Ulugh Beg Computed	-140 -12 -17 -17	' +15 +18 -15	°' +3 50 +3 49 +4 19	$ \begin{array}{c} \circ & ' \\ +1 & 55 \\ +2 & 3 \\ +1 & 11 \end{array} $	

The star W. B. 2^{h} 788 is therefore the nearest. Ptolemy calls 17 Eridani of the 4th magnitude, but Sûfi of the 5th magnitude, *small*, almost the 6th. In Harvard R. Photometry η Eridani is 4.0 mag. and ϵ Ceti 5.0 mag. The Uranometria Argentina gives the magnitude of W. B. 2^{h} 788 as 6.4. In the following chart the position of W. B. 2^{h} 788 is marked by a +.

FIG. 4.—Chart of the Position of Ptolemy's Star 17 Eridani.

- 798. All the Greek manuscripts have the latitude erroneously 53° 20'; the Arabs are right. The longitudes of this and the following star are 1° too large, also by comparison with Ulugh Beg.
- 798 to 804. There is some confusion in the nomenclature of these stars, which are named v^1 to v^7 , but in different order. The designations given by Peters are those of Taylor's Madras Catalogue, the maps of the S. D. U. K. and Proctor's Atlas. The reverse order is adopted in the Uranometria Argentina, Cape Catalogues, by Peirce, Houzeau, Schjellerup, and Manitius.
- 802. The position agrees better with III 202, though Ulugh Beg observed III 189.
- 803. Ptolemy's position agrees better with Lac. g, though Ulugh Beg observed Lac. f.
- 804. Ptolemy's latitude is 2° or 3° too small. Sûfi's description of Ptolemy's 3I-33 identifies them as Lacaille g, f, and h.
- 805. Several Greek authorities give the longitude 7° 30'; one reading of Paris 2389 and all the Arabs have 0° 10'. Halma gives as a variant 27° 30', which he has clearly taken from Halley. In Paris 2394 the degrees of longitude are represented by an old cursive form of the letter ξ and so the longitude is 60° 40'; Grynæus has the longitude 60° 40', precisely the same. Baily gives Grynæus erroneously as 7° 40'. All authorities, even Sûfi, designate the star as of the first magnitude. The nearest star of the first magnitude is a Eridani, which could not have been seen by Ptolemy and Sûfi. The position is near the place of θ Eridani. Peters suggests that Ptolemy's place may be a compilation from inaccurate sources; he remarks that Sûfi clearly considered θ , and not a Eridani. The computed positions of the two stars for A. D. 100 are:

	Long.	Lat.
θ Eridani	356 47	-5350
α Eridani	318 27	-5916

- It is surmised that there is a large error in Ptolemy's position or that the magnitude has changed. Peters, Baily, Peirce, and Manitius identify the star as θ , Halma and Schjellerup as a Eridani; Delambre adopts Halley's longitude, 27° 30', and adds in a note "La dernière brillante du Fleuve ne peut être que la dernière de l'eau du Verseau, qui s'appelle aussi le Fleuve ou le Nil." θ Eridani shows no signs of variability; it is therefore highly improbable that its magnitude has changed from a first to a third magnitude star. All Almagests give mag. I, and it is most probable that in a very ancient manuscript the delta = 4 was erroneously taken to be an alpha = I, of which the present investigation shows numerous examples. Thus Ptolemy's magnitude should be 4. A corresponding error is found in the Bodleian Greek Almagest, where the magnitude of Sirius is given as 4 instead of I.
- 806. Long. Baily adopts 19° 0', but the authority for 19° 40' is much stronger.
- 813. All Greek authorities give longitude 24° 50'; the Arabs (Bod. 369, B. M. Reg. 16, Laur. 156, and Sûfi) have 24° 20', which is better and has been adopted.
- 822. All the manuscripts have longitude 25° 20', which is erroneous. Sûfi has 20° 20', which is right.
- 833. All authorities give longitude 23° 0'. Peters suggests that it should be 21° 0' and it would then compare with Ulugh Beg.
- 836. Peters identifies as 22 Monocerotis (4.1 mag.) in preference to 19 Monocerotis (4.9 mag.); adopted by Baily and followed by Manitius, though the position of the former is more largely in error than the latter.

- 837. All authorities give longitude 10° 0′, which is 3° too large. Ulugh Beg is right. Peters has adopted 7° 0′.
- 843. Lat. The Greek manuscripts have 59° 50', and the Arabs 59° 30', which is better.
- 848. Long. The Arabs have 29° 10', which is better than 29° 30', as in the Greek and Baily.
- 849. The nomenclature of the stars in Argo is very confusing. The Index in Harvard Annals, vol. 50, has been followed as far as possible.
- 855. Latitude is variously given as 49° 15', 49° 30', 49° 45', and 49° 50'; 49° 30' seems to have the most authority. Baily adopts 49° 15'.
- 856. Latitude 49° 30' of the Arabs is preferable to 49° 50' of the Greeks, which Baily takes.
- 859. Sûfi's description leads upon Lacaille 2834. Mag. 5.3, U. A., the computed position of which is longitude 96° 7', latitude -52° 6', giving errors of longitude

+127' and latitude +54'.

- 861. Lat. Baily gives 56° 30', for which the only authority found is the Crawford Codex.
- 865. Lat. Greek 58° 40', Arabs 58° 20', the latter adopted; but this is not Ptolemy's star, whose position accords better with the group VII 102, 108, and 113.
- 867. Peters remarks that there is no star in the position described by Sûfi.
- 868. Long. Baily adopts 23° 10'.
- 869. Lat. Greek 57° 40', and Arabs 57° 0'.
- 870. Peters identifies this star as Lacaille 3580, mag. 5.8, but questions whether it is not too small. There is no star in the place described by Sûfi.
- 875. Lat. Baily adopts 51° 40'.
- 879. Long. 14° 10' has much better authority than 15° 10' given by Baily.
- 880. Lat. All authorities agree, but it is 1° too far south.
- 882. Long. This is 2° too small, also by comparison with Ulugh Beg. Sûfi's description leads to Lac. 3022, which does not agree at all; longitude 113° 2', latitude -65° 24'.
- 884. Ptolemy's longitude wrong. There is no other star here larger than mag. 4.
- 885. The identification of this star is probably correct, but longitude is 3° in error.
- 886. The identification right, longitude too small.
- 887. Identified as f Carinæ, with which the position agrees, but the magnitude is 4.6, which is entirely discordant with Ptolemy's mag. 2. Baily adopts *i* Argūs, but this involves an error of 12° in longitude and 3° in latitude. Schjellerup also adopts *i* Argūs, the magnitude of which is 2.2 (H. R.). Is f Carinæ variable?
 - Sûfi's description of the latter half of the constellation Argo is accurate and agrees with the sky (except Nos. 19 and 22, where there are no stars to be seen now). But the positions of Ptolemy and of Ulugh Beg do not agree with Sûfi in many places.
- 889. Lat. Baily has 65° 15', for which there is far less authority than 62° 15'.
- 895. Lat. Baily has 13° 40'.
- 897. Lat. Paris 2389 confirms the Arabs' 14° 45', which agrees better than 14° 15'.
- 898. The latitude 12° 0' of the Arabs agrees better than 12° 15' of the Greek.
- 899. Sûfi has latitude 14° 40', an error in the degrees of Δ for A.
- 900. Sûfi has the erroneous latitude of 19° 20'.
- 904. The identification of this star as Ll. 18657 = W. B. 9^h 439 agrees better than Baily's star Fl. 28 A. Manitius gives it as Fl. 29.
- 905. All authorities have latitude 20° 30', which should be 23° 0'. Probably it was 20° 20', with the common mistake of $K\Gamma'$ for $K\Gamma$.
- 908. All Greeks have latitude 26° 15', which is erroneous. The Arabs have it correctly, 23° 15'. Baily adopts 23° 35' from Liechtenstein, which is an obvious mistake of Gerard of Cremona.

- 909. Lat. The correct latitude of 24° 40′ is found in the Greek manuscripts Paris 2389, 2390, Ven. 312, Vat. Reg. 90, and the Arabs. All the others, including variants in Paris 2389, 2390, and Ven. 312, have 45° 30′, or 49° 30′ (⊖ for €). It is possible that in a very ancient manuscript the latitude of a star in Argo was copied inadvertently into Hydra.
- 910. Ptolemy's longitude is 1° too small, also in comparison with Ulugh Beg.
- 914. Longitude 1° too large, also by comparison with Ulugh Beg.
- 918. Ptolemy's longitude and latitude quite erroneous. B. M. Sloane 2795 gives latitude
- 13° 40', but probably copied from the previous star. Ulugh Beg is right. 920. All authorities give latitude 16° 0', probably an error of 1s = 16° 0' for 1s' = 10° 10', which is adopted. Ulugh Beg's errors are similar. The position accords best with 24 Sextantis, longitude 131° 36', latitude - 10° 18', but that star is only mag. 6.7 (U. A.). Sûfi certainly describes 15 a Sextantis (mag. 4.5), and this star is adopted by Schjellerup and Peirce, but it assumes an error of 3° in the longitude. To all appearance there was here a star seen by Ptolemy, Sûfi, and Ulugh Beg that now is not visible or shining prominently. Manitius identifies as δ Sextantis.
- 927. The longitude of the Arabs has been adopted. Baily gives 1° 20'.
- 940. The large proper motion of θ Centauri, amounting in 1700 years to 28' in latitude, increases the discordance with Ptolemy's latitude, which is 1° too far south.
- 956. Peters identifies as Lac. 5390 f as Baily; Schjellerup as ξ. Sûfi calls the star double, which clearly refers to ξ¹ and ξ², but the position of ξ¹ (longitude 190° 28', latitude 38° 42') deviates more than 5390 f.
- 962 to 971. There are very large errors in the longitude and latitude of these stars common to all the manuscripts. Some of the errors may be accidental, or due to the scribe, but the general inference is that the observations were made by different observers. (See note to 494-496.)
- 964. Sûfi finds no star visible near Ptolemy's place. It should be, as Sûfi remarks, of mag.
 3, following upon the 29th star (No. 963). The nearest star would be Lacaille 5632 Q, but the magnitude is 5.4.
- 969. Long. Peters considered that there was here the not uncommon error in the Arabic of 8 for 3, which would make the longitude 213° 20', but the resulting error is equally large, though of a different sign.
- 971. Cod. Vienna 14 and Cod. Vat. Reg. 90 give the longitude as 11° 40'; all other Greek sources, as well as the Arabs, give 14° 40', an error of A for Δ . The adoption of 11° 40' would give a more consistent error in Ptolemy's longitude = $+2^{\circ} 43'$.
- 979 to 981. The errors in longitudes of these three stars differ from all others in the constellation Lupus in that they have a *minus* sign. From this Peters inferred that they may have been derived from a different observer.
- 982. Long. The Greeks 22° o' and the Arabs 20° 20'. Peters corrects it to 26° o'. The identification of this star presents considerable difficulty. The description states "Australis de tribus quæ sunt in extrema cauda." The following star, 983, correctly identified as ι Lupi, is "Media ipsarum," and the next, 984, also correctly identified as τ^1 and τ^2 , is "Borealis ipsarum." Peters first suggested that the star was Lac. 5209, but this is in Crux and a long way from the described position. Sûfi could not find the star and of course it is omitted by Ulugh Beg. Peters finally adopted Lac. 6003 ρ , which, assuming an error of 4° in longitude, would agree well; but the position is quite discordant with the description. Manitius identifies 982–984 as σ , ρ , and α Lupi, the positions of which would accord with the description, but involve very large errors in longitude; moreover, α Lupi

seems well identified as Ptolemy's second star in Lupus. Baily's identification for the three stars is Lac. 1201 τ , 1215 ι , and 1209 κ (1201 = ι and 1209 = τ^{1}). It must remain a question whether there is here a variable or a lost star.

- 983. Long. Baily has 24° 50'.
- 989. Peters' identification agrees with Baily and Manitius. The longitude and latitude of the Arabs has been adopted. Baily gives longitude 27° 10', latitude 11° 50'.
- 990. All authorities give longitude 26° 30', except B. M. Arabic 7475, which has 27° 30'. Halma has 27° 30', which would be much better. Peters questions his authority. There is no doubt that Halma took it from Halley's edition. Ulugh Beg's longitude is also 1° too small. The latitudes of the last three stars in Lupus are 1° too far north.
- 992. Several Greek authorities have longitude 3° o'; the Arabs o° 20'; the former is adopted—an error of $\Gamma' = 0^\circ 20'$ for $\Gamma = 3^\circ 0'$. Baily adopts 3° 10'.
- 993. Long. Baily adopts 26° 20'.
- 994. Lat. With the exception of Ven. 311, Laur. 1, and Laur. 6, all Greek codices, as well as Grynæus and Halma, have latitude 1° 30' instead of 30° 30'. An error of $A = 1^{\circ}$ for $A = 30^{\circ}$.
- 997. Latitude 34° 0' adopted from the Arabs. Baily has 34° 15'. Peters agrees with Schjellerup in the identification of the stars in Ara. Baily identifies in this order: γ , ϵ , δ , α , β , η , θ . There is a large error in all the longitudes, averaging 2° 18' too small. These errors resemble those already referred to under 494-496, and 962-971.
- 998. Peters identifies as $\frac{\delta^1 + \delta^2}{2}$ Telescopii, as it agrees better in longitude, but remarks

that it is not probable that a Telescopii should have been omitted.

- 1000. Baily identifies as 1566 ζ, which star Peters identifies in No. 1001.
- 1001. Baily identifies as β . Peters considers β to be 1003.
- 1004. Longitude 16° 50' adopted from Cod. Vat. 1594, and the Arabs. Baily has 16° 20'.
- 1008. Baily has latitude 15° 50', for which there is no authority; it is probably a misprint.
- 1009. Identified as Lac. 7748, which agrees better with Ulugh Beg's observations than Lac. 7758 = 1528 κ, identified by Baily, Schjellerup, and Manitius. Sûfi's description refers clearly to Lac. 7748.
- 1011. This is the same star as No. 670. Baily gives latitude 23° 0', though for No. 670 he has 20° 20'.
- 1013 and 1015. Vatican Reg. 90 gives the longitudes as 30° 10' and 30° 20', respectively. Probably the original degrees were $\Delta = 4$, then erroneously A = 1, then erroneously $\Lambda = 30$.
- 1017. Peters remarks that longitude 2° 10', adopted by Halma, would be much better, but there is no authority. Here again Halma has taken the longitude from Halley, which, as already pointed out, is not a collation of any manuscripts, but an edition in which many errors are corrected by computation.
- 1023. Baily has taken the Greek description of this star from Grynæus, which is identical with Paris 2389; both are erroneous, as they omit the word τριῶν. Vatican 1594 is correct.
- 1023 to 1028. Peters identifies these six stars, forming the *informata* of Piscis Austrinus, as Lacaille 8579, 8639, 8761, 8685, 8731, and 8689. The identifications are not open to much doubt, but there are large errors in the coördinates of the six stars, averaging in longitude $+1^{\circ} 21'$, and in latitude $+6^{\circ} 36'$. Upon this identification 1028 is the same star as 613.

TABLE VI.

Differences of Identification.

Baily's No.	Ptolemy's No.	Peters.	Baily.	Schjellerup.	Peirce.	Manitius.
18 40 41	MAJOR. 10 Inf. 5 Inf. 6 Inf. 7	30 φ 10 Leo minor IX 115 36 Lyncis		φ 10 Leo minor	63 Heis	8 Leo minor.
	pheus. Inf. 1	Canhai		- Conhoi		
	DOTES.		?XXI 248	V Cepher	μ	μ
97 98 99 100 101 102	10 11 12 13 14 15	$\begin{array}{c} \mathbf{I} \ \mathbf{o} \ \operatorname{Cor.} \ \operatorname{Bor} \dots \\ \mathbf{4I} \ \boldsymbol{\omega} \\ 46 \ \boldsymbol{b} \\ 43 \ \boldsymbol{\psi} \\ \end{array}$	$?1 \text{ or } 2 \text{ Cor. Bor}$ 48χ . $45 c$. 43ψ . 43ψ . $46 b$. 41ω .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·	с ψ b
нен 138 139 140	CULES. 20 21 22	77 <i>×</i>	77 x 82 y 88 z	y		У
1 156	. yra. 8	$9 \nu^2 \dots$	8 v ¹	ν	8	ν
CAS 184 185 186	8	33θ	?II 72 33 θ 34 φ.	μ		μ
196 218	Inf. 2	18 (Hev.) 1 14 (Hev.) Camel.	II 253 ι IV 7	12 Hev. Camel.	٤	ι 34 Hev. Camel.
227 228 233	JRIGA. 8 9 14	85	10η 8ζ 4·····	η		5
ОРН	IUCHUS.					
246 247 248 249 250 251	13 14 15 16 17 18	40 ξ 36 A. 42 θ 44 b 51 c 5 ² 2Sagittarii		36 θ 44 51		ξ Α θ 51 58
	DUILA.	~ 2)		-		-
289 290	4 5	59 ξ 50 γ	54 ο 50 γ	ξ ν	ο γ	ο γ

Differences of Identification-continued.

Baily's No.	Ptolemy's No.	Peters.	Baily.	Schjellerup.	Peirce.	Manitius.
DEL	PHINUS.					
308	8	3 7	3 n	ζ		η
309	9	4 5				
EQU	ULEUS.					
311	I	8α	8 a			a
312	2	10β	10β			β
313	3	5γ		—		γ
314	4	7δ	7δ		•••••	δ
PE	GASUS.					
327	13	50 ρ	50 ρ	σ		ρ
328	14	49 σ	49 σ	ρ	•••••	σ
AND	ROMEDA.					
355	21	49 A	49 A	A		ξ
356	22	$5^2 \chi \dots$	$5^2 \chi$	x	• • • • • • • • • • • • • • • • • • • •	ω
357	23	Ιο	2	0	0	0
ТА	URUS.					
401	22	69 v ¹	$69 u^1 \ldots \ldots$			v^2
403	24	$37 A^1 \dots$			43 · · · · · · · · · · ·	Α
404	25	$50 \omega^2 \dots$		ω	1	ω
409	30	19 <i>e</i>	19			16 17
410	31	. *				17
411	32	$\begin{cases} 25 \eta \dots \\ 27 f \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots \\ \dots$	}27		•••••	η
412	33	III 170	· _			38 H.
415	Inf. 3	109 n	105	n		n
417	Inf. 5	126	126			130
418	Inf. 6	129	128	Σ730	129	129
419	Inf. 7	I2I	I2I	121		118
GE	EMINI.					
432	9	58	76 c	<i>b</i>	52 Tauri	63
445	Inf. 4	85	85	85		g
446	Inf. 5	81 g	81 g	g	•••••	J 68
447	Inf. 6	74 <i>f</i>		$J \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$		ζ Canc.
448	Inf. 7	10 (Cancri	165 Canc	_	•••••••••••••••••••••••••••••••••••••••	, Canc.
	NCER.	(62 01				
458	Inf. 1	1620^{2}	$81 \pi^1$	π	π^1	π
	Inf. 3	69 <i>v</i>	69 v	ξ		ν
	Inf. 4					ξ
•	LEO.					
482	21		71			θ
483	22	70 θ			• • • • • • • • • • • • • • • • • • • •	n
486	25	847	847		• • • • • • • • • • • • • • • • • • • •	
494	Inf. 6	$15 c \operatorname{Com} \mathbb{R} \dots$	(Comm			15 Comæ. 7 Comæ.
495	Inf. 7	$7 h \operatorname{Com} \mathbb{Z}$ 23 k $\operatorname{Com} \mathbb{Z}$	4 Comæ 21 Comæ		· · · · · · · · · · · · · · · · · · ·	23 Comæ.
496		23 K COIIIae			· · · · · · · · · · · · · · · · · · ·	
	IRGO.	. (16	L	16	k
504	8	46	40	<i>K</i> 1	46	
512	16	74 <i>l</i>	$\begin{array}{c} 74 \ l^2 \\ 82 \ m \\ \end{array}$	LL 25206	82 m	
514	18	$62 m \dots 68 i$	$68 i \dots \dots \dots$	LL. 25086		i
515	19 Inf. 6	80	73	89	89	
528	III. U		,,,			

Differences of Identification-continued.

Baily's No.	Ptolemy's No.	Peters.	Baily.	Schjellerup.	Peirce.	Manitius.
L	IBRA.					
541	Inf. 5	43 к	4I	n		4 I
542	Inf. ď	O. Arg. 14782	43 к	к		κ
544	Inf. 8	39	39	3 Hev. Scorp.		2 H. Scorp.
545	Inf. 9	40	40	o Scorp		o Scorp.
sco	RPIUS.					
560	15	XVI 206 ζ^2	ζ ² 44 Oph. or 3 Sag.			ζ^1
567		γ Telescopii			65 Behr	Ġ
569	Inf. 3	3 Sagittarii .	44 Oph. or 3 Sag.	3 Sagittarii	44 Oph	43 Oph.
SAGI	TTARIUS.			v e		
586	17	56 f	=6 f	f		67
594	25	XVIII 17	$56f.\ldots$ $\eta\ldots$	B Telesconii		51 m
		$\frac{11}{330} k^1$		p relescopii		
595	26	$XIX \{333 \ k^2 \dots$	$\left. \right\} heta \ldots \ldots \ldots$	m Lac		θ^1
596	27	XIX 297 i	<i>ι</i>	<i>e</i> Lac		ι
CAPR	ICORNUS.					
615	15	36 <i>b</i>	35	b		b
-	JARIUS.					
634	6	Ι2ν	13 v	FL 7		7/
645	17	280	$37 e^1$	P 1. 7		e
649	21		59 v			
651	23	63 κ ?	67 ?	67		Б К
655	27	92χ	92χ	_		x
656	28		$91 \tilde{\psi}^1 \dots \dots$			$\hat{\psi}^1$
658	30	94	94 ?			131 H
659	31		$IO2 \omega^1 \dots \dots$	—		ω^1
662	34	$106 i^1 \ldots \ldots$	$104 A^2 \dots$	i^1	· · · · · · · · · · · · · · · ·	ĩ
663	35	$108 i^2 \dots \dots$	106 i ¹	t^2	• • • • • • • • • • • • • • •	i^2
666	38	IOI <i>b</i> *	IOI <i>b</i> *	<i>b</i> °	···· ···· ····	b^2
	ISCES.	0- 13	0 12	13		
704	31	$8_{I} \psi^3 \dots$	$8_{I} \psi^3 \dots$	ψ°		
707		$84 \chi \dots$	$84 \chi \ldots \ldots$	χ		99 H
-	ETUS.		. 0	60		
716	56		78ν	ξ"	• • • • • • • • • • • • • • • • •	ν
717			73 ξ"····	μ		μ
728 729	17 18	0 to	21	19	21	
730	10 19	$17 \varphi^1$	$\overset{19}{=} \varphi^2 \dots \dots \dots \dots$	2j 17	φ ²	$arphi^3 \ arphi^2$
731	20		$I7 \varphi^1 \dots \dots$	18	φ^1	$\varphi^2 \\ \varphi^1$
	RION.		-			
742	9	$72 f^2 \dots \dots$	$7^2 f^2 \dots \dots$	f^1		f^2
743	ιó	$69f^1$	$69f^1$	f^2		f^1
744	II	$54 x^1 \cdots \cdots \cdots \cdots$	$57 x^2 \cdots$	χ^1		χ^1
745	I 2	$62 \chi^2 \dots$	$64 \chi^3 \dots$	χ^2		$\frac{1}{\chi^2}$
748	15	$33 n^1 \dots$	$33 n^1 \dots \dots$	ψ		n^1
749	16	$30\psi^2$	$30\psi^2$	25		ψ
752	19	$9 o^2 \ldots \ldots$	6 g	o ²		o^2
753	20	$7 \pi^1 \cdots \cdots$	$7 \pi^4 \dots$.	π^1		π^1
755	23	I π^3	I π^1	π^4_{κ}		$\pi^4_{\underline{r}}$
756	24	$3 \pi^4 \cdots$	$3 \pi^3 \dots$	π°		π^5
763	30	${42 \atop 45}c$	42 c	21	0	c

Differences of Identification—continued.

Baily's No.	Ptolemy's No.	Peters.	Baily.	Schjellerup.	Peirce.	Manitius.
ERI	DANUS.					
779	8	$40a^2$	40 <i>d</i>	o ²	o8 Heis	0 ²
787	16		3η			ρ^3
788		<i>y''</i>	σ	Π. 4060		
	17	Fo. 1671	0	1,		η v^1
798	27	500	$50 v^6 \dots \dots$ $4^3 v^5 \dots \dots$			d d
800	29	4 3 U ² · · · · · · · · · · · · · · · · · · ·	$43 v^{*} \cdots v$	<i>v</i>		u^{5}
802	31	$\begin{array}{c} \text{III} 202 v^3 \\ \text{III} - 22 v^3 \\ \end{array}$	v			•
803	32	$\underset{\mathbf{III}}{\mathbf{III}} \mathbf{I89} v^2 \dots \dots$	v^2	g	5° Denr	g
804	33	111 149 ¹ · · · · · · · ·	v^1	<i>n</i>	<i>v</i>	h
805	34	${}_{\text{II 238}}^{\text{II 238}}_{\theta}$	θ	a	θ	θ
CANI	s major.					
825	8	$7 \nu^2 \cdots$	$6 v^1$	ν^2		ν^2
836	Inf. I	22 Monocerotis		22 Monoc		19 Monoc.
837	Inf. 2	VI 9 θ Columb	485 Lac.	# Columb		θ Columb.
838		VI 65 κ Columb.	497 Lac	K Columb		к Columb.
		VI 95 δ Columb	510 Lac.	δ Columb		δ Columb.
839	T A I	VI 136 \Can.maj.	521 Lac	λ Can mai	λ	λ Can. maj.
840 841	Int. 5 Inf. 6	V 238 μ Columb.	444 Lac		μ Columb	μ Columb.
842	Inf. 7	V 238 μ Columb. V 276 λ Columb.	444 Lac	μ Columb	λ Columb	λ Columb.
	Inf. 8	V 297 γ Columb.	465 Lac	v Columb	γ Columb	γ Columb.
843		V 267 β Columb.	452 Lac		β Columb	β Columb.
844	Inf. 9 Inf. 10	$V_{207} \rho$ Columb.	434 Lac	a Columb		a Columb.
845		V 196 a Columb.		a Columb		ε Columb.
846	Inf. 11	V 140 e Columb.	419 Lac	ε Columb	• • • • • • • • • •	e Columb.
	D NAVIS.					TA H Ana
857	9	VII 200 I Pup	σ	σ		17 H. Arg.
859	II		}v			
860	12	VII 68 π Pup	λ	π	<u>.</u>	π Pup.
861	13	VII 172 f Pup	f	—	f Pup	f Pup.
862	14	[]3]	φ^1		d Pup	d ¹ Pup.
863	15	VII 214 C Pup.	$\varphi^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	_	<i>c</i> Pup	
864	16	VII 254 b Pup	¥ ? b.	_	<i>b</i> Pup	
865	10	VII 306 č Pun	δ	ζ		ζ Pup.
866	17	VII 252 a Pun	ω^1 .	α		· · -
867	10 19	Lac. 3128				
868	19 20	VIII 21 h^1 Pup.	\mathbf{A}^1	r		h^1 Pup.
869	20	VIII 35 h^2 Pup.	\mathbf{A}^2			h^2 Pup.
870	21	Lac. 3580	p^1		<i>p</i> ¹ 52 Behr	d Vel.
		VIII 168 <i>d</i> Vel	p^2		$p^2 d$ Vel	a Vel.
871	23	VIII 139 e Vel			$p^3 e$ Vel	<i>b</i> Vel.
872	24 25	VIII 1392 Vel	p \ldots \ldots a \ldots \ldots a \ldots \ldots a \ldots a \ldots a \ldots a \ldots a		a Vel.	D Vel.
873	25	VIII 170 <i>a</i> Vel			<i>b</i> Vel	C Vel.
874	26	VIII 155 b Vel VIII 145 b Vel	la1		<i>b</i> Mali	β Pyx.
875	27	$\frac{1111450}{b}$ Mal. IX 1 λ Vel	β ²⁻	2	0 IVIAII	
879	31	VII 135 σ Pup	i			
881	33	VII 135 8 1 up				_
882	34					γ Vel.
883	35	γ Vel				ε Car.
884	36	χ Car	η <i>q</i>	X	& Aro	
885	37	o Pup	<i>q</i>	U	0 Alg	
886	38	δ Vel	$ar{ heta}$			
887	39	f Car	υ			φ Vel.

Differences	of	Identification—continued.
Ligurunuus	v	

Baily's No.	Ptolemy's No.	Peters.	Baily.	Schjellerup.	Peirce.	Manitius.
RGO NA	vis-cont.					
888	40	к Vel.	b	N	<i>b к</i>	v Car.
889	41		<i>c</i>		φ Arg	θCar.
890	42	V 315 n Columb.	471 Lac	n Columb	T8	τ Pup.
891	43	VI 205 v Pup	φ	v Arg	g v	σ Pup.
893	45	τ Pup	g h	τ Pup	$\mathring{h} au$	τ Pup.
н	TDRA.					
904	11	{LL. 18657 W 9 ^h	}28 A			29
		1 439)	.1		
906	13		<u>38 к</u>			κ υ ¹
907	14	39 v	$39 v^1 \cdots$	υ"		λ^2
908	15		$40 v^2 \dots$	Λ	· · · · · · · · · · · · · · · · ·	
919	Inf. I	30 Monocerotis.				30 Monoc.
920	Inf. 2	24 Sextantis 15 a Sextantis		15 Sextantis	15 Sextantis	δ Sextantis.
CR	ATER.					
924	4	27 (27 ζ	<i>n</i>	۲	۲
925		Ι4 ε	Ι4 ε	θ		é
9 2 6	5 6	30 n	30 η	٤	<i>n</i>	η
927	7		21 θ			θ
CENT	FAURUS.					
941 I	7	XIII 99 <i>d</i>				d
942	8	XIV 40 <i>ψ</i>	1205 Lac. <i>l</i>	ψ		ψ
943	9	$XIV_{55}a$	1207 Lac. 0	a		а
944	10	$XIV 150 c^1 \dots$	1234 Lac. π			<i>c</i> ¹
945	II	XIV 141 b	1232 Lac. p	b		C ⁹
946	12	XIII 197 v	1165 Lac. τ		$\tau(\nu)$	ν
947	13	XIII 198 µ	1166 Lac. v	μ	υ (μ)	μ
948	14	XIII 246 <i>\varphi</i>		φ	$\varphi(\varphi) \dots \dots$	arphi
949	15	XIII 288 χ	1191 Lac. m	χ	$m(\chi)$	x
950	16	XIV 109 η	1219 Lac. K	η		η
951	17	XIV 216 K	1255 Lac. σ	К		κ
952	18	XIII 231 ζ	1177 Lac. λ	5	λ(ζ)	5
953	19	XIII 267 v^2	1184 Lac. n	o		v^1
954	20	XIII 249 v ¹		—		v^2
955	21	ω	1148 Lac. ω			ω
956	22	$ f \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	1123 Lac. 0	ξ	ξ	f
957	23	γ	1098 Lac. µ	γ	• • • • • • • • • • • • • • • •	γ
958	24	τ	1093 Lac. c	τ		ρ
959	25	σ	1086 Lac. p	σ		δ
960	2 Ğ	δ	1064 Lac. β	δ		
<u>9</u> 61	27	ρ	1068 Lac. e			
962	28	<i>M</i>	1155 Lac. 8			£
963	29	ε		ε		γ Crucis.
964	30	<i>Q</i>				δ Crucis.
965	31	$\tilde{\gamma}$ Crucis	1070 Lac. v			B Crucis.
966	32	β Crucis				a Crucis.
967	33	δ Crucis	1025 Lac. f	δ Crucis	δ Crucis	λ
968	34	a Crucis	1023 Lac. 5.	a Crucis		
970	36	β Cent	1185 Lac. γ	B Cent		β Cent.
	<u> </u>					
971	37	μ Crucis.	1107 Lac. 6	θ Cent	H 1	

١.

Differences of Identification-continued.

Baily's No.	Ptolemy's No.	Peters.	Baily.	Schjellerup.	Peirce.	Manitius.
LU	JPUS.					
972	I	XIV 211 β	1254 Lac. o	8		β
973	2	a	1231 Lac. a	α		0
974	3	XV 31 δ	1283 Lac. 5			γ
975	, 4	\overline{XV} 98 γ	1293 Lac. ŋ			δ
976	5	\overline{XV} 35 ϵ	1285 Lac. θ	<i>€</i>		E
977	6	λ	1263 Lac. π	λ		π
978	7	XV 242 π	1258 Lac. β			к
979	8	μ	1274 Lac. §			μ
980	9	<i>K.</i>	1266 Lac. p			ν
981	10	ζ	1265 Lac. σ			5
982	II	ρ?	1201 Lac. 7			σ
983	12		1215 Lac. 1	i		ρ
	_	XIV $\begin{cases} 66 \tau^1 \dots \\ 67 \tau^2 \end{cases}$				
984	13	10 $\{67\tau^2,\ldots,\ldots\}$	}1209 Lac. к	τ	κ(τ)	a
985	14	$XV_{217\eta}$	1325 Lac. v	η		η
986	15	$XV 248 \theta \dots$	1335 Lac. µ		$\mu(\xi)\ldots\ldots$	θ
987	ıĞ	XV 174 Fl. 5 χ	3γ			ψ .
988	17	XV 204 ξ			_	x
989	18	XV 10 Fl. 1 <i>i</i>	Ι ε		6 30 Behr	x i
990	19	XV 22 Fl. $2f$	2δ		δ 33 Behr	f
	ARA.	,				
991	I	XVII 125 σ	γ			σ
992	2	θ	ε			θ
993	3	a	δ	a	$\delta(a) \dots \dots$	a
994	4	ϵ^1	a			e
995	56	γ	β	γ	$a(\epsilon^1)$	Ŷ
996		β	η			β
997	7	ζ	θ	5	· · · · · · · · · · · · ·	5
	TRALIS.					
	I	$xxxxxx(73\delta^1)$ T.1	a	0		a Teles.
998	L	$XVIII_{76\delta^2}^{75\delta^2}$ I el.	α	0		a reles.
000		$\text{XVIII} \begin{cases} 166 \eta^1 \dots \\ 160 \eta^2 \end{cases}$	in l			
999	2	$XVIII \{ 169 \eta^2 \dots \}$	ϵ	$\eta \dots \dots \dots \dots$		η
1000	3	Lac. 7909	5	o		
1001	4	XVIII 250 5		5		5
1002	5	XVIII 291 δ	n	δ		δ
1003	Ğ	XVIII $305 \beta \dots$		β		β
1004	7	XVIII 300 a		к	γ	a
1005	8	XVIII 280 γ	δ	γ		γ
1006	9	XVIII 230 c				E
1007	10	XVIII 222 v				
1008	II		i	λ		
1009	12	Lac. 7748 & Bode.	К	к Bode		
1010	13		λ			θ
PI	SCIS	J				
AUS	TRINUS.					
1022	12	XXI 308 v Gruis.	К	γ		γ Gruis.
1022	Inf. I	XX 307 a Mic	1694 Lac			a Mic.
1023	Inf. 2	XX 403 γ Mic	1717 Lac			γ Mic.
	тс	XXI 46 e Mic		δ Gruis		e Mic.
1025	Inf. 3 Inf. 4	XX 445	1704 Lac			δ Mic.
1026	Inf. 5	XXI 12				—
1000						
1027 1028	Inf. 6	24 A Capric	4	Gruis.	. 4	—

THE STAR MAGNITUDES.

The magnitudes of the stars in the catalogue are those deduced as most probable from consideration of the Table of Star Magnitudes (pp. 122-143), besides many other authorities mentioned in the notes.

The magnitudes in the Greek codices generally agree very well. Comparing the two oldest Greek codices, Paris 2389 and Vatican 1594, twelve differences are found, of which Paris 2389 is correct in ten and Vatican 1594 in two cases. Comparing Vatican 1594 with Venice 313, only 4 differences are noted. Comparing Paris 2389 with the Arabic codex, British Museum Reg. 16, there are 35 differences, of which Paris 2389 is correct in 21 and B. M. Reg. 16 correct in 13 cases, with one case in which both are probably wrong. The Arabic codex, B. M. Reg. 16, is particularly valuable from the great care with which it has been written. In all series of stars of the same magnitude, the magnitudes of the first and last only are written—a method which avoids many mistakes.

The magnitudes adopted in the catalogue differ from those in Paris 2389 in the following 14 stars: Baily, Nos. 128, 129, 130, 154, 211, 352, 480, 509, 576, 736, 764, 765, 824, and 885.

It will be seen in Table VIII that Dr. Peters has adopted magnitudes for some stars which differ from all manuscripts of the Almagest yet examined, and for which no authority can be found. In a note on one of his collations, he says that he has "inserted the *revised* magnitudes of the Paris Codex 2389, besides several notes on the stars in my copy of Baily's Ptolemy" (Mems. R. A. S., Vol. XIII), but unfortunately this volume can not be found.

The magnitudes in Ptolemy's catalogue have been fully discussed by Prof. E. C. Pickering in H. A., Vol. XIV, Part II. In this memoir he has reduced Ptolemy's magnitudes to the photometric scale of the Harvard Photometry, and arrives at the accompanying photometric values:

Ptolemy	Photometric	Ptolemy	Photometric
magnitude.	magnitude.	magnitude.	magnitude.
I	0.5	3-4	3.8
I-2	1.2	4-3	3.8
2-I	1.2	4	4.4
2	2.1	4-5	4.6
2-3	2.6	5-4	4.7
3-2	2.7	5	5.0
3	3.3	6	5.4

In the following table of whole magnitudes 2 to 6 (Table VII), a rather larger number of stars is employed and the magnitudes are based on the Harvard Revised Photometry. The corresponding figures from H. A., Vol. XIV, are appended in italics. It will be seen that the results do not suggest any material difference from those obtained by Professor Pickering in the above investigation.

Ptolemy magni- tude.	No. of stars.				Mean magnitudes.				
	North.	Zodiac.	South.	All.	North.	Zodiac.	South.	All.	
2	I I 12	6 6	I 2	29 25	2.20	2.10	2.14	2.14	
3	63 58	52 44	7 46 34	25 161 136	2.04 3.22 3.28	I.95 3.24 3.31	2.23 3.35 3.36	2.07 3.27 3.31	
4	121 119	100 105	111	332 299	$\begin{array}{c} 3 \\ 4 \cdot 32 \\ 4 \cdot 33 \end{array}$	4 · 45 4 · 48	4.30 4.32	4.36 4.38	
5	48 40	95 82	75 38 16	181 <i>138</i>	4.84 4.81	5.08 5.04	4.64 4.82	4.85 <i>4.95</i>	
6	13 9	24 25	8 4	45 38	5.27 5.46	5.36 5.38	5.22 5.18	5.28 5.38	

TABLE VII.

In Table VIII the first column gives the number of the star in Baily's Ptolemy; the second column the name of the star; the third gives the magnitudes assigned by Dr. Peters, an asterisk (*) indicating those which differ from the magnitudes adopted in the catalogue; the next three columns give the magnitudes in the Greek codices, Paris 2389, Vatican 1594, and Venice 313; the following column gives the magnitudes adopted by Manitius from the several Greek manuscripts he examined; then follow the magnitudes in three Arabic codices, British Museum Reg. 16, British Museum 7475, and Bodleian 369; and in the last column is given the magnitudes in the Harvard Revised Photometry; for double stars the combined magnitude is given.

The Notes on pp. 144–150 give the variants from the adopted magnitudes, in the Greek codices, Paris 2389, Vatican 1594, Vatican 1038, Venice manuscripts 302, 310, 312, and 313, and Laurentian 48; the Latin codex Laurentian 6, and the three Arabic codices, British Museum Reg. 16 and 7475, and Bodleian 369. The magnitudes in the Latin manuscripts of Gerard of Cremona (Laurentian 45 and British Museum, Sloane 2795) show so many discordances that they are passed over, except in a few instances. Baily has omitted the qualifying words $\mu \epsilon l_{\delta} \omega \nu$ and $\epsilon \lambda \dot{a} \sigma \sigma \omega \nu$, consequently the variants in his edition refer only to magnitudes not so qualified in the catalogue.

TABLE VIII.

Star Magnitudes.

Baily's No.	Name.		Greek.					Arabic.		Uana
		Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.	B. M. Reg. 16.	B. M. 7475·	Bod. 369.	Harv. R. P.
	URSA MINOR.									
I	I a	3	3	3	3	3	3	3	3	2.I
2	23 δ	4	4	4	4	4	4	4	4	4.4
3	22 ε	4	4	4	4	4	4	4	4	4.4
4	16 ç	4	4	4	4	4	4	4	4	4.3
56	2Ιη	4	4	4	4	4	4	4	4	5.0
6	7 β	2	2	2	2	2	2	2	2	2.2
7	13 γ	3*	2	2	2	2	2	2	2	3.I
8	5 Å	4	4	4	4	4	4	4	4	4 ∙4
	URSA MAJOR.									
9	Ιο	4	4	4	4	4	4	4	4	3 · 5
10	2 A	5	5	5	5	5	5	5	5	5.4
II	$4 \pi^2 \cdots$	5	5 5	5	5 5	5	5	5	5 5	4.8
12	8ρ	5	5	5		5	5	5 5 5	5	5.0
13	13 σ^2	5	5	5	5	5	5	5	5	4.9
14	$24d\ldots\ldots\ldots\ldots$	5	5	5	5	5	5	5	5	4.6
15	$\mathbf{I}_4 \boldsymbol{\tau}_{\cdots}$	4-5*	4	4	4	4	4	4	4	4·7
16	$23 h \dots \dots$	4	4	4	4	4	4	4	4	3.7
17	29 v	4	4	4	4	4	4	4	4	3.9
18	30 <i>φ</i>	4-5	4-5	4	4	4-5	4-5	4-5	4-5	4 • 5
19	25 θ	3	3	3	3	3	3	3	3	3 · 3
20	91	3-4*	3	3	3	3	3	3	3	3.I
21	I2 К	3-4*	3	3	3	3	3	3	3	3.7
22	18 e	4	4	4	4	4	4	4	4	4.9
23	15f	4	4	4	4	4	4	4	4	4 · 5
24 25	50 a	2	2	2	2	2	2	2	2	1.9
25 26	48 β	2	2	2	2	2	2	2	2	2.4
	69δ	3 2	3 2	3	3	3	3	3	3	3 · 4
27 28	64γ	3-4*		2	2	2	2	2	2	2.5
20 29	33λ	3-4 3-4*	3	3	3	3	3	3	3	3.5
30	$\begin{array}{c} 34 \ \mu \dots \dots \\ 52 \ \psi \dots \dots \end{array}$		3	3	3	3	3	2	3	3.2
- 1	$52 \psi \dots \dots$ $54 \nu \dots$	43 34*	4-3	4-3	4-3	4-3	4-3	3	4-3	3.1
31 32	$54 $ ξ	5 4 3-4*	3	3	3	3	3	3	3	3.7
33	77 ε	5 4 2	3 2	3 2	3 2	3 2	3	3 2	3	4.6
34	795	2	2	2	2	2	2 2	2	2 2	1.7 2.4
	85η	2	2	2	2	2	2	_	2	2.4 1.9
35 36	12 Can. Ven	3	3	3	3	3	3	33	3	3.0
37	8 Can. Ven	5	5	5	5	5	3 5	5	5	3.0 4.3
38	40 Lyncis	4	3 4	5 4	5 4	5 4	5 4	5 4	5 4	4·3 3·3
39	38 Lyncis	4	4	4	4	4	4	4	4	3.8
40	10 Leo min	αμ	αμ	αμ	τ αμ	4 aµ	4 αμ	4 αμ	4 αμ	4.6
41	IX 115	αμ	αμ	αμ	aµ	aµ	aµ	αμ	αμ	5.0
42	VIII 245	αμ	aµ	αμ	aμ	аµ	aµ	aµ	aµ	4.7
43	31 Lyncis	aµ	aµ	aµ	aµ	aµ	aµ	αμ	αμ	4.4
	DRACO.		I						ļ	
44	21 <i>µ</i>	4	4	4	4	4	4	4	4	5.8
45	${24 \atop \nu}$	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.2
75	$\{25\}^{\nu}$	тэ	тЈ	тэ	тЈ	тJ	тэ	тэ	тэ	T · -

Star	Magnitud	<i>es</i> —continued.
------	----------	-----------------------

D.:				Gre	ek.			Arabic.		Uam
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475∙	Bod. 369.	Harv. R. P.
	DRACO—continued.							• · · · · · · · · · · · · · · · · · · ·		
46	23 β	3-4*	3	3	3	3	3	3	3	3.0
47	<u>32</u> ξ	4	4	4	4	4	4	4	4	3.9
48	33γ	3	3	3	3	3	3	3	3	2.4
49 50	39 b 46 c	4	4	4	4	4	4	4	4	4.8 5.1
50 51	45 d	4	4 4	4	4	4 4	4	4	4 4	5.1 4.9
52	47 0	4	4	4	4	4	4	4	4	4.8
53	58π	4	4	4	4	4	4	4	4	4.6
54	57δ 63 ε	4 4 ⁻ 5*	4	4	4	4	4	4	4	3.2 4.0
55 56	67 ρ	4 5	4 4	4	4	4	4	4 4	4 4	4.0
57	6ισ	5-6*	5	4 5	5	5	5	4	5	4.8
58	52 v	5-6*	5	5	5	5	5	5	5 5 5	4.9
59 60	60τ		4 5 5 4	5	5 4	5 4	5	5 4	5	4.6 4.9
61	44 x · · · · · · · · · · · · · · · · · ·	4	4	4	4	4	4	4	4	3.7
62	$43 \varphi \dots$	4-5*	4	4	4 6	4 6	4 6	4	4 6	4.2
63	$27f.\ldots$. O	6 6	6	6	6	6	4 6	6	5.2
64 65	28ω 18g	1	5	5	5	5	5	6		4.9 5.0
66	10 g		5	5	5	5	5	5	5	4.8
67	225	3	3	3	3	3	3	3	3	3.2
68	14η		3	3	3	3	3	3	3	2.9
69 70	Ι 3 θ Ι 2 ι		4-3 3	4-3	4-3	4-3	4-3	4^{-3} 3-2?	4-3 3	4.1 3.5
71	IO <i>i</i>	4	4	4	4	4	3	3	3	4.8
72	ΙΙ α	3-4*	3	3	3	3	3	4,3?	3	3.6
73	5 κ 1 λ	3-4* 3-4*	3	33	33	33	33	3	3	3.9 4.1
74	1	54	5	5	3	5	3	5	5	T
1	CEPHEUS.							2		4.4
75 76	I κ 35 γ		4	4	4	4	4	3	4	3.4
77	8β		4	4	4	4	4	4	4	3.3
78	5 a	3	3	3	3	3	3	3	3	2.6
79	3η		4	4	4	4	4	4	4	3.6 4.3
80 81	2θ		45	4 5	4 5	45	45	3	45	4.4
82	32		4-3	4-3	4-3	4-3	4-3	5 (?)	4-3	3.7
83	23 ε	5	5	5	5	5	5	5 (?)	4-3 5 4	4.2 3.6
84	21 5	4	45	4 5 5	5 4 5 5 4	5 4 5 5 4	45	5	4 5	3.0 5.2
85 86	22 λ μ.	5	5	5	5	5	5	5	5	4-5 V
87	27 δ		4	4	4	4	4	4	4	3.7-4.6 v
	•									
88	BOOTES.	E	5	E	5	5	5	5	5	4.6
88 89	17 к 21 г	5	5	5	5	5 5 5	5 5 5	5	5	4.8
90	23 θ	5	5	5 5 5 5	5 5 5 5	5	5	5	5	4.I
91	19λ	5	5			5	5	5	5	4.3 3.0
92	$27 \gamma \dots \gamma$		3 43	3 4-3	3 4-3	3 4-3	3 4-3	3 4-3	3 4-3	3.6
93	42β 49δ		4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.5
94 95	51μ		4	4	4	4	4	6	4	4.5
15	-					1	<u> </u>			

Baily's				G	reek.			Arabic		Harv.
No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.	B. M. Reg. 16.	B. M. 7475	Bod. 369.	R. P.
	BOOTES-continued.									
96	$\int 52 \nu^1$	} 4	4	4	4	4	4	4	4	4.3
07	$\begin{array}{c} 153 \ \nu^2 \\ 2 \ \eta \ \text{Coron} \\ \textbf{z} \end{array}$		4	4	4		4	4	-	5.6
97 98	<i>I</i> ο Coronæ	4-3 5	4-3 5	4-3 5	4-3 5	4-3 5	4-3 5	43 5	4-3 5	5.6
99	45 c	5	5	5	5	5	5		5	5.0
100 101	43ψ 46 <i>b</i>	5 5	5 5	5 5	5 5	5 5	5 5	5 5 5	5 5	4 · 7 5 · 7
102	4Ιω	5	5	5	5	5	5	5	5	4.9
103	36 ε		3	3	3	3	3	3	3	2.7
104 105	28 σ 25 ρ	4 4-3	4 4-3	4 4-3	4 4-3	4 4-3	4 4-3	4 4-3	4 4-3	4 · 5 3 . 8
106	305		3	3	3	3	3	3	3	4.4
107 108	$8 \eta \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	3	3 4	3 4	3 4	3 4	3 4	3 3	3 4	2.8 4.5
109	5 v	4	4	4	4 4	4	4	3 4	4	4.3
IIO	16a	I	I	I	i	I	I	om.	I	0.2
	CORONA BOREALIS.									
III	5 a	2-I	2-1	2-I	2-1	2-I	2-1	5-4	2-I	2.3
112 113	$\begin{array}{c} 3 \beta \dots \dots \\ 4 \theta \dots \dots \dots \end{array}$		4-3 5	4-3	4-3 5	4-3	4-3	5-4	4-3	3 · 7 4 · 2
114	9π	6	5 6	5 6	5	5 6	5 6	5 6	5 6	5.6
115 116	8γ 10δ	4 4	4	4	4	4	4	4	4	3.9 4.7
117	Ιζι ε	4	4 4	4 4	4 4	4 4	4 4	4 4	4 4	4.7 4.2
118	14	4	4	4	4	4	4	4	4	4.9
	HERCULES.									
119 120	64 a		3	3	3	3	3	3	3	3.5 2.8
120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	3 3	33	3 3	3 3	3 3	3 3	33	2.8 3.8
122	7 K	4-5*	4	4	4	4	4	3	4	5.3
123 124	65 δ 76 λ	3 4-3	3 4-3	4 4-3	4 4-3	$\frac{3}{4-3}$	3 4-3	3 3	3 4-3	3.2 4.5
125	86 μ	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.5
126	103 0	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.8
127 128	94 v 92 ξ	4-3 4*	4-3 4	4-3 4	4-3 4	4 ⁻³ 4	4-3 4-3	4-3 4-3	4-3 4-3	4.5 3.8
129	405	4*	4	4	4	3	3	4-3	3	3.0
130 131	$58 \epsilon. \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5-6* 5	5 5	5 5 3	5	5 5	4 - 3 5	4-3	4-3	3.9 5.3
132	61 <i>c</i>	5	3		5 3	3	5	5 5	5 5	$5 \cdot 3$ $5 \cdot 4$
133	67π	4	4	4	4	4	3	3	3	3.4
134 135	69 e 75 p	4 4-3	4 4 ⁻ 3	4 4 ⁻ 3	4 4-3	4 4-3	4 4 ⁻ 3	4 4-3	4 4 ⁻ 3	4.8 4.5
136	91 θ	4	4	4	4		4	4	4	4.0
137 138	85 ι 74	4	4 6	4 6	4 6	4 4 6	4	4 6	4	3.8
130	74 77 <i>x</i>	6	6	6	6	6	6	6	6	5.8 5.8
140	82 y	6	6	6	6	6	6-5	6	6-5	5.5 3.6
141 142	44 η 35 σ	4-3 4	4-3 4	4-3	4-3	4-3	4-3	4-3	4-3	3.6
142	22 τ	4-3	4 4-3	4 4-3	4 4 ⁻ 3	4 4 ⁻ 3	4-3 4-3	4 4-3	4-3 4-3	4.2 3.9
144	ΙΙ φ	4	4	4	4	4	4	6	4	4.3

Greek. Arabic. **Baily's** Harv. Name. Peters. No. Paris Vatican Venice Manitius B. M. **B**. M. Bod. R. P. printed. Reg. 16. 2389. 1594. 313. 7475. 369. HERCULES-cont. 4.6 6 6ν.......... 145 4 4 4 4 4 4 4.6 146 6 4 4 4 Ιχ...... 4 4 4 4 $\begin{cases} 5^2 \nu^1 \\ 53 \nu^2 \end{cases}$ Bootis.... 147 4 om. om. om. om. om. om. om. 4.3 24ω. . 148 om. om. $4 \cdot 5$ 5 5 5 5 5 5 LYRA. 0.14 3 a.... 1 I I I Ι I I I 149 $\left\{\begin{array}{ccc} \mathbf{4} \ \boldsymbol{\epsilon}^1 \ \cdots \ \cdots \ \cdots \ \cdots \ \cdots \ \cdots \ \mathbf{5} \\ \mathbf{5} \ \boldsymbol{\epsilon}^2 \ \cdots \ \cdots \ \cdots \ \mathbf{5} \end{array}\right\}$ 4-3 4-3 4-3 4-3 4-3 4.7 150 4-3 4-3 4 $\left\{\begin{array}{ccc} \check{6}\,\varsigma^1 & \cdots & \cdots & \ddots \\ 7\,\varsigma^2 & \cdots & \cdots & \cdots \\ \end{array}\right\}$ 4-3 4.I 4-3 4-3 4-3 4-3 4-3 4 151 4-3 4.5 $\mathbf{I2} \, \delta^2$ 152 4 4 4 4 4 4 4 4 4 · 5 4 4 4 4 4 4 4 4 153 4-5 **2Ι** θ.... 4 4 4-5 4.5 4^{-5} 4 4 4 154 10 β..... 3 3 3.4-4.1 v 3 3 3 3 3 3 155 5.I 4-5 4-5 4-5 156 $9 \nu^2 \ldots \ldots \ldots \ldots$ 4-5 4-5 4-5 4~5 4 3.3 $\mathbf{I}_{4}^{\prime}\gamma$ 3 157 158 3 3 3 3 3 3-4 3 5.1 15 λ..... 4-5 4-5 4 4-5 4-5 4-5 4-5 4-5 CYGNUS. 3.2 6β.... 3 3 3 3 3 3 3 159 3 4.8 Ι2 φ.... 5 5 5 5 5 160 5 5 5 4-3 4.0 4-3 4-3 4-3 161 2I η.... 4-3 4-3 4-3 4-3 2.3 $37 \gamma \dots$ 3 3 3 3 162 3 3 3 3 I.3 50 a.... 2 2 2 2 2 2 2 2 163 18δ.... 3.0 3 3 3 3 3 3 3 3 164 4.6 13 θ.... 4 4 4 4 4 4 4 165 4 3.9 101.... 4-3 4-3 4-3 4-3 4-3 4-3 4-3 4-3 166 4.0 Ι κ. 4-3 4-3 4-3 4 4-3 4-3 167 4-3 4-3 2.6 53 ε.... 3 3 3 3 3 3 168 3 3 $53 \epsilon... 54 \lambda... 64 \zeta... 58 \nu... 62 \xi... 62 \xi... 62 k... 62 k$ 4.5 4-3 4-3 4 4-3 4-3 4 4-3 4-3 169 3 3 3 2 3 3.4 3 3 170 3 4-3 4.0 4-3 4-3 4-3 4-3 4-3 4-3 4-3 171 3.9 4-3 4-3 4-3 4 4-3 4-3 4-3 4-3 172 ${30 \atop 31} o^1 \dots$ 3.6 4-5* 4 4 4 4 4 4 4 173 4.2 $32 o^2 \dots$ 4^{-5*} 4 4 4 4 4 4 4 174 $\begin{cases} 45 \ \omega^1 \dots \dots \\ 46 \ \omega^2 \dots \dots \end{cases}$ 5 4.4 5 5 5 5 5 5 5 175 3.8 *(*65*τ*..... 4-3 4-3 4-3 4-3 4-3 4-3 4-3 4-3 h 176 4.4 4-3 4-3 4-3 4.3 4-3 4-3 67 σ.... 4-3 4-3 177 4-3 CASSIOPEIA. 3.7 4-3 4-3 4-3 4-3 4-3 4-3 4-3 17 (..... 4-3 178 3 3 3 2.5 3 3 3 3 179 3 3.6 4 4 4 4 3 24 η..... 4 4 4 180 3-2 3-2 3-2 3-2 2.2 3-2 3-2 $27 \gamma \dots$ 3-2 3-2 181 2.8 37 δ.... 3 3 3 3 3 3 3 3 182 3.4 4 4 4 4 4 4 4 4 183 4.6 4 4 35 (Hev.) *ι*..... 4 4 4 4 4 4 184 **4** · 5 4 5 4 5 3 **33** θ.... 4 4 4 4 185 4 5.2 5 5 5 5 5 5 186

Bailer				Gr	eek.			Arabic.		Harv.
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475·	Bod. 369.	R. P.
	CASSIOPEIAcont.									
187	8σ	6	6	6	6	6	6	6	б	4.9
188	15 к	4-5	4-5	4-5	4-5	4-5	4-5	4	4-5	4 . 2
189	11β	3 6	3 6	3 6	3 6	3 6	3 6	36	3 6	2.4
190	7 ρ	0	0	0	0	0	0	0	0	4.8
	PERSEUS.									
191	$7 \times \cdots $		Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	
192 193	Ι 5η 23γ	4 3-4	4 3-4	4 3-4	4 3-4	4 34	4 3-4	4 3-4	4 3-4	3.9 3.1
195 194	I 3 θ	4	4	4	54 4	4	4	4	4	4.2
195	Ι 8 <i>τ</i>	4	4	4	4	4	4	4	4	4.I
196	18 (Hev.) ι	4-3*	4	4	4	4	4	4	4	4.2
197 198	33 α 35 σ	2	2 4	2 4	2 4	2 4	2	2 3	2 4	1.9
190	37ψ	4	4	4	4 4	4	4	4	4	4.5 4.3
200	39δ	3	3	3	3	3	3	3-2	3	3.1
201	27 к	4	4	4	4	4	4	4	4	4.0
202 203	$\begin{array}{c} 26 \boldsymbol{\beta} \dots \dots \\ 28 \boldsymbol{\omega} \dots \dots \\ 28 \dots \end{array}$	2 4	2	2	2	2	2	2	2	2.1 V 4.8
203	2 5 <i>ρ</i>	4	4 4	4	4 4	4	4	4	4 4	4.0 3.4V
205	22 π	4	4	4	4	4	4	4	4	4.6
2 0 6	21 (Hev.) 72 b	4	4	4	4	4	4	4	4	4.6
207	47λ	4	4	4	4	4	4	4	4	4.3
208 209	48 c	4	4 4	4	4 4	4 4	4	4	4 4	4.0 4.3
210	53 d	5	5	5	5	5	4 5	4 5	5	4.9
2 I I	58 e	5*	5	5	5	5	5-4	5	5-4	4.5
212	4I v	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.9
213	45 ε 46 ξ	3	3	3	3	3	3	3	3	3.0
214 215	38 o	4 3-4	4 3−4	4 3-4	4 3-4	4 3-4	4 3-4	4 3-2	4	4.0 3.9
216	44 5	3-2	3-2	3-2	3-2	3-2	3-2	3-2	3-4	2.9
217	$5^2 f$	5	5	5	5	5	5	5	5	4.9
218	14 (Hev.) Camel	5	5	5	5	5	5	5	5	5.1
219	$16 p^1$	αμ	αμ	аµ	αμ	αμ	aµ	aµ	αμ	4.3
	AURIGA.									
220 221	33δ 30ξ	4	4	4	4	4 4	4	4	4	3.9
222	13 α	4 I	4 I	4 I	4 1	4 I	4 I	4	4 I	4·9 0.2
223	34β	2	2	2	2	2	2	2	2	2.I
224	32 v	4	4	4	4	4	4	4	4	4.2
225	$37 \theta \dots$	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	2.7
226 227	7 ε ΙΟ η	4-3 4-3	43 43	4-3 4-3	4-3 4-3	4-3 4-3	4-3 4-3	4-3 4-3	4-3 4-3	v 3 · 3
228	8ζ	4 3	4 3	4 3	4 J 4	4 3 4	4 3	4 3	4 3	3.3 3.9
229	3	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	2.9
230	$23 \gamma = \beta \text{ Tauri} \dots$	3-2	3-2	3-2	3-2	3-2	3-4	3-4	3-4	1.8
23I 222	$25 \chi \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5	5	5	5	5	5	5	5	4.9
232 233	$\mathbf{I4},\ldots,\mathbf{I4}$	5 6	56	56	5 6	5 6	56	5	56	5.3 5.1
- 55	•	-	-	-	-		-	~	5	J.*

Star	Magnitua	les—continued.
~~~~	111 000 1000000	vo continuou.

Name.			Gr	eek.			Harry		
me.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Harv R. P.
CHUS.									
	3-2	3-2	3-2	3-2	3-2	3-2	3	3-2	2.I
	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	2.9
	4	4	4	4	4	4	4	•••••	3.7
• • • • • • • • • • •	4	4	4	4	4	4	4	4	4.3
• • • • • • • • • • •	4	4	4	4	4	4	3	4	3.4
•••••	4	4	4	4	4	4	3	4	3.8
•••••	3-4*	3	3	3	3	4-5	4	45	3.0 3.3
· · · · · · · · · · · ·	3	3	3	3	3	3	4-5	3	4.6
	4 4-5	4 4-5	4 4-5	4 4-5	4 4-5	4 4-5	4	4 4-5	3.5
	4 3	4 5	4	4	4	4 4	4-3	4	5.3
	3	3	3	т 	3	3	4	3	2.6
	4-5*	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4 · 5
	4	4		4-3	4	4	4	4	5.3
	4-5*	43	4-3	4-3	4-3	4-3	4-3	4	3 · 4
	4	4	4	4	4	4	4-3	5	4.3
	5	5	5	5	5	5	5	5	4.9
arii	5	5	5	5	5	5	5	5	6.6 6.0
	3	3	3	3	3	3	3	3	2.7
	5-4	5-4	5-4	5-4	5-4	5-4	54	5-4	4·4
	5	5	5	5	5	5	5	5	4.8
	5-4	5-4	5-4	5-4	5-4	5-4	5-4	5-4	4.6
	5	5	5	5	5	5	5	5	4.6
• • • • • • • • • • •	4	4	4	4	4	4	4	4	5.2 4.8
	4	4	4	4	4	4	4	4	4.0
•••••	4	4	4	4	4	4	4	4	3.9 4.4
<i></i>	4	4	4	4	4 4	4	4	4	4.4 4.1
	4 4	4 4	4 4	4	4	4	4	4	3.7
PENS.									
	4	4	1	4	4	4	4	4	4.5
	4 4	4 4	4	4	4	4	4	4	4.9
	3	3	3	3	3	3	3		3.9
	3	3	3	3	3	3	3	$\begin{vmatrix} 3\\ 3 \end{vmatrix}$	3.7
	4	4 4	4	4	4	4	4	4	4.3
	4	4	4	4	4	4	4	4	4.8
	3	3	3	3	3	3	3	3	4.2
	4	4	4	4		4	4	4	4.4
	3 3	33	3	3	4 3 3	3	4	3	2.7
	3	3	3	3		3	3	3	3.7
	4	4	4	4	4	4	3	4	3.6
	5	5	5	5	5	5	4	5	4.7
· · · · · · · · · · ·	4	4	4	4	4	4	4	4	4·3 3.6
	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.0
•••••	4	4	4	4	4	4	4	4	4.4
	4	4	4	4	4	4	4		3.4
									4.5
•••••	4	4	4	т	Ť	- T	<u>т</u>	T	- T.J
		····· 4-3 ···· 4		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Baily's				Gr	eek.			Arabic.		Harv.
No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475•	Bod. 369.	R. P.
	SAGITTA.									
281	12 $\gamma$		4 6	4	4 6	4 6	4 6	<b>4</b> 6	4 6	3.7
282	8 ζ			6						4.9
283 284	7δ 5 α	5 5	5	5	5 5	5	5	5	5 5	3.8
285	$6\beta$		5 5	5 5	5	5 5	5 5	5 5	5	4 · 4 4 · 4
-06	AQUILA.								-	
286 287	63τ 6οβ		4	4	4	4	4	4	4	5.6
288	53 a	3 2-1	3 2-1	3	3 2	3 2-1	3 2-1	3 2-1	3 2-1	3.9 0.9
289	59 <b>ξ</b>	3-4	3-4	3-4	3-4	3-4	3-2	3-4	3-2	4·9
290	50 γ	3	3	3	3	3	3	3	3	2.8
291 201	$61 \varphi \dots \dots$	5	5	5	5	5	5	5	5	5.3
292 293	$38 \mu$	5	5	5	5	5	5	5	5	4.6
293 294	17ζ	5-4 3	5 <b>-4</b> 3	5-4 3	5-4 3	5-4 3	5-4 3	5-4 3	5-4 3	5.2 3.0
295	$55 \eta$	3	3	3	3	3	3	3	3	3.7 v
296	65 θ	3	3	3	3	3	4	3	3	3.4
297	30δ	4-3	4-3	4-3	43	4-3	4-3	4-3	4-3	3.4
298 200	41 <i>L</i>	3	3	3	3	3	3	3	3	4.3
299 300	16λ	5 3	5 3	5 3	5 3	5 3	5 3	5 3	53	5.0 3.5
	DELPHINUS.									
301	2 ε	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	4.0
302	5 L 7 K	4-3*	4-5	4-5	4-5	4-5	4	4	4	5 · 4
303 304	6β	4 3 <b>-</b> 4	4 3-4	4 3 ⁻ 4	4 3-4	4 3-4	4	4	4	5.2
305	9 a	3-4	3-4 3-4	3-4	3-4	3-4 3-4	3-4 3-4	3-4 3-4	3-4 3-4	3.7 3.9
306	11δ	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	4.5
307	$12 \gamma \dots \dots \dots$	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	4.5
308	<u>3</u> η	6 6	6 6	6 6	6 6	6	6	6	6-7	5.2
309 310	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	6	6	6 6	6 6	6 6	6	4.7 6.1
	EQUULEUS.									
311	8 a	αμ	аµ	αμ	aµ	αμ	aµ	ан	aµ	4.I
312 313	$10\beta$ $5\gamma$ .	aµ au	aµ au	αμ	aµ	aµ	aµ	αμ	аμ	5.1
314	$7\delta$	aµ aµ	аµ аµ	αμ αμ	аµ аµ	αμ αμ	αμ αμ	аµ аµ	aµ aµ	4.8 4.6
	PEGASUS.									
315	$\delta = 21 \alpha \text{ And} \dots$ $88 \gamma \dots$	2-3	2-3	2-3	2-3	2-3	2-3	2-3	2-3	2 . I
316 317	$53\beta$	2-3 2-3	2-3 2-3	2-3 2-3	2-3 2-2	2-3 2-2	2-3	2-3	2-3	2.9
318	$54 \alpha$	2 3 2-3	2-3	2-3 2-3	2-3 2-3	2-3 2-3	2-3 2-3	2-3 2-3	2-3 2-3	2.6 2.6
319	62 τ	4	4	4	~ j 4	4	4	3	4	2.0 4.6
320	68 v	4	4	4	4	4	4	4	4	4.6
321	$44 \eta \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	3	3	3	3	3	3	3	3	3.1
322 323	43 ο 47 λ	5 4	5 4	5	5	5	5	5	5	4.8
324	$48 \mu$	4	4 4	4 4	4 4	4 4	4	4 4	4	4.I
325	42 5	3	3	4	4 3	4 3	4	4 3	4	3.7 3.6
326	<b>4</b> 6 ξ	4	4	4	4	4	4	4	4	5.8 4·3

				Gr	eek.			Arabic.		TT
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475∙	Bod. 369.	Harv. R. P.
	PEGASUS—continued.									
327	50 ρ	5	5	5	5	5	5	5	5	4.9
328	49 σ	5	5	5	5	5	5	5	5	5.3
329	$26\theta$	3	3	3	3	3	3	3	3	3.7
330	$22 \nu \ldots \ldots \ldots \ldots \ldots$	4	4	4	4	4	4	4	4	4.9
331	8 <i>ε</i>	3-2	3-2	3-2	3-2	3-2	3-2	4-3	3-2	2.5
332	$29\pi$	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.4
333 334	24 ι 10 к	4-3 4-3	4-3 4-3	4-3	4-3 4	4-3 4-3	4-3 4-3	43 34	4-3 4-3	4.0 4·3
551	ANDROMEDA.				ļ					
335	31δ	3	3	3	3	3	3	3	3	3.5
335	$29 \pi$	4	4	4	4	4	4	4	4	4.4
337	30 €		4	4	4	4	4	4	4	4.5
338	25 σ	4	4	4	4	4	4	4	4	4.5
339	$24\theta$		4	4	4	4	4	4	4	4.4
340	27 ρ		5	5	5	5	5	5	5	5.2
341	17	4	4	4	4	4	4	4	4	4.3
342	<u>19</u> к	4	4	4	4	4	4	4	4	4.3
343	16 λ	4	4	4	4	4	4	4	4	4.0
344	345		4	4	4	4	4	4	4	4.3
345	$38 \eta$		4	4	4	4	3	4	3	4.6
346	$43 \beta \dots$		3	3	3	3	3	3	3	2.4
347	37 <b>µ</b>	4	4	4	4	4	4	3	4	3.9
348	35 ¥	4	4	4	4	4	4	4	4	4.4
349	$57 \gamma \dots \gamma$	3	3	3	3	3	3	3	3	2.3
350	$54 = \varphi$ Persei		4-5	4-5	4-5	4-5	4-3	4-3 4-3	4-3	4.2 3.8
351	51 = v Persei	4-3	4-3	4-3	4-3	4-3	4 4-3	4	4 4-3	4.2
352	50 v		4	4	4	4	+ J 4	4	4	4.9
353	537	4	4 5	4 5	5	5	5	5	5	4.3
354	$\begin{array}{c} 42 \varphi \dots \\ 49 A \dots \\ \end{array}$		- 5		5		5	5	5	5.3
355	$49^{A}$		5	55	5	55	5	5	5	5.2
356 357	IO		3	3	3	3	3	3	3	3.6
557	TRIANGULUM.									
358	2 a	3	3	3	3	3	3	4	3	3.6
359	4β	3	3	3	3	3	3	3	3	3.1
360	8δ	4	4	4	4	4	4	4	4	5.1
361	9 <i>γ</i>	3	3	3	3	3	3	3	3	4.I
	ARIES.				2.4	2-4	2-4	2-4	2-4	4.7
362	$5\gamma$		3-4	3-4	3-4	3-4	3-4 3	3-4 3	3-4	2.7
363	6β		3	5	3	5				5.2
364	$17\eta$	5556	3 5 5 5 6	3 5 5 5 6	5 5 6	3 5 5 5 6	5 5 5 6	5 5 5	5 5 5 6	5·3 5·7
365	$22 \theta^1 \dots$	2	5	) 2	, 5 E	5 L	2	5	5	5.2
366	81	2	5	6	6	6	6	6	6	5.4
367	$32\nu$	5	Ľ		5		5	5	5	5.2
368	48 ε	4	5 4	5	4	5 4	4	4	4	4.5
369		1 .	4	4	4	4	4	4	4	4.9
370	$58 \zeta \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4	4	4	4	4	4	4	4	5.2
371	$\int 45 \rho^2 \dots$	D .			1					5.0
372	$\begin{array}{c} 45 \ \rho^{3} \ \dots \ \dots \ \dots \ \dots \ \dots \ \dots \ \dots \ \dots \ \dots \ $	} 5	5	5	5	5	5	5	5	1
373	$43 \sigma \dots$	5	5	5	5	5	5	5	5	5.
1/3	<b>Τ</b> J * * * * * * * * * * * * * * * * *		1	-	1					1

Baily's				Gr	eek.		1	Arabic.		Harv.
No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	R. P.
	ARIES—continued.									-
374	87 μ Ceti	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.4
375	I3 a		3-2	3-2	$\frac{4}{3-2}$	3-2	$\frac{4}{3-2}$	3	3-2	2.2
376	4I C	4	4	4	4	4	4	4	4	3.7
377	39	5	5	5	5	5	5	5	5	4.6
378	35 33		5	5	5	5	5	5	5	4.6
379	33	5	5	5	5	5	5	5	5	5 · 4
280	TAURUS.						1			I
380 381	5 f 4 s		4	4	4	4	4	4	4	4.3
382	2 ξ		4 4	4	4 4	4 4	4 4	4 4	4 4	5.I 3.7
383	1 0		4	4	4	4	4	4	4	3.8
384	30 <i>e</i>	5	5	5	5	5	5	5	5	5.0
385 386	$35 \lambda$		3	3	3	3	3	3	3	3.3-4.2
387	49 μ 38 ν		4	4	4	4	4	4	4	4.3
388	$90 c^1$		4 4	4	4 4	4 4	4	4 4	4 4	3.9 4.3
389	<i>88 d</i>		4	4	4	4	4	4	4	4.4
390	$54\gamma$		3-4	3-4	3-4	3-4	3-4	4-5	3-4	3.9
391	$61\delta^1$		3-4	3-4	3-4	3-4	3-4	3-4	(?)	3.9
392	$\left\{\begin{array}{ccccc} 77 \ \theta^1 \dots & \dots \\ 78 \ \theta^2 \dots & \dots & \dots \end{array}\right.$	3-4	3-4	3-4	3-4	3-4	3-4	3-4	(?)	3.I
393	87 a		I	I	I	I	I	I	I	I.I
394	74 ε		3-4	3-4	3-4	3-4	3-4	(?)	3	3.6
395	$97 i \dots \dots \dots$		4	4	4	4	4	4	4	5.I
396	104 <i>m</i>		5	4	4	5	5	5	5	5.0
397 398	100 <i>Γ</i>		5 3	5 3	5 3	5 3	5 3	5	5	5.3
399	$94\tau$		4	4	3 4	4	3 4	3 4	3 4	3.0 4.3
400	$II2\beta$	3	3	3	3	3		3	5	I.8
401	$69 v^1 \dots \dots$	-	5	5	5	5	5	5	5	4.4
402	65 к 37 А.	-	5	5	5	5	5	5	5	4 · 4
403 404	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	5 6	56	56	5 6	56	56	5	4.5 4.8
405	<b>44</b> <i>p</i>		5	5	5	5	5	5	5 5	4.0 5.5
406	$42\psi$	5	5	5	5	5	5	5	5	$5 \cdot 5$ $5 \cdot 3$
407	$59 \times \cdots \times \cdots \times \cdots \times \cdots \times \cdots \times \cdots \times \cdots \times \cdots \times \cdots \times $	5	5	5 5	_		5	5	-	5.4
408 409	52 φ 19 (Taygeta) e	5	5 5	5	5 5	5	5	5	5 5	5.I
410	23  (Merope)  d	5 5	5	5	5 5	5 5	5	5 5	5 5	4 · 4 4 · 2
411	25 (Alcyone) $\eta$	} 5					1			3.0
	27 (Atlas) f		5	5	5	5	5	5	5	3.8
412 413	III 170	4	4	4	4	4	4	4	4	5.4
414	Ιο2 ι	4 5	4 5	4	4 5	4	4	4	4	4 · 4 4 · 7
415	<b>10</b> 9 <i>n</i>	5	5 5	5	5	5	5	5	5 5	4 · / 5 . I
416	II40	5	5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5	5	5	4.8
417	126	5	5 5 5 5 5 5 5	5	5	5	5		5	4.9
418 419	I 29 I 2I	5	5	5	5	5	5	5 5 5	5	5.9
420	125	5	5	5	5	5	5	5	5	5.3
421	132	5	5	5	5	5 5 5	5	5	5	5.0 5.0
422	136	5	5	5	5	5	5	5	5	4.5
423	139	5	5	5	5	5	5	5	5	4.9

Baily's				Gr	eek.		,	Arabic.		TT
No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475.	Bod. 369.	Harv. R. P.
	GEMINI.			]						
424	66 a	2	2	2	2	2	2	2	2	2.0
425	$78 \beta$		2	2	2	2	2	2	2	I.2
426	$34\theta$		4	4	4	4	4	4	4	3.6
427	<b>4</b> 6 <i>τ</i>		4	4	4	4	4	4	4	4 · 5
428	6οι	•	4	4	4	4	4	4	4	3.9
429	69 v	4	4	4	4	4	4	4	4	4.2
430	77 κ 57 Δ.	4	4	4	4	4	4	4	4	3.7
43I	58	· J .	5 5	5	5	5	5	5	5	5.I 6.0
432 433	$27 \epsilon$		5	5	5 3	5	5 3	5	5	3.2
433	43 5		3	3	3	3	3	33	3 3	3.7-4.3 V
435	55δ		3	3	3	3	3	3	3	3.5
436	54 λ	3	3	3	3	3	3	3	3	3.6
437	$7\eta$	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.5 V
438	13 μ		4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.2
439	$18  \mathbf{v} \dots \dots \dots \dots \dots$	4-3	4-3	4-3	4-3	4-3	4-3	3	4-3	4.I
440	$24 \gamma \dots \dots$	3	3	3	3	3	3	3	3	1.9
44 I	$3\mathbf{I} \boldsymbol{\xi} \dots \dots \dots \dots$	4	4	4	4	4	4	4-3	4	3 · 4
442		4	4	4	4	4	4	4	4	4.3
443	44 κ Aurigæ	4-3	4-3	4-3	4-3	4-3	5	4	4-3	4.4
444	$36d\ldots$	5-6*	5	5	5	5 5	5 5	5	5	5.2
445	85	5	5	5	5	5		3-4	5	5.4
446 447	81 g 74 f	5 5	5 5	5 5	5 5	5	5 5	5 5	5 5	5.0 5.2
447	16 Cancri	5 4	5 4	4	3 4	4	4	5 4	5 4	6.3
••	CANCER	•	•		•		•	•	•	
449	CANCER. 41 €	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	Cum.
450	$33 \eta \dots$		4-5	4-5	4-5	4-5	4-5	4-5	4-5	5 . 5
451	$31 \theta$	4-5	4-5	4-5	4-5	4-5	4-5	4-5	4-5	5.6
452	43 γ	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.7
453	47 δ	4-3	4-3	4-3	4-3	4-3	4-3	4	4-3	4.2
454	65 a	4	4	4	4	4	4	4	4	4.3
455	<b>4</b> 8 ι	4	4	4	4	4	4	4	4	4.2
456	ΙΟ μ	5 4*	5	5	5	5	5	5	5	5.4
457	$17\beta$	、  4 [*] ¦	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.8
	$62 o^1 \dots \dots \dots$	4-5	4-5	4-5	4-5	4-5	4-5	4-5	4-5	4.6
	l63 o ² 76 к	,			4-5				4-5	5.1
459	69 v	4-5 5	4-5 5	4 ⁻⁵	45	4-5 5	4-5 5	4-5 5	4 S 5	5.1 5.4
460 461	77 ξ	5	5	5	5 5	5	5	5	5	5.2
401	// S	c	J	J	ر	J		5	5	5
	LEO.		,			· ·			<u>,</u>	1.6
C			4	4	4	4	4	4	4	4.6
462	Ι Κ	4			4	· 4	4	4	4	4.5
463	4 λ	4	4	4	4		1	2	2	A T
463 464	$4 \lambda \dots \dots $ 24 $\mu \dots \dots \dots \dots \dots$	4 3	4 3	3 .	3	3	3	3	3 2-2	4.I 3.I
463 464 465	$\begin{array}{c} 4 \lambda \\ 24 \mu \\ 17 \epsilon \\ \end{array}$	$     \frac{4}{3}     _{3-2} $	4 3 3-2	3 3-2	3 3-2	3 3-2	32	3	3-2	3.1
463 464 465 466	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{c}       4 \\       3 \\       3^{-2} \\       3     \end{array} $	$     \begin{array}{c}       4 \\       3 \\       3^{-2} \\       3     \end{array} $	3 - 2 3	3 - 2 3	3 - 2 3	3-2 3	3 3		3.1 3.6
463 464 465 466 467	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{c}       4 \\       3 \\       3^{-2} \\       3 \\       2     \end{array} $	$     \begin{array}{c}       4 \\       3 \\       3^{-2} \\       3 \\       2     \end{array} $	$3 \\ 3^{-2} \\ 3 \\ 2$	3 - 2 3 - 2 3 - 2	3 - 2 3 - 2 3 2	3-2 3 2	3 3 2	3-2 2 2	3.1 3.6 2.6
463 464 465 466 467 468	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 4 \\ 3 \\ 3^{-2} \\ 3 \\ 2 \\ 3 \end{array} $	$     \begin{array}{c}       4 \\       3 \\       3^{-2} \\       3     \end{array} $	3 - 2 3	3 - 2 3	3 - 2 3	3-2 3	3 3	3-2 2	3.1 3.6 2.6 3.6
463 464 465 466 467 468 469	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 4 \\ 3 \\ 3^{-2} \\ 3 \\ 2 \\ 3 \\ I \end{array} $	4 3 3-2 3 2 3 1	3 3-2 3 2 3 1	$3 \\ 3^{-2}$ $3 \\ 2 \\ 3 \\ I$	3 - 2 3	3-2 3 2 3 1	3 3 2 3 1	3-2 2 3 I	3.1 3.6 2.6 3.6 1.3
463 464 465 466 467 468 469 470	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 4 \\ 3 \\ 3^{-2} \\ 3 \\ 2 \\ 3 \end{array} $	$     \begin{array}{r}       4 \\       3 \\       3^{-2} \\       3 \\       2 \\       3     \end{array} $	$3 \\ 3^{-2}$ $3 \\ 2 \\ 3$	$3 \\ 3^{-2}$ $3 \\ 2 \\ 3$	3 - 2 3 - 2 3 2 3	3-2 3 2 3	3 3 2 3	3-2 2 2 3	3.1 3.6 2.6 3.6

Baily's				Gr	eek.			Arabic.		Ц
No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475•	Bod. 369.	Harv. R. P.
	LEO-continued.						·			
473	5 ξ	6	6	6	6	5	6	6	6	5.1
474	140	4	4	4	4	4	4	4	4	3.8
475	$29 \pi$	4	4	4	4	4	4	4	4	4.9
476	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		4 6	4	4 6	4 6	4 6	4 6	4 6	3.8
477 47 ⁸	52 k	6	6	6	6	6	6	6	6	5.7 5.6
479	53 1	6	6	6	6	6	6	6	6	5.3
480	60 <i>b</i>		6	6	6	6	5	5	5	4 · 4
481 482	68 δ	2-3	2-3	2-3	2-3	2-3	2-3	2	2-3	2.6
483	70 θ	53	5 3	53	5 3	5 3	5 3	5 3	5	<u> </u>
484	78	3	3	3	3	3	3	3	3	3.4 4.0
485	77 σ	•••	4	4	4	4	4	4	4	4.I
486 487	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	4	4	4	4	4	4	5.2
488	94 β	5 1-2	5 1-2	5 I-2	5 1-2	5 1-2	5 1-2	4 1-2	5 1-2	4 · 5 2 . 2
489	41 Leo min	5	5	5	5	5	5	5	5	5.0
490	54	5	5	5	5	5	5	5	5	<b>4</b> .5
491 492	$\begin{array}{c} 6_3 \chi_{\ldots} \\ 59 c_{\ldots} \\ \end{array}$	4-5	4-5	4-5	4-5	4-5	4-5	4-5	4-5	<b>4</b> · 7
492	58 <i>d</i>	5 5	5 5	5 5	5 5	5 5	5	5 5	5	5.I 5.0
494	$15 c \operatorname{Com} \mathbb{R} \dots \dots$	aμ	aμ	aµ	aμ	aµ	αμ	αμ	αμ	4.6
495	$7 h \operatorname{Com} \mathfrak{E} \dots$	αμ	αμ	aµ	αμ	αμ	aµ	aµ	aµ	5.1
496	$23 k \operatorname{Com}_{\mathfrak{E}} \ldots \ldots$	αμ	αμ	αμ	aμ	aµ	aµ	αμ	αμ	4.8
10.	VIRGO.	_	_			_				
497 498	3ν 2ξ	5 5	5 5	5	5	5	5	5	5	4.2
499	90	5	5	5 5	5	5	5 5	5 5	5 5	5.1
500	8π	5	5	5	5 5	5 5	5	5	5	4.2 4.6
501	5 <i>β</i>	3	3	3	3	3	3	3	3	3.8
502 503	$15\eta\ldots$	3 3	3 3	3	3 3	3	3	3	3	4.0
504	<b>4</b> 6	5	5	35	5	3 5	3 5	3 5	3 5	3.6 6.1
505	$5\mathbf{I} \theta$	4	4	4	4	4	4	4	4	4·4
506	$43\delta$	3	3	3	3	3	3	4	3	3.7
507 508	$\begin{array}{c} 3 \circ \rho \\ 3 2 d^2 \\ \end{array} $	5	56	5 6	5 6	56	5	56	56	4.9
509	47 <i>€</i>	5-1*	5-4	5-4	5-4	3-2	3-2	3	3-2	5.2 2.9
510	67 α	I-2*	I	I	I	I	I	I	I	2.9 I.2
511	795 741	3	3	3	3	3		3	3-2	3.4
512 513	$74$ $\dots$ $76$ $h$ $\dots$ $\dots$ $\dots$ $\dots$	5	56	56	3 5 6	3 5 6	3 5 6	56	56	4.8
514	82 m	4-5		4-5		4-5	4-5	o 4−5		5·4 5.2
515	68 <i>i</i>	5	5	4-5 5 5	5	5	5	5	4-5 5	5.6
516	86 90 p	5 5 5	5	5	5	5	5	5	5	5.6 5.8 5.3
517 518	99 <i>p</i>	5 4	4-5 5 5 4	5 4	5	4-5 5 5 4	4-5 5 5 4	5	5	5.3
519	98 <i>к</i>	4	4	4	4-5 5 5 4 4	4	4	5 5 5 5 4	4 4	4.2 4.3
520	$105 \varphi$	4-5*	4 4	4	4	4	4	4	4	4·3 5.0
521	100 λ 107 μ	4	4	4	4	4	4	4	4	4.6
522 523	$26 \chi$	3-4*	3	3	3	4	4	4	4	3.9 4.8
524	$40 \psi$ .	5 5	5 5	5	5 5	5	5	5	5	4.8 4.9
			-	J	5	5	J	5	5	4.9

0		•. 7	• 1
Star	Maa.	mataidas-	
Siur	IVI U E	111111111115-	-continued.

				G	reek.			Arabic.		Harv. R. P.
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.	B. M. Reg. 16.	B. M. 7475	Bod. 369.	
	virgo—continued.									
525 526 527 528	49 53 61 89	5 6 5 6	56 56	5 6 5 6	56 56	56 56	56 56	5 5 5	56 56	5 · 3 5 · 1 4 · 3 5 · 1
520	LIBRA.		-							5
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545	9 a 7 $\mu$ 27 $\beta$ 19 $\delta$ 24 $\iota$ 21 $\nu$ 38 $\gamma$ 46 $\theta$ 37 48 $\psi$ 51 = $\xi$ Scorp 45 $\lambda$ 43 $\kappa$ 0. Arg. 14782 20 = $\gamma$ Scorp 39	$\begin{array}{c} 2\\ 5\\ 2\\ 5\\ 4\\ 4\\ 4^{-5}\\ 5\\ 4^{-5}\\ 4^{-5}\\ 6\\ 5\\ 4\\ 3\\ 4\\ 4\end{array}$	$\begin{array}{c} 2 \\ 5 \\ 2 \\ 5 \\ 4 \\ 4 \\ 4^{-5} \\ 5 \\ 4^{-5} \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \end{array}$	$ \begin{array}{c} 2 \\ 5 \\ 2 \\ 5 \\ 4 \\ 4 \\ 4^{-5} \\ 5 \\ 4^{-5} \\ 4^{-5} \\ 6 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ \end{array} $	2 5 2 5 4 4 4 5 5 4 5 5 4 3 4 4	2     5     2     5     4     4     4     4     4     5     5     4     5     4     5     4     5     4     3     4     4     4     4     4     4     4     5     5     4     3     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4     4	$   \begin{array}{r}     2 \\     5 \\     2 \\     5 \\     4 \\     4 \\     4^{-5} \\     5 \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     4^{-5} \\     $	$\begin{array}{c} 2 \\ 5 \\ 2 \\ 5 \\ 4 \\ 4 \\ 4 \\ 5 \\ 4 \\ -5 \\ 4 \\ -5 \\ 4 \\ -5 \\ 6 \\ 4 \\ 3 \\ 4 \\ 4 \end{array}$	$\begin{array}{c} 2\\ 5\\ 2\\ 5\\ 4\\ 4\\ 4^{-5}\\ 5\\ 4^{-5}\\ 4^{-5}\\ 6\\ 5\\ 4\\ 3\\ 4\\ 4\end{array}$	2.9 5.4 2.7 4.8 4.7 5.3 4.7 5.3 4.8 4.7 4.8 5.1 5.0 <i>V</i> ar. 3.4 3.8 3.8
	SCORPIUS.									
546 547 548 549 550	$8 \beta \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	3 3 3 4	3 3 3 4	3 3 3 4	3 3 3 4	3 3 3 4	3 3 3 4	3 3 3 4	3 3 3 4	2.9 2.5 3.0 4.0 4.3
552	$10 \omega^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	5 <del>4</del> 3	4	4	4 3 2	4 3 2	4 3 2	4 3 2	4 3 2	3.6 3.1 1.2
553 554 555 556 557 558	21 a 23 $\tau$ 13 $c^2$ XVI 31 d 26 $\epsilon$ (XVI 189 $\mu^1$	2 3 5 3 3 }	2 3 5 3 3	2 3 5 5 3 3	2 3 5 5 3	2 3 5 5 3 3	3 5 5 3 3	3 5 5 3 4	3 5 5 3 3	2.9 4.7 4.9 2.4 2.6
559 560 561 562	$\begin{array}{c} XVI \ 193 \ \mu^2 \dots \\ XVI \ 198 \ 5^1 \dots \\ XVI \ 206 \ 5^2 \dots \\ XVI \ 302 \ \eta \dots \\ XVI \ 302 \ \eta \dots \\ XVII \ 138 \ \theta \dots \\ XVII \ 138 \ \theta \dots \\ XVII \ 210 \ \iota^1 \dots \end{array}$	4 4 3 3	4 4 3 3 3	4 4 3 3 3	4 4 3 3 3	4 4 3 3 3	4 4 3 3 3	4 4 3 3	4 4 3 3 3	4.9 3.7 3.4 2.0 3.1
563 564 565 566 567 568	XVII 174 $\kappa$ 35 $\lambda$ 34 $\upsilon$ XVII 229 $\gamma$ Teles 45 $d$ Oph	3 3 4 Neb. 5-4	3 3 4 Neb. 5-4	3 3 4 Neb. 5 ⁻ 4	3 3 4 Neb. 5 ⁻ 4	3 3 4 Neb. 5	3  Neb. 5 ⁻ 4	3 3 4 Neb. 5-4	3 3 4 Neb. 5 ⁻ 4	2.5 1.7 2.8 4.4
569	3 Sagittarii	5	5	5	5	5	5	(?)	5	4 · 3

Baily's				Gi	eek.			Arabic.		Harv
No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.	B. M. Reg. 16.	B. M. 7475•	Bod. 369.	R. P.
		-		-						
150	SAGITTARIUS.	i						4	1	
570	10 γ 19 δ	3	3	3	3	3	3	3	3	3.1
571 572	19δ 20ε	33	3 3	3	3	3	3	3	3	2.8 1.9
573	22 λ	3	3	$\frac{3}{3}$	3 3	33	33	3	33	2.9
574	$\int \mathbf{I} \mathfrak{Z} \mu^1 \ldots \ldots \ldots$	} 4	4		-				1	3.8
	$15 \mu^2 \dots$	,		4	4	4	4	3	4	-
575 576	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 4-5*	3 4	3	3	3	3	3 3-2	$\frac{3}{1-2}$	2.1
	$32 \nu^1$		-	4	4 	4	4-3		4-3	3.3
577	$1_{35} \nu^2 \ldots \ldots \ldots$	} Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	<b>4</b> · 3
578	37 ξ	4	4	4	4	4	4	4	4	3.6
579 580	390	4	4	4	4	4	4	4	4	3.9
581	$\begin{array}{c} 4\mathbf{I} \ \pi \dots \\ 43 \ d \dots \end{array}$	4	4	4	4	4	4	4	4	3.0
582	44 ρ	5 4	5 4	5 4	5 4	5	5	5	5	5.0
583	46 v	4	4	4	4 4	4	4	4 4	4 4	3.9 4.6
584	$\int 54 e^1 \cdots$	} 6	6	6	6	6	6	<b>7</b> 6	<b>7</b> 6	
	$55 e^2 \dots$	)	-				- 1			<b>4</b> · 5
585 586	61 g 56 f	5 6	56	56	5 6	5	56	5 6	56	5.0
	$47 \chi^1 \cdots$									5.1
587	$149 x^3$ .	} 5	5	5	5	5	5	5	5	4 · 5
588	$\{ 5\mathbf{I} \ h^1 \dots \dots \dots \}$	} 4	4	4	4	4	4	5	4	1 2
589	$\begin{array}{c} \begin{array}{c} 1 \\ 52 \\ 42 \\ \psi \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	'	-						+	4.3
509 590	$42\psi$	5 4-3	5 4-3	5 4-3	5 4-3	5	5	5	5	4.9
591	385	3	+ 3	+ 3	4 5	4-3	4-3 3	4-3 3	4-3	3·4 2.7
592	$\{XIX 54 \beta^1 \dots \dots \}$	} 2	2	2	2	2	2	-		
	$\begin{array}{cccc} \mathbf{XIX} & 62 & \boldsymbol{\beta}^2 & \dots & \dots \\ \mathbf{XIX} & 68 & \mathbf{a} & \dots & \dots & \dots \end{array}$	)						2	2	3.7
593 594	XVIII $17 \eta$	2-3	2-3	2-3	2-3	2-3	2-3	2-3	2-3	4.I
	$\int XIX 330 \kappa^1 \dots$	3	3	3	3	3	3	3	3	3.I
595	$XIX 333 \kappa^2 \dots$	} 3	3	3	3	3	3	3	3	4.9
596	XIX 297 1	3	3	3	3	3	3	3	3	4.2
597	58 ω	5	5	5	5	5	5.	5	5	4.8
598 500	60 A 59 <i>b</i>	5	5	5	5	5	5	5	5	4·9
599 600	62 c	5	5 5	5 5	5 5	5	5 5	5 5	5	4.6
		5	5	5	5	3	5	5	5	4.6
	CAPRICORNUS.	,							1	
601	$\left\{\begin{array}{cccc} 5 \ a^1 \dots \dots \dots \\ 6 \ a^2 \dots \dots \dots \end{array}\right.$	3	3	3	3	3	4	3	3	3 · 4
602	8ν	6	6	6	6	6	6	6		
603	9β	3	3	3	3	3	3	3	5	4.8 3.2
6 <b>0</b> 4	$\int \mathbf{I} \boldsymbol{\xi}^1 \dots$	} 6	6	6	6	6			3	
-	$\begin{array}{c} 2 \xi^2 \\ \end{array}$	; ۱		1			6	6	6	5 · 4
605 606	I 2 ο ΙΟ π	6	6	6	6	6	6	6	6	6.I
600 607	IO <i>π</i>	6 6	6 6	6	6	6	6	6	6	5.2
608	7 σ	5	5	5	6	6	6	6	5	5.0
609	$\int \mathbf{I} 3 \tau^1$	} 6			5	5	5	5	5	5 · 5
-	$14\tau^2$	)	6	6	6	6	6	6	6	5 · 3
610	15 v	5	5	5	5	5	5	5	5	5 · 3
611	$16\psi$	4	4	4	4	4	4	4	4	<b>4</b> · 3

				Gi	eek.			Arabic.		TT
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475∙	Bod. 369.	Harv. R. P.
	CAPRICORNUS—cont.		1							
612	18ω	4	4	4	4	4	4	4	4	4.2
613	24 A	4	4	4	4	4	4	4	4	4.6
614	345	4	4	4	4	4	4	4	4	3.9
615	36 <i>b</i>	5	5	5	5	5	5	5	5	4.6
616	$28 \varphi$	5	5	5	5	5	5	5	5	5.3
617	$25 \chi$	5	5	5	5	5	5 5	5	5 5	5.3
618 619	$\begin{array}{c} 22 \eta \dots \\ 23 \theta \dots \\ \end{array}$		5	5	5	5 4	5 4	5	5 4	4.9 4.2
620	32	4	4	4	4 4	4	4	4 4	4	4.3
620	$39\epsilon$	4	4 4	4	4	4	4	4	4	4.7
622	43 K	4	4	4	4	4	4	4	4	4.8
623	40 γ	3	3	3	3	3	3	3	3	3.8
624	49δ	3	3	3	3	3	3	3	3	3.0
625	$42 d \dots$	4	4	4	4	4	4	4	4	5.3
626	$5 I \mu$	5	5	5	5	5 5	5	5	5	5.2
627	$48 \lambda$	5	5 5	5	5	5	5	5	5	5.4
628	$46 c^1$	5	5	5	5	5	5	5	5	5.3
	AQUARIUS.									
629	25 d	5	5	5	5	5	5	5	5	5.3
630	34 a		3	3	3	3	3	3	3	3.2
631	310		5	5	5	5	5	5	5	4.7
632	22 β	3	3	3	3	3	3	3	3	3.I
633	23 ξ	5	5	5	5	5	5	5	5	4.8
634	I3 v	3	3	3	3	3	3	3	3	4.5
635	$6\mu$	4	4	4	4	4	4	3	4	4.8
636	<b>2</b> ε	3	3	3	3	3	3	3	3	3.8
637	$48 \gamma \dots \gamma$	3	3	3	3	3	3	3	33	4.0 4.6
638	$52 \pi$		3	33	3	33	3	3	3	4.0 3.7
639	$555\ldots$	3	3	3	3	3	3	3	3	4.I
640 641	$43 \theta \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $		4	4	4	4	4	4	4	4.3
642	45 φ 46 φ		5	5	5	5	5	5	5	5.4
643	$57 \sigma \dots$	4	4	4	4	4	4	4	4	4.9
644	33 4						4	4	4	4.3
645	38 e		4 6	4 6	4 6	4 6	6	1		5.4
646	<b>76δ</b>	3	3	3	3	3	4	3	3	3.5
647	$71\tau$	4	4		4	45	4	4	4	4.2
648	53f		5	5	4 5 5	5	5	5	5 🖗	6.3
649	$68 g^2 \dots \dots$	5 5 5	5	4 5 5 5	5	5 5	5	5	5	5.4
650	$66 g^1 \dots \dots$	5	5	5	5	5	5	5	5	4.9
651	63 к	4	4	4	4	4	4	4	4 4	5.3 3.8
652	$73 \lambda$	4	4	4	4 4	4	4	4	4	5.6
653	$8_3 h$	4	4	4	4 4	4	4	4	4	4.4
654	$90 \varphi \dots \dots$	4	4 4	4	4	4	4	4	4	5:-1
655	$92 \chi \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4	4 4	4	4	4	4	4	4	4.5
656	$9\mathbf{I} \psi^1 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	h	1							
657	$\begin{cases} 93 \psi^{3} \cdots \cdots \cdots \cdots \\ 95 \psi^{3} \cdots \cdots \cdots \cdots \cdots \cdots \end{cases}$	} 4	4	4	4	4	4	4	4	4 · I
658	94·····	5	5	5	5	5	5	5	5	5.3
659	$102 \omega^1, \ldots, \ldots, \ldots$	5	5 5	5	5 5	5	5	5	5	5.2
660	$102 \omega^2 \dots \dots \dots$ $105 \omega^2 \dots \dots \dots$	5	5	5	5	5	5	5	5	4.6
11	$\int IO3 A^1 \dots$	} 5	5	5	5	5	5	5	5	4.4
	$104 A^2 \dots$	17 5		· •	2	1 3	1 3	1 3	1 3	1 4.4

D .: 1 ?				Gr	eek.			Arabic.		TT
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475.	Bod. 369.	Harv. R. P.
	AQUARIUS-cont.									
662	106 i ¹	5	5	5	5	5	5	5	5	5.3
663	$108 i^3 \dots$	5	5	5	5	5	5	5 5	5	5 · 3
664	$98 b^1 \dots \dots \dots$		4	4	4	4	4	5	4	4.2
665 666	$99 b^2 \dots \dots \dots \dots$ 101 $b^3 \dots \dots \dots \dots \dots$	4	4	4	4	4	4	4	4	4 · 5 4 · 8
667	$86 c^1 \dots \dots \dots$	4	4 4	4	4 4	4 4	4	4 4	4 4	4.8
668	$89 c^3 \ldots \ldots \ldots$	4	4	4	4	4	4	4	4	4.9
669	$88c^2$	4	4	4	4	4	4	4	4	3.8
670	79 = a Pis. Aust	I	I	I	Î	I	Ī	I	I	1.3
671	2 Ceti	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.6
672 673	6 Ceti 7 Ceti	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	5.0
0/3	/ Cett	4-3	4-3	4-3	4	4-3	4-3	4-3	4-3	4 · 7
	PISCES.									(
674	$4\beta$		4-3	4	4	4	4-3	4-3	4-3	4.6
675 676	$6\gamma$ 7b	4	4	4	4	4	4	4	4	3.8 5.2
677	ΙΟ θ	4	4 4	4	4 4	4	4 4	4 4	4 4	5. <i>2</i> 4.4
678	17 ι	4	4	4	4	4	4	4	4	4.3
679	8 <b>ĸ</b>	4	4	4	4	4	4	4	4	4.9
680	18 λ	4	4	4	4	4	4	4	4	4.6
681	<b>2</b> 8 ω	4	4 6	4 6	<b>4</b> 6	<b>4</b> 6	4 6	4 6	4	4.0
682	$4\mathbf{I} d \dots \dots \dots \dots \dots$	6						6		5.6
683 684	51	6	6	6	6	6	6	6	6	5.7
685	$6_{3} \delta_{\cdots}$	4	4 4	4	4	4	4	4	4	4.5
686	86 ;	4		4	4	4	4	4	4	4 · 4 5 . 2
687	80 e	6	4 6	4 6	4 6	4 6	4 6	<b>4</b> 6	4	5.7
688	89 f	6	6	6	6	6	6	6	6	5.3
689	$98\mu$	4	4	4	4	4	4	4	4	5.1
690	106 <i>v</i>	4	4	4	4	4	4	4	4	<b>4</b> ⋅ 7
691	<b>ΙΙΙ ξ</b>	4	4	4	4	4	4	4	4	4.8
692 693	II3 a II0 o	3	3	3	3	3	4	3	3	3.9
694	$102 \pi$	4 5	4 5	4 5	4 5	4 5	4 5	4 5	4	4·5 5.6
695	99 η	3	3	3	3	3	3	3	5 3	3.0 3.7
696	{ 93p									
	94 <i>p</i>	4	4	4	4	4	4	4	4	4·7
697	82 g	5	5	5	5	5	5	5	5	5.0
698	$83\tau$ $68h$	5 6	5	5 6	5 6	5 6	5 6	56	5	4.7
699 700	67 k	6	6	6	5	6	C C	6	6	5.6 5.9
701	65 i	6	6	6	5 6	6	5 6	6	6	5.9
702	$74 \psi^1 \dots \dots$	4	4	4	4	4	4	4	4	4.9
703	$79 \psi^2 \dots$	4	4	4	4	4	4	4	4	5.6
704	$8\mathbf{i} \psi^3 \dots \dots$	4	4	4	4	4	4	4	4	5.6
705	90 v	4	4	4	4	4	4	4	4	4.7
706	85 φ	4	4	4	4	4	4	4	4	4.6
707 708	$84 \chi \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $	4	4 4	4	4 4	4	4	4	4	4·9
709	29	4	4 4	4 4	4, 4	4	4	4 4	4	5.I 5.I
710	30	4	4	4	4 4	4	4 4	4 4	4	5.1 4.7
711	33	4	4	4	4	T	4	4	4	4.7

D. 11 .				Gi	reek.			Arabic.		Harv.
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.	B. M. Reg. 16.	B. M. 7475	Bod. 369.	R. P.
	CETUS.									
-	or )								4	4 7
712	91 λ	4	4	4	4	4	4	4	4	4·7 2.8
713	92 α 86 γ		3	3	3	33	3	3	3 3	3.6
714	82 δ	3	3	3	3	3	3	3	3	4.0
715 716		3	3	3	3	3 4	4	3	- 5 - 4	4.0
717	_	4	4 4	4	4	4	4	3	4	
718	65 <b>ξ</b> ¹	4	4	4	4	4	4	4	4	4.5
719	72 ρ	4	4	4	4	4	4	4	4	4.9
720	76 σ		4	4	4	4	4	4	4	4.8
721	83 ε	4	4	4	4	4	4	4	4	5.0
722	$89\pi$	3	3	3	3	3	3	3	3	4.4
723	527		3	3	3	3	3	3	3	3.6
, 724	59 υ		4	4	4	4	4	4	4	4.2
725	555		3	3	3	3	3	3	3	3.9
726	45 θ	3	3	3	3	3	4	3	3	3.8
727	$3I\eta$		3	3	3	3	3	3	3	3.6
728	$19 \varphi^2 \dots \dots$		5	5	55	5	5	5	5	5.2
729	O ^h . 198		5	5	5	5	5	5	5	5.8
730	$17 \varphi^1 \dots$		5-4	5 5 5	5	5-4	5-4	5	5-4	4.9
73 I	O ^h . 161		5-4	5	5	5-4	5-4	5	5-4	6.4
732	8	3-4	3-4	3	3	3-4	3-4	4	3-4	3.7
733	16β	3-2*	3	3	3	3	3-4	3-2	3-4	2.2
	ORION.									
734	39 λ	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	Neb.	3.5
735	58 a	1	I-2	I-2	I-2	I-2	I-2	I-2	I-2	0.9
736	$24\gamma$		2	2	2	2	2-I	2-I	2-I	1.7
737	32 Å		4-5	4-5	4-5	4-5	4-5	4-5	4-5	4.3
738	б <b>і µ</b>				4	4 6	4	4	4	4.2
739	74 k		4 6	4 6	6	6	6		6	5.1
740	70 ξ		4	4	4	4	4	(?)	4	4.3
741	67 ν	4	<b>4</b> 6	4 6	4 6	4 6	4	(?)	4 6	4.4
742	$72 f^2 \dots \dots$		6	6				4 6		5.3
743	$69f^1$	6	6	6	6	6	6		6	4.9
744	$54 x^1 \cdots$	5	5	5	5	5	5	5	5	4.6
745	$62 \chi^2 \dots$	5	5	5	5	5	5	5	5	4.7
746	$47 \omega \dots$	4 6	4 6	4 6	4 6	5 4 6	4 6	4 6	4 6	4.5
747	$  38 n^2 \dots \dots$		6	6	6	6	6	6	6	4 · 5 5 · 3 5 · 5 4 · 7
74 ⁸	$33 n^1 \dots$	6	6	1						5.5
749	$30\psi^2$	5	5 4	5	5	5	5	5	5	4.9
750	$15 y^2 \dots$				4	4	4	4	4	4.9
751	$II y^1 \dots$		4	4	4	4	4	4	4	4.0
752	$9 \tilde{o}^2 \dots \tilde{o}^2 \dots \tilde{o}^2$	4	4	4	4	4	4	4	4	4.7
753	$\begin{array}{c} 7 \pi^1 \\ 2 \pi^2 \\ \end{array}$	4	4	4	4	4	4	4	4	4.3
754		4		4	43		3	3	3	3.3
755		-	3	3	3	3	3	3	3	3.8
756	$3\pi^4$	3	3	3	3	3	3	3	3	3.9
757	$\check{8} \pi^5$		3	3	3	3	3	3	3	4.7
758	$34\delta$	32	2	2	2	2	2	2	2	2.5
759		2	2	2	2	2	2	2	2	1.7
760	46 ε 50 ζ	2	2	2	2	2	2	2	2	1.9
761		•	1			4	3	3	3	3.4
762	$28\eta$	3	3	3	3	3			1 3	1 3.4

				Gr	eek.			Arabic.		Ца
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475∙	Bod. 369.	Harv. R. P.
	orion-continued.									
763	{ <b>42</b> c	14	4	4	4	4	4	4	4	4 . 2
764	$\begin{cases} \mathbf{4I} \ \theta^1 \\ 43 \ \theta^2 \\ 1 \end{cases}$	54	3	3-4	3	3-4	3-4	3	3-4	<b>4</b> · 5
765 766	44 49 d	3	3-4	3	3 4	3	3 4	3 4	3 4	2.9 4.9
767	36 v		4	4		4	-	-		4.9
			4	4	4	4	4	4 I	4	
768	$19\beta$		I 4-2	I	I 4-2	I A=2	I 1—2		4	0.3
769	20 <i>τ</i>	4-3	4-3	4-3	4-3	4-3	4-3	4	4-3	$3 \cdot 7$
7 <b>7</b> 0	29 <i>e</i>	4	4	4	4	4	4	4	4	4.2
771	53 <i>к</i>	3-2	3-2	3-2	3-2	3-2	3-2	3	3-2	2.2
770	eridanus. 69 λ	4-2	4-2	4-2	4-2	4-2	4-2	4	4-2	
772		4-3	4-3	4-3	4-3	4-3	4-3	4	4-3	4.3
773	$67\beta$	4	4	4	4	4	4	4	4	2.9
774	$65\psi$	4	4	4	4	4	4	4	4	4.8
775	6ι ω	4	4	4	4	4	4	4	4	4.4
776	$57 \mu$	4	4	4	4	4	4	4	4	4.2
777	48 v	4	4	4	4	4	4	4	4	4.I
77 ⁸	42 ξ	5	5	5	5	5	5	4	5	5.2
779	$40 o^2 \dots \dots \dots \dots \dots \dots$	4	4	4	4	4	4	4	4	<b>4</b> · 5
780	$38 o^1$ .	4	4	4	4	4	4	4	4	4.I
781	$34\gamma$	3	3	3	3	3	3	3	3	3.2
782	$26\pi\ldots\ldots\ldots\ldots\ldots$	4	4	4	4	4	4	3	4	4.6
783	23 δ	3	3	3	3	3	3	3	3	3.7
784	18ε	3	3	3	3	3	3	3	3	4.9
785	135	3	3	3	3	3	3	3	3	3.8
786	$\int 9 \rho^2 \dots$	1	-		-	-	-	-	-	
-	$10 \rho^3 \dots$	} 4	4	4	4	4	4	4	4	<b>4</b> · 7
7 ⁸ 7	3 7	3	3	3	3	3	3	3	3	4.0
788		4	4	4	Å	4	4	4	4	
, 789	I $ au^1$	4	4	4	4	4	4	4	4	4.6
790	$2\tau^2$ .	4	4	4	4	4	4	3	4	4.8
791	$II \tau^3$	4	4	4	4	4	4	4	4	4.2
792	$16\tau^4$	4	4	4	4	т. 4		-	- 1	
793	$I9\tau^5$	4	4		4	4	4	4	4	3.9
793 794	$27 \tau^6 \dots$			4		4	4	4	4	$4 \cdot 3$
794	$28\tau^7$	4 5	4 5	4 5	4 5	4 5	4 5	4 5	4	4.3
795	$33 \tau^8$	4	5 4				5		5	5.0
	$36\tau^9$			4	4	4	4	4	4	4.8
797	$50 v^6 \dots$	4	4	4	4	4	4	4	4	4.7
798 700	$50 v^7 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	4	4	4	4	4	4	4	4	4.6
799	$43 v^5 \dots \dots \dots \dots$	4	4	4	4	4	4	4	4	3.9
800	450	4	4	4	4	4	4	4 4 (?)	4	4.I
801	$\begin{array}{c} 4\mathbf{I} \ v^4 \\ \mathbf{III} \ 202 \ v^3 \\ \end{array}$	4	4	4	4	4	4	4	4	3.6
802	$111 202 0^{\circ} \dots \dots \dots$	4	4	4	4	4	4	(1)	4	
803	$\underset{\text{III}}{\text{III}} 189 v^2 \dots \dots$	4	4	4	4	4	4	(?)	4	
804	$\underset{\mathbf{H}}{\text{III}} 149 v^1 \dots \dots$	4	4	4	4	4	4	(?)	4	
805	$\left\{\begin{array}{c} \text{II } 238\theta \dots \\ 239\theta \dots \dots \end{array}\right.$	} т	I	I	I	I	I	I	I	3.1
806	LEPUS. 3 د	۲	-	-	-	,	ا بر		_	
807	<b>4</b> κ	5	5	5	5	5	5	5	5 5	4.5
808		5	5	5	5	5	5	5	5	<b>4</b> · 5
000	$7 \nu \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	5	5	5	5	5	5	5	5	5 · 3

Star	Magnitudes-	-continued.
		0011011100001

Baily's				G	reek.			Arabic.		
No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475.	Bod. 369.	Harv. R. P.
	LEPUS—continued.									
809	6λ	5	5	5	5	5	5	5	5	4.2
810	5μ	4-3	4-3	4-3	4-3	4-3	4-3	4 ⁻³	4-3	4 · 3 3 · 3
811	2 ε		4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.3
812	ΙΙα	3	3	3	3	3	3	3	3	2.7
813	9β	3	3	3	3	3	3	3	3	3.0
814	$15\delta$		4-3	4-3	4-3	4-3	4-3	4	4-3	3.9
815 816	$13\gamma$		4-3	4-3	4-3	4-3	4-3	4	4-3	3.8
817	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4-3 4-3	43 43	4-3 4-3	4-3 4-3	4-3 4-3	4	4-3 4-3	$3.7 \\ 3.8$
•	CANIS MAJOR.	1.5					TJ		тл	J.¢
818	9a	I	I	I	I	I	I	I	I	-1.6
819	<b>14</b> <i>θ</i>		4	4	4	4	4	3	4	4.2
820	$18 \mu \dots \dots \dots$		5	5	5	5	5	5	5	5.2
821	$23 \gamma \dots \dots$	4	4	4	4	4	4	4	4	4.I
822	$20 \iota$	4	4	4	4	4	4	4	4	4.4
823 824	$15 (\pi^{-}) \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$		56	56	5 6	5	5	5	5	4.7
825	$7 \nu^2 \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$		5	5	5		5 5	5 5	5 5	4.6
826	$2\beta$		3	3		53	3	3	3	4.I 2.0
827	$4 \xi^1 \dots \dots \dots$		5	5	5	5	5	5	5	4.3
828	58	5	5	5	5	5	5	4	5	4.5
829	$24 o^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	4	4	4	4	4	5	4	4	3.1
830	16 o ¹	5	5	5	5	5	5	5	5	4.I
831	25 δ	3-4	3-4	3-4	3-4	3-4	3-4	3	3-4	2.0
832	21 <i>ε</i>	3	3	3	3	3	3	3	3	I.6
833	<b>I</b> 3 <i>K</i>	4	4	4	4	4	4	3	4	3.8
834	Ιζ	3	3	3	3	3	3	3	3	3.1
835   836	$\begin{array}{c} 3 \mathbf{I} \eta \dots \\ 22 \operatorname{Monoc} \dots \end{array}$		3-4	3-4	3-4	3-4	3-4	4-5	3-4	2.4
837	VI $9 \theta$ Columb	4 4	4 4	4	4	4	4 4	4	4	4.I 5.I
838	VI $65 \kappa$ Columb	4	4	4	4	· 4	4	4 4	4	4.5
839	VI $95 \delta$ Columb		4	4	4	. 4	4	4	4	4.0
840	VI 136 λ Can. maj		4	4	4	4	4	4	4	4.5
841	V 238 $\mu$ Columb		4	4	4	4	4	4	4	5.2
842	V 276 λ Columb.	4	4	4	4	4	4	4	4	4.9
843	V 297 $\gamma$ Columb	4	4	4	4	4	4	4	4	4.4
844	V $_{267\beta}$ Columb	2	2	2	2	2	2	2	2	3.2
845 846	V 196 a Columb V 140 e Columb	2 4	2 4	2 4	2 4	2 4	2 4	2 4	24	2.7 3.9
040	canis minor.	+	4	4	+	т		4	-	3.9
847	$\beta \beta \dots \beta$	4	4	4	4	4	4	4	4	3.I
848	10 a		Ĩ	I	I	Ĭ	I	Ĭ	I	0.5
1	ARGO NAVIS.	l ,		1						
849	Πε	5	5	5	5	5	5	5	5	4 · 3
850	15 $\rho$ Pup	3	3	3	3	3	3	3	3	2.9
851	7 <i>ξ</i> Pup	4	4	4	4	4	4	4	4	3.5
852	VII 220		4	4	4	4	4	4	4	4.6
	VII 173 dup	4	4	4	4	4	4	4	4	4.6
854	VII 175	3	3	3	3	3	3	4	3	3.8
855	VII 163	4	4	4	4	4	4	4	4	4.5
856	3 Pup	4	4	4	4	4	4	4	4	4 · I

D.:I				Gr	eek.			Arabic.		TT
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.	B. M. Reg. 16.	B. M. 7475•	Bod 369.	Harv. R. P.
	ARGO NAVIS—cont.			1						
857	VII 200 = 1 Pup	4	4	4	4	4	4	4	4	4.8
858	VII 277	4	4	4	4	4	4	4	4	6.5
859	{VII 99 VII 108	} 4	4	4	4	4	4	4	4	5.0
86 <b>0</b>	VII $68 \pi$ Pup	5	3	3	3	3	3	3	3	2.7
861	VII 172 f Pup	Š	5	5	5	5	5	5	5	4.6
862	$VII 186 \begin{cases} d^1 \operatorname{Pup} \dots \\ d^2 \operatorname{Pup} \dots \\ d^3 \operatorname{Pup} \dots \end{cases}$	5	5	5	5	5	5	5	5	4.2
863	<i>d</i> ³ Pup VII 214 <i>c</i> Pup	4-5*	4		4	4	4	4	4	27
864	VII 254 b Pup	4	4 4	4	4 4	4	4	4	4 4	3 · 7 4 · 5
865	VII 306 ζ Pup	2	2	2	2	2	2	2	2	2.3
866	VII 253 <i>a</i> Pup		5	5	5	5	5	5	5	3.8
867 868	Lac. 3128 VIII 21 h ¹ Pup		5	5	5	5	5	5	5	5.5
869	VIII $35 h^2$ Pup	55	5 5	55	5 5	5 5	5 5	5 5	5 5	4 · 4 4 · 4
870	Lac. 3580		4-3	4-3	4-3	4-3	4-3	4-3	4-3	5.8
871	VIII 168 d Vel	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.I
872	VIII 139 e Vel	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.I
873 874	VIII 176 a Vel VIII 155 b Vel	4-3 4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.I
875	VIII 145 $\beta$ Pyx	4 3	4-3 3	4-3	4-3 3	4-3	4-3 3	4 3	4-3 3	4.I 4.0
876	VIII 162 a Pyx	3-4*	3	3	3	3	3	3	3	3.7
877	VIII 193 $\gamma$ Pyx	4	4	4	4	4	4	4	4	4.2
878	VIII 220 δ Pyx IX 1 λ Vel	4	4	4	4	4	4	4	4	4.9
879 880	IX $1 \land \forall e_1 \dots \dots$ IX $1 \land \psi Vel \dots \dots$	2 2-3	2 2-3	2 2-3	² 2-3	2	2	2	2	2.2
881	VII 135 σ Pup	5	-	4	- 1	2-3	2-3	2 4	2-3	3.6 3.3
882	VII 235 P Pup	4 6	<b>4</b> 6	6	4 6	4	4	6	4	4.2
883	$\gamma$ Vel	2	2	2	2	2	2	2	2	2.2
884 885	χ Car ο Pup	2 2*	2	2	2	2	2	2	2	3.6
886	δ Vel	3	2 3	2	2	2	3	3	3	4.6
887	<i>f</i> Car	2	2	2	3 2	3 2	3 2	3 2	3 2	2.0 4.6
888	к Vel	3-4*	3	3	3	3	3	3	3	2.6
889	N Vel.	3	3	3	3	3	3	3	3	3.0
89 <b>0</b> 891	V 315 η Columb VI 205 ν Pup	4-3 3-2	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.0
892	a Arg. Canopus	3-2 I	3-2 I	3-2 I	3-2 I	3-2 I	3-2 I	3-2	3-2	3.2 -0.8
893	$\tau$ Pup	3-2	3-2	3-2	3-2	3-2	3-2	I 2	I 3-2	-0.8 2.8
	HYDRA.		-	_	-	5	5 -	-	5 -	
894	5 σ	4	4	4	4	4	4		4	4.5
895	4δ	4	4	4	4	4	4	4	4 4	4·5 4.2
896	Πε	4	4	4	4	4	4	4	4	3.5
897 898	$7\eta$	4	4	4	4	4	4	4	4	4.3
899	16ζ 18ω	4 5	4 5	4 5	4	4 5 4	4	4	4	3.3
900	22 θ	5 4	5	5	5 4	5	5 4	4	5	5 · 4 3 . 8
901	$32\tau^2$	4	4	4 4	4	4	4	3 4	4 4	3.8 4.5
902	356	4	4	4	4		4	4	4	4.I
903	$3I\tau^1$	<b>4</b> 6	<b>4</b> 6	4	4 6	4 4 6	4	4	4	4.8
904 905	LL. 18657	6 2		1				1	6	5.4
905	30 a	2	2	2	2	2	2	2	2	2.2

<u> </u>	7 . 7	• •
Stan	11 agantardae	000+101100
inur	widyniudes-	-continued.

D. 1. /				G	Freek.			Arabic.		
Baily's No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475∙	Bod. 369.	Harv. R. P.
	HYDRA—continued.					1-20-2				
906	38 к	4	4	4	4	4	4	3	4	5.0
907	$39 v^1 \dots \dots$	-	4	4	4	4	4	4	4	4 · 3
908 909	$40 v^2 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	4 3-4*	43	4	4	43	43	4 3	4 3	4 · 7 4 · I
910	$\varphi$ (2 Crat.)	4	4	4	4	4	4	4	4	5.1
911	$\nu$ (4 Crat.)	3	3	3	3	3	3	3	3	3.3
912 913	(II $\beta$ Crat.) $\chi^1$ (9 Crat.)	4-3	4-3 4	4-3	4-3 4	4-3 4	4 4	4 4	4 4	4.5 5.1
914	ξ (19 Crat.)	4	4	4	4	4	4	4	4	3.7
915	o (25 Crat.)	4	4	4	4	4	4	4	4	4.9
916 917	β (28 Crat.) 46 γ	3 4-3	3 4-3	3 4-3	3 4-3	3 4-3	3 4-3	3 4-3	3 4-3	4 · 4 3 · 3
918	49 π	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.5
919	30 Monoc 24 Sextantis		3	3	3	3	3	3	3	3.9 6.7
920	15 α Sextantis.		3	3	3	3	3	3	3	4.5
	CRATER.									
9 <b>21</b>	7 a		4	4	4	4	4	4 6	4	4.2
922 923	$15 \gamma \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots $		4	4	4 4	4	4 4	4	4	4.1 3.8
924 924	27 ζ	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4.9
925	14 ε	4	4	4	4	4	4	4-3	4	5.1
926 927	$\begin{array}{c} 3 \circ \eta \dots \\ 2 \mathbf{I} \theta \dots \end{array}$	4-5	4-5 4	4-5 4	4-5 4	4-5 4	4-3 4	4 4	4-3 4	5.2 4.8
	CORVUS.									
928	Ια	3	3	3	3	3	3	3	3	4.2
929	2 ε 5 ζ	3	3	3	3	3	35	3	3 5	3.2
930 931	$4\gamma$	53	53	53	53	53	3	53	3	5·3 2.8
932	7δ	3	3	3	3	3	3	3	3	3.I
933 934	$8\eta$	4	4	4	4	4 3	4	4	4	4·4 2.8
<i>7</i> ,7,7	CENTAURUS.		5						•	
935	2 g	5-4	5-4	5-4	5-4	5-4	5-4	5-4	5-4	4.4
936 937	$\begin{array}{c} 4 \ h \dots \dots \dots \\ \mathbf{i} \ \mathbf{i} \dots \dots \mathbf{i} \end{array}$	5  4 4  5*	5-4 4-3	5-4 4-3	5-4 4-3	5-4 4-3	5-4 4-3	5-4 5-4	5-4 4-3	4.8 4.4
937	3 k	5-4	5-4	5-4	5-4	5-4	5-4	5-4	5-4	4.7
939	XIII 53 1	3	3	3	3	3	3	3	3	2.9 2.3
940 941	$5 \theta$ XIII 99 $d$	3 4	3 4	3	34	34	3 4	5 4	3 4	4.0
941	XIV $40\psi$	4	4	4	4	4	4	4	4	4.2
943	$XIV 55 a \dots$	4	4	4	4 4	4 4	4	4 4	4	4.5 4.1
944 945	$\begin{array}{c} \text{XIV 150 } c^1 \dots \dots \\ \text{XIV 141 } b \dots \dots \end{array}$	4	4 4	4	4 4 ⁻ 5	4	4	4	4	4.I 4.I
945	XIII 197 <i>v</i>	4-3	4-3	4-3	4-3	4-3	4-3	4-3	43	3.5
947	$\begin{array}{c} \text{XIII 198} \ \mu \dots \dots \\ \text{XIII 246} \end{array}$	4-3	4-3	4-3	4  3 4  3	4-3 4-3	4-3 4-3	4-3 4-3	4-3 4-3	3·3 4.0
948 949	$\begin{array}{c} \text{XIII } 246 \varphi \dots \\ \text{XIII } 288 \chi \dots \end{array}$	4-3 4-3	4-3 4-3	4-3 4-3	4 3 4-3	4-3	4 3 4-3	4-3	4-3	4.5
949 950	XIV 109 $\eta$	3	3	3	3	3	3	3	4-3	2.6
951	XIV 216 κ	4	4 3-2	4-3	4 3-2	4 3-2	4 3-2	4 3-2	4 3-2	3.3 3.1
952	XIII 231 5	3–2	<u>م د</u>	3	J 2	, <u>,</u> , , , , , , , , , , , , , , , , ,	, , <i>"</i>	5 2	52	J.1

D_:1-2				Gr	eek.			Arabic.		TT
Baily's No.	Name.	Peters.	<b>Paris</b> 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475•	Bod. 369.	Harv R. P
	CENTAURUS—cont.					i	i			
953	$XIII 267 v^2 \dots$		5	5	5	5	5	5	5	4 · 4
954	$\underset{O}{\text{XIII 249 }} v^1 \dots \dots$		5	5	5	5	5	5	5	4.2
955	$\operatorname{Cum}_{f} \omega \dots \dots$	5	5	5	5	5	5	5	5	(?)
956	$f.\ldots\ldots$ $\gamma$	5	5	5	5	5	5	5	5	5.0 2.4
957 958		3 4	3 4	3 4	3 4	3 4	3	3 4	3 4	4.0
959	σ	5	5	5	5	5	5 5	5	5	4.2
96 <b>0</b>	δ	3	3	3	3	3	3	3	3	<b>2</b> .9
961	ρ	4	4	4	4	4	4	4	4	4.2
962	M	4	4	4	4	4	4	4	4	4.7
963 964	ε	2	2	2	2	2	2	2	2	2.6
965	$Q$ $\gamma$ Crucis	3 2	3 2	32	32	3	3 2	3 2	3 2	5·4 1.6
966	$\beta$ Crucis	2	2	2	2	2	2	2	2	1.5
967	$\delta$ Crucis	4	4	4	4	4	4	4	4	3.1
968	a Crucis	2	2	2	2	2	2	2	2	ĭ.6
969	a Centauri	I	I	I	I	I	I	I	I	0.3
970	$\beta$ Centauri	2	2	2	2	2	2	2		0.9
971	$\mu$ Crucis	4	4	4	4	4	4	4	4	4.3
	LUPUS.							i i	I	
972 973	$\operatorname{XIV}_{211}\beta\ldots\ldots \\ \mathfrak{a} \ldots \ldots \ldots$	33	3 3	33	3	3	3	3	3	2.8
975	XV 31δ	3 4	5 4	3 4	3 4	3 4	3	3 4	3	2.9 3.4
975	$XV 98 \gamma \dots$	4	4	4	4	4	4 4	4	4 4	2.9
976	XV 35 c	4	4	4	4	4	4	4	4	3.7
977	λ	5	5	5	5	5	5		5	4.4
978	$XV 242 \pi \dots$	5	5	5	5	5	5	5	5	4.7
979	$\mu$	5	5	5 5	5	5	5	5	5	4 · 4
980 981	κ ζ	5	5 5	5	5 5	5	5 5	5	5	4.I
982	ρ	5	5	5	5	5 5	5	5	5 5	3 · 5 4 . I
983		4	4	4	4	5 4	4	5 4	5 4	4.I 4.I
984	$\operatorname{XIV} \begin{cases} 66 \tau^1 \dots \\ 67 \tau^2 \end{cases}$	1	-				_			
1	(0/7	} 4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.8
985	$XV_{217\eta}$	4	4	4	4	4	4	4-3	4	3.6
986 987	$\begin{array}{cccc} XV & 248 & \boldsymbol{\dot{\theta}} & \dots & \dots \\ XV & 174 & \mathbf{5\lambda} & \dots & \dots \end{array}$	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4 · 3
988	$XV _{204} \xi \dots$	4 4	4 4	4	4	4	4	4	4	4.4
989	XV 10 1 <i>i</i>	4-3	<del>4</del> 4-3	4 4-3	4 4-3	4 4-3	4	4	4	5∙4 4∙9
990	XV 22 2 f	4-3	4-3	4-3 4-3	4 3 4-3	4 3 4-3	4-3 4-3	4-3 4-3	4-3 4-3	4·9 4·4
	ARA.		-					• 5		
991	XVII 125 σ	5	5	5	5	F	E	F	F	4.6
992	$\theta$	4	3 4	- 4	5 4	5 4	5 4	5 4	5 4	4.0 3.9
993	α	4-3	4-3	4-3	4-3	4-3	<del>4</del> -3	4-3	4-3	3.0
994	$\epsilon^1$	5	5	5	5	5	5	5	5	4.I
995	$\gamma \dots \ldots$	4-3	4-3	4-3	4-3	4-3	4-3	4-3	4-3	3.5
996	β	4	4	4	4	4	4	4	4	2.8
991	\$ • • • • • • • •	4	4	4	4	4	4	4	4	3.I
1		ł								
997	5	4	4	4	4	4	4	4	4	

0.	3.4	1	• 1
Star	1 a amatai	dec con	tipuod
Suur	Magnitu	aescon	LIIIIICU.

Baily's			Greek.			Arabic.				
No.	Name.	Peters.	Paris 2389.	Vatican 1594.	Venice 313.	Manitius printed.		B. M. 7475	Bod. 369.	Harv. R. P.
	CORONA AUSTRALIS.									
998	$\operatorname{XVIII}\left\{ \substack{73 \ \delta^1 \\ 76 \ \delta^2}  ight\}$ Tel	4	4	4	4	4	4	4	4	4 · 4
999	$XVIII \begin{cases} 166 \eta^1 \\ 169 \eta^2 \\ \cdots \end{cases}$	1 -	5	5	5	5	5	5	5	4.9
1000	Lac. 7909		5	5	5	5	5	5	5	5 · 4
1001	XVIII 250ζ	4	4	4	4	4	4	4	4	5·4 4.8
1001	XVIII 291 δ	5	5	5	5	5	5	5	5	4.8 4.7
1002	XVIII $_{305}\beta$	4	4	4	4	4	4		5 4	4 · 7 4 · 2
1004	XVIII 300 a	4	4	4	4	4	4	4	4	4.I
1004	XVIII 280 $\gamma$		4		4	4				5.0
1005	XVIII $230 \epsilon$		4 6	4 6	4 6	4 6	4 6	4	4 6	4.9
1007	XVIII 222 v		6	6	6	6	6	46	6	4·9 5·4
1008	XVIII 142 $\lambda$		5	5	5	5	5	5	5	5.4 5.1
1000	Lac. 7748 § Bode		5	5	5	5	5	5	5	5.2
1009	XVIII $85 \theta$	5	5	5	5	5	5	5	5	3.2 4.7
1010		5	3	3	3	5	5	3	5	4.7
	PISCIS AUSTRINUS.				ļ					
1011	24 a	I	I	I	I	I				I.3
1012	$17\beta$	4	4	4	4	4	4	4	4	4.4
1013	$22\gamma$		4	4	4	4	4	4	4	4.5
1014	23 δ		4	4	4	4	4	4	4	4.3
1015	Ιδέ	4-3	4-3	4-3	4-3	4-3	4-3	4	4-3	4.2
1016	$\mathbf{I4} \ \boldsymbol{\mu} \dots \dots \dots \dots \dots \dots$	5	5	5	5	5	5	5	5	4.6
1017	ξ	5	5	5	5	5	5	5	5	6.5
1018	16 λ	4	4	4	4	4	4	4	4	5.4
1019	Ι2η	4	4	4	4	4	4	4	4	5.4
1020	10 θ	4	4	4	4	4	4	4	4	5.1
1021	91	4	; 4	4	4	4	4	4	4	4.3
1022	XXI 308 (γ Gruis)	4	4	4	4	4	4	4	4	3.2
1023	XX 307 (a Micr.)	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	5.0
1024	XX 403 (γ Micr.)	3-4	3-4	3-4	3-4	3-4	3-4	3-4	3-4	4.7
1025	XXI 46 (e Micr.)	3-4	3-4	3-4	3-4	3-4	3	3-4	3	4.8
1026	XX 445		5	5	5	5	5	5	5	5.3
1027	XXI 12		4	4	4	4	4	4	4	5.5
1028	24 A Capric	4	4	4	4	4	4	4	4	4.6
		•	•	1						

#### NOTES ON THE STAR MAGNITUDES.

Baily's No.	Star.	Notes.
	URSA MINOR.	
7	7. Ι3γ	All manuscripts give mag. 2. Peters adopts mag. 3, found only in Sûfi.
	URSA MAJOR.	
15 18	7. Ι4 <i>τ</i> 10. 30 <i>φ</i>	All manuscripts have mag. 4. No authority for Peters' mag. 4–5. Vat. 1594, Vat. 1038, Ven. 310, Ven. 313, and Laur. 48 have mag. 4. The adopted mag. 4–5 is from Paris 2389, Ven. 302, Ven. 312, Vat. Reg. 90, Laur. 6, and all the Arabs.
20	12. 9ı	All manuscripts have mag. 3. No authority for Peters' mag. 3-4.
21	ГЗ. 12 К	All manuscripts have mag. 3. No authority for mag. 3-4.
28	20. 33 λ	All manuscripts have mag. 3. No authority for mag. 3-4.
29	21. $34 \mu$	B. M. 7475, mag. 2; all others mag. 3. No authority for mag. 3–4.
30	22. $52 \psi$	B. M. 7475, mag. 3.
31	$23.54\nu$	All manuscripts have mag. 3. No authority for mag. 3-4.
32	24. 53 <b>ξ</b>	,
35	27. 85 η	B. M. 7475, mag. 3.
	DRACO.	
.6		
46 55	3. 23 $\beta$ 12. 63 $\epsilon$	All manuscripts have mag. 3. No authority for mag. 3-4. All manuscripts have mag. 4. No authority for mag. 4-5. Sûfi has 4-3. Schjellerup gives Ptolemy's mag. 4-3, but the author- ity is unknown.
57	14. 61 o	All manuscripts have mag. 5. Peters assigns mag. 5-6 to these
58	15. 52 v	stars the authority for which is unknown. Sûfi gives mag. 5–4.
59	16. 60 <i>τ</i>	
62	19. $43 \varphi$	All manuscripts have mag. 4. No authority for mag. 4–5.
63 65	20. 27 f 22. 18 g	B. M. 7475, mag. 4. B. M. 7475, mag. 6.
69	22. 18 g 26. 13 θ	B. M. 7475, mag. 3–2.
70	27. I2 i	Most manuscripts have mag. 3. Magnitude 3-2 adopted by Peters is found in Laur. 45 (Gerard of Cremona). Magnitude in B. M. 7475 is doubtful; the scribe gives both 3-2 and 4-3.
71	28. 10 i	Bod. 369 and B. M. Reg. 16, mag. 3.
72	29. II a	
73	30. 5 K	All manuscripts give mag. 3. B. M. 7475 gives both 3 and 4. Peters adopted mag. 3-4, which is found only in Sûfi.
74	31. I <b>λ</b>	j receis adopted mag. 3-4, which is found only in Sun.
	CEPHEUS.	
80	6. 2 <i>θ</i>	B. M. 7475, mag. 3.
87	Inf. 2. 27δ	All manuscripts have mag. 4. No authority for mag. 4-5.
	BOOTES.	
95	8. 51 μ	B. M. 7475, mag. 6.
108	21. $4\tau$	B. M. 7475, mag. 3.
	COR. BOR.	
111	1. 5a	R M grad has the simulation of the state
112	$2.  3\beta$	B. M. 7475 has the singular error of mag. 5–4 for both stars.
114	<b>4</b> · 9π	Ven. 313 and Laur. 48, mag. 5.

Notes on the	Star	Magnitudes—continued.
		8

Baily's No.	Star.	Notes.
	HERCULES.	
122	<b>4</b> • 7 κ	B. M. 7475, mag. 3; all other manuscripts mag. 4. No authority for mag. 4–5.
123	5. 65δ	Vat. 1594, Vat. 1038, Venice manuscripts 313, 312, and 310, and Laur. 48, mag. 4.
124	6. 76 λ	B. M. 7475, mag. 3.
128	10. 92 ξ	All the Greek manuscripts have mag. 4, and the Arabs, B. M. 7475, Bod. 369, B. M. Reg. 16, Laur. 45, and Sloane 2795, mag. 4–3, which is adopted.
129	II. 405	All the Greeks and Baily, mag. 4; B. M. 7475, mag. 4–3; Bod. 360 and B. M. Reg. 16, mag. 3.
130	12. 58 e	369 and B. M. Reg. 16, mag. 3. All Greek manuscripts and Baily have mag. 5; B. M. 7475, Bod. 369, B. M. Reg. 16, and Laur. 45, mag. 4–3, which is better than mag. 5–6 adopted by Peters, for which no authority is known.
132	14. 61 c	All the Greeks and Baily have mag. 3; the Arabs mag. 5, which is adopted by Peters and accords with the star.
133	15. $67\pi$	All the Greeks have mag. 4, which is adopted; the Arabs mag. 3. Bod. 369 and B. M. Reg. 16, mag. 6–5.
140	22. 82 y 24. 35 σ	Bod. 369 and B. M. Reg. 16, mag. 4–3.
142 144	24. $550$ 26. $11\varphi$	)
145	27. 6v	B. M. 7475 makes these stars mag. 6.
146	28. Ιχ	)
147	29. $\begin{cases} \nu^1 \\ \nu^2 \end{cases}$	}All manuscripts omit magnitude of this star.
	LYRA.	
150	$2.  \begin{cases} 4 \ \epsilon^1 \\ 5 \ \epsilon^2 \end{cases}$	B. M. 7475, mag. 4.
151	3. $\begin{cases} 6 \\ 5 \\ 7 \\ 5^2 \end{cases}$	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
154	$6.  21 \theta$	The Greeks and B. M. 7475 have mag. 4; Bod. 369 and B. M. Reg. 16 are the only authorities for mag. 4–5, adopted.
156	8. $9 v^2$	B. M. 7475, mag. 4; Ven. 302, mag. 4-3.
157	9. 14γ	B. M. 7475, mag. 3-4.
158	10. 15 <b>λ</b>	B. M. 7475, mag. 4.
	CYGNUS.	D.M. surf. man. (
167	9. IK	B. M. 7475, mag. 4.
169	11. 54 $\lambda$	Ven. 313 and B. M. 7475, mag. 4. B. M. 7475, mag. 2.
170	12. 645 14. 625	B. M. 7475, Laur. 45 (Gerard of Cremona), mag. 4.
172	(30 0 ¹	All manuscripts give mag. 4 to these stars. Peters assigns 4-5 to
173	15. $\begin{cases} 3 & 0 \\ 3 & 0 \end{cases}$	both, but the authority is not known.
174	16. 32 o ²	j both, but the authority to not monthly
	CASSIOPEIA.	
180	3. 24 n	B. M. 7475, mag. 3.
185 188	8. 33 <del>0</del> 11. 15 к	B. M. 7475, mag. 3. B. M. 7475, mag. 4.
100	PERSEUS.	
TOO		Vat. 1038, mag. 3.
192 196	2. 15 η 6. 18 Η ι	All manuscripts give mag. 4. Authority unknown for Peters' mag. 4-3.
198	8. 35 σ	B. M. 7475, mag. 3.

## Notes on the Star Magnitudes—continued.

Star.	Notes.
PERSEUS-cont.	
21. 58 <i>e</i> 25. 380	Bod. 369 and B. M. Reg. 16, mag. 5-4. B. M. 7475, mag. 3-2; Bod. 369, mag. 3. Bod. 369, mag. 3-4.
AURIGA.	
9. 8ζ 11. 23γ	<ul> <li>B. M. 7475, Laur. 45, Sloane 2795, mag. 4-5.</li> <li>B. M. 7475, Bod. 369, B. M. Reg. 16, mag. 3-4. This is the same star as No. 400, but the magnitudes given in most cases to the latter do not accord with No. 230.</li> </ul>
OPHIUCHUS.	
<b>Ι.</b> 55 α	B. M. 7475 and all manuscripts of Gerard of Cremona, mag. 3.
	B. M. 7475, mag. 3.
7. Ιδ	All Greek manuscripts give mag. 3; B. M. 7475, mag 4; Bod. 369 and B. M. Reg. 16, mag. 4-5. No authority is found for 3-4 assigned by Peters.
8. 2 e	B. M. 7475, mag. 4–5.
	B. M. 7475, mag. 4. B. M. 7475, mag. 4–3.
<b>12.</b> 35 η	B. M. 7475, mag. 4.
13. 40 ξ	All authorities, Greek and Arabic, agree mag. 4–3. Peters gives 4–5, which is the same as Sûfi. In his rough draft of catalogue
14. 36 A	Peters gives 4–3. Ven. 313, Vat. 1038, mag. 4–3; Bod. 369, mag. 4–5; Laur. 6, mag. 4
15. <b>42</b> θ	All authorities give mag. 4-3. No authority known for Peters
16. 44 b	mag. 4–5; in rough draft, 4–3. B. M. 7475, mag. 4–3.
SERPENS.	
9 <b>. 24</b> α	B. M. 7475, mag. 4.
11. 32 μ	B. M. 7475, mag. 3.
12. 3 v Opn.	B. M. 7475, mag. 4.
AQUILA.	
3. 53 a	Ven. 313, Laur. 48, Vat. 1594, Vat. 1038, Ven. 310, mag. 2.
4· 59 ξ 5. 50 γ	Vat. 1038, mag. 3; Bod. 369 and B. M. Reg. 16, mag. 3–2. Vat. 1038, mag. 3–4.
DELPHINUS.	
2. 5 L	All Greek authorities, mag. 4-5; the Arabs have mag. 4; Peters
3. 7 к	gives mag. 4–3. Vat. 1038, mag. 4–5.
<b>4</b> . 6β	Vat. 1038, mag. 3.
8. 3η	Bod. 369, mag. 6–7.
PEGASUS.	. 1.
5. 62 τ	B. M. 7475, mag. 3.
11. $42\zeta$ 12. $46\xi$	Bod. 369, mag. 4.
12. 40ξ 17. 8ε	Vat. 1038, mag. 3. B. M. 7475, mag. 4–3.
20. ΙΟ κ	Vat. 1594, Vat. 1038, Ven. 313, Ven. 310, Laur. 48, mag. 4; B. M. 7475, mag. 3-2.
	PERSEUS—cont. 21. $58 e$ 25. $38 o$ 26. $44 \zeta$ AURIGA. 9. $8 \zeta$ 11. $23 \gamma$ OPHIUCHUS. 1. $55 a$ 5. $27 \kappa$ 6. $10 \lambda$ 7. $1 \delta$ 8. $2 \epsilon$ 10. $64 \nu$ 11. $69 \tau$ 12. $35 \eta$ 13. $40 \xi$ 14. $36 A$ 15. $42 \theta$ 16. $44 b$ SERPENS. 9. $24 a$ 11. $32 \mu$ 12. $3 \nu$ Oph. AQUILA. 3. $53 a$ 4. $59 \xi$ 5. $50 \gamma$ DELPHINUS. 2. $5 \iota$ 3. $7 \kappa$ 4. $6\beta$ 8. $3 \eta$ PEGASUS. 5. $62 \tau$ 11. $42 \zeta$ 12. $46 \xi$ 17. $8 \epsilon$

Notes on the Star Magnitudes—continued.

Baily's No.	Star.	Notes.
	ANDROME	DA.
345	11. 38 <b>y</b>	Bod. 369, B. M. Reg. 16, Laur. 45, Sloane 2795, mag. 3.
347	I3. 37 µ	B. M. 7475, Laur. 45, Sloane 2795, mag. 3.
350	16. $\varphi P$	
	17. v Pe	ers. Bod. 260. B. M. Reg. 16. mag. 4.
351 352	18. 50 1	
	TRIANGUL	mag. 4–5. .UM.
358	I. 2 d	B. M. 7475, mag. 4.
	ARIES	
375	Inf. 1. 13 e	
	TAURUS	5.
390	11. 54 ·	γ B. M. 7475, Laur. 45, mag. 4–5.
394	15. 74 0	
396	17. 104 1	m Vat. 1594, Vat. 1038, Ven. 313, Ven. 310, Laur. 48, Laur. 54, mag.4.
400	21. 112	
404	25. 500	
	GEMINI	
440	17. 24	
440	18. 31	
441	Inf. 2. $\kappa A$	
443	Inf. 3. 36 a	
444		for Peters' mag. 5–6.
445	Inf. 4. 85	B. M. 7475, mag. 3-4.
	CANCER	<b>.</b>
453	5· 47 8	<b>B.</b> M. 7475, mag. 4.
i.	LEO.	
465	4. 17 e	B. M. 7475, Laur. 45, mag. 3.
466	5. 36 §	Bod. 369, mag. 2.
480	19. 60 l	All Arabs and Laur. 6 have mag. 5; the Greeks and Baily, mag. 6.
481	20. 68 8	
483	22. 706	Bod. 369, mag. 5.
487	26. 91 u	B. M. 7475, mag. 4.
494		See Notes on the Catalogue of Stars.
	VIRGO.	
506	10. 43 b	B. M. 7475, mag. 4.
509	I3. 47 e	Paris 2389, Vat. 1594, Vat. 1038, Ven. 313, Ven. 312, Ven. 302 Ven. 310, and Laur. 48, have mag. 5-4, and this has been adopted by Peters. B. M. 7475 and Sloane 2795, and Laur. 45, mag. 3; Bod. 369 and B. M. Reg. 16, mag. 3-2. Sûfi describes the star as of mag. 3 and adds: "Ptolémée la dit des moindres;
		that means mag. 3–4. Manitius has adopted mag. 3–2, which is more correct for $\epsilon$ Virginis than 5–4. Baily gives mag. 5.
510	14. 67 a	
511	15. 79 Š	
514	18. 821	n Laur. 6. mag. 4–3.
520	24. 105 4	All al minimum have mage a Potore adopts mage 4-6.38 In Sill
5-0		

# Notes on the Star Magnitudes-continued.

			on the Star Highbornaus continues.
Baily's No.	Star.		Notes.
	VIRGO-	-continued.	
522	26.	107 μ	All the Greeks have mag. 3; B. M. 7475, Bod. 369, Laur. 45 have mag. 4; Manitius gives mag. 4; Peters adopts mag. 3-4; Sûfi has mag. 4-3.
526	Inf. 4.	53	B. M. 7475, mag. 5.
		CORPIUS.	
558	13.	$\begin{cases} \mu^1 \\ \mu^2 \end{cases}$	B. M. 7475, Laur. 45, Sloane 2795, mag. 4.
568		45 d Oph.	All authorities agree. Manitius has mag. 5.
	ļ	ITTARIUS.	
574	5.	$egin{cases} \mu^1 \ \mu^2 \end{cases}$	B. M. 7475, mag. 3.
576		27 <i>\varphi</i>	Paris 2389, Vat. 1594, Ven. 313, and Manitius have mag. 4; B. M. 7475, mag. 3–2; Bod. 369, and B. M. Reg. 16, mag. 4–3. No authority for Peters' mag. 4–5.
588	19.	$\begin{cases} 51 & h^1 \\ 52 & h^2 \end{cases}$	B. M. 7475, Laur. 45, and Sloane 2795, mag. 5.
594	25.	XVIII. 17	Laur. 48, mag. 3–4.
	CAP	RICORNUS.	
602	2.	8ν	Bod. 369, mag. 5. Bod. 369, mag. 5.
607	7. 8.	11 ρ 7 σ	Ven. 312, mag. 6.
611	11.	1Ġψ	B. M. 7475, Laur. 45, Sloane 2795, mag. 6.
	AÇ	QUARIUS.	
632 673	4. Inf. 3.	22 β 7 Ceti.	Gerard of Cremona in three manuscripts, mag. 2. Ven. 313, Ven. 312, Vat. 1038, Laur. 45, Sloane 2795, mag. 4.
	I	PISCES.	
674	<b>I</b> .	4β	Vat. 1594, Vat. 1038, Ven. 313, Ven. 312, Ven. 310, Laur. 48, and Manitius, mag. 4. The mag. 4–3, adopted, is from Paris 2389, Ven. 302, Laur. 6, Laur. 45, B. M. 7475, and Bod. 369.
700	27.	67 k	Ven. 313, mag. 5.
		CETUS.	
726	15.	45 θ	Laur. 45, Sloane 2795, mag. 2.
727 730	16. 19.	$\begin{array}{c} 3 \ \mathbf{I} \ \eta \\ \mathbf{I} \ 7 \ \varphi^{\mathbf{I}} \end{array}$	Baily gives mag. 5 for which Grynæus is the only authority. Vat. 1594, Vat. 1038, Ven. 313, Ven. 310, Laur. 48, Laur. 45, and B. M. 7475, mag. 5.
731	20.	O. 161	All manuscripts have mag. 5, except Paris 2389, Ven. 302, Ven. 312, B. M. Reg. 16, and Bod. 369, mag. 5-4.
732	21.	8ι	Vat. 1594, Vat. 1038, Ven. 313, Ven. 310, Laur. 48, Laur. 45, have mag. 3; Laur. 6, 5-6; B. M. 7475, mag. 4.
733	22.	16β	All Greek and Latin authorities have mag. 3. Bod. 369 and B. M. Reg. 16 have mag. 3-4; and B. M. 7475, mag. 3-2, which is the only authority found for the magnitude adopted by Peters.

N	otes	on	the	Star	Magni	tudes–	-conti	inued.
---	------	----	-----	------	-------	--------	--------	--------

Baily's No.	Star.	Notes.
	ORION.	
736	3. 24 γ	All authorities have mag. 2, except the Arabs, Laur. 45, B. M. 7475, Bod. 369, and B. M. Reg. 16, which have 2-1.
742 763	9. $72 f^2$ 30. $\begin{cases} 42 c \\ 45 c \end{cases}$	B. M. 7475, mag. 4. Ven. 312 and Laur. 45, mag. 4–5.
764	$(45)^{1}$	Paris 2389, Ven. 313, Ven. 312, Vat. 1038, Laur. 6, and B. M.
765	32. 44 L	7475, mag. 3. Paris 2389, Ven. 312, Vat. 1038, and Laur. 6, mag. 3–4.
769 771	36. 20т 38. 53 к	B. M. 7475, mag. 4. B. M. 7475 and Laur. 45, mag. 3.
	ERIDANUS.	
772 790	1. 69 $\lambda$ 19. 2 $\tau^2$	Vat. 1038, Laur. 45, and B. M. 7475, mag. 4. B. M. 7475, mag. 3.
802 803	31. III 202 32. III 189	[In B. M. 7475 the magnitudes of these stars are omitted, but in the place of each magnitude is written the Arabic letter Kaf. This might be taken for the initial of the word Kabir, which is the Arabic for $\mu\epsilon i\zeta \omega \nu$ , but in this manuscript the $\mu\epsilon i\zeta \omega \nu$
804	33. III 149	and έλάσσων are invariably represented by the letters Mim and Lam. See description of B. M. 7475.
805	34· θ	See Notes to the Catalogue of Stars.
	CANIS MAJOR.	D 1
818	1. 9a	Bod. 3374, mag. 4.
819 824	2. 14 $\theta$ 7. 8 $\nu^3$	B. M. 7475, mag. 3. The Greeks and Baily give mag. 6; all the Arabs and Manitius have mag. 5.
828	11. 5 <b>ξ</b> ²	B. M. 7475, mag. 4.
830	13. 160 ¹	Vat. 1038, mag. 5–6.
831	14. 25 d	Vat. 1038 and B. M. 7475, mag. 3.
835	18. 31 ŋ	B. M. 7475, mag. 4–5.
	ARGO NAVIS.	
854	6. VII 175	B. M. 7475 and manuscripts of Gerard of Cremona, mag. 4.
860	12. $\pi$ Pup.	}Laur. 48, mag. 4.
861	13. f Pup. 15. c Pup.	All authorities, mag. 4. No authority found for Peters' mag. 4–5.
863 874	15. c Pup. 26. b Vel.	Vat. 1038, Laur. 45, and B. M. 7475, mag. 4.
876	28. a Pyx.	All authorities (except Gerard of Cremona, mag. 4) agree in mag. 3. No authority is found for Peters' mag. 3-4.
885	37. o Pup.	Mag. 2 adopted by Peters and Baily, is confirmed by Paris 2389, Vat. 1594 and Ven. 313, and the printed editions of Gry- næus and Trapezuntius; all others, including Manitius, mag. 3.
88 <b>8</b>	40. к Vel.	All authorities have mag. 3. No authority found for Peters' mag. 3-4. Aboul Hhassan, who derived his magnitudes from Sûfi,
893	45. τ Pup.	gives 4-3. B. M. 7475, mag. 2.
	HYDRA.	
909 912	16. 42 μ 19. 11 β Crat.	All authorities have mag. 3. Peters' mag. 3-4 is the same as Sûfi. The Arabs have mag. 4; Sûfi also.

Notes on	the Star	Magnitudescontinued.

Baily's No.	Star,	Notes.
	CRATER.	
923 925 926	3. 12δ 5. 14ε 6. 30η	All authorities, mag. 4. No authority found for Peters' mag. 4–5. B. M. 7475, mag. 4–3. Vat. 1038, Laur. 48, Laur. 45, and B. M. 7475, mag. 4; Bod. 369 and B. M. Reg. 16, mag. 4–3.
	CENTAURUS.	
937	3. I i	Paris 2389, Vat. 1594, Ven. 313, Bod. 369, B. M. Reg. 16, and Manitius, mag. 4-3; B. M. 7475, mag. 5-4. No authority found for Peters' mag. 4-5. In rough draft of catalogue he gives mag. 4-3.
945	11. b	Ven. 313, mag. 4–5.
950	16. η 17. κ	Bod. 369, mag. 4–3. Vat. 1594, Vat. 1038, Ven. 310, Laur. 48, mag. 4–3.
951 952	17. к 18. ζ	Vat. 1594, Ven. 302, Vat. 1038, Ven. 310, and Laur. 48, mag. 3.
967 968	33. δ Crucis 34. a Crucis	Grynæus transposes the magnitudes of these stars which Baily has erroneously copied.
	LUPUS.	
985	14. η	Laur. 45 and B. M. 7475, mag. 4-3.
	COR. AUST.	
1006	9. ε	B. M. 7475, mag. 4.
	PIS. AUST.	
1015 1025 1028	5. 18 ε Inf. 3. ε Mic. Inf. 6. 24 A Cap.	Laur. 45 and B. M. 7475, mag. 4. Laur. 45, Bod. 369 and B. M. Reg. 16, mag. 3. Baily gives mag. 3 from Grynæus; no other authority known.

#### TABLE IX.

Collations of Manuscripts.

The Table of Collations gives the variants in longitude and latitude from Baily's Ptolemy in the following 26 manuscripts of the Almagest:

Greek: Paris 2389, 2390, 2391, and 2394; Venice 302, 303, 310, 311, 312, and 313; Vatican 1594, 1038, and Reg. 90; Laurentian 1, 47, and 48; Bodleian 3374, and Vienna 14.

Latin: Laurentian 6 and 45; Vienna 24, and British Museum Sloane 2795.

Arabic: British Museum 7475 and Reg. 16; Bodleian 369, and Laurentian 156.

For the purpose of comparison, readings agreeing with Baily are given in doubtful cases, and in those which instance peculiar mistakes of the copyist.

All Baily's readings which differ from the Catalogue are given in the Notes to the Catalogue.

151

Collations	of	Manuscripts-	Longitudes.

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47·	Vat. 1594.
	• /	• •	• /	• /	0 /	o /	0 /	0 /	0 /	• /	0 /	0 /	• •
I	• • • • • • • •	· · · · · · ·				• • • • • • •						• • • • • • • •	• • • • • •
2 3	16 o		16 o	16 O	16 O	16 O	 10 10		16 0				 10 IO
4				29 20		29 20	19 40	29 20	24 40			I9 40	
5													
7													
-													• • • • • •
10 11	· · · · · · · ·		1 1	 	 	-		25 10				· · · · · · · · ·	· · · · · · ·
12													26 IC
13 14	••••				20 40		26 40	20 20	20 40	20 40	20 40	26 40	•••••
			£					0 10		· · · · · · · · ·			
17 18		· · · · · · · · · · · · · · · · · · ·				-							
19		]		5	(								· · · · .
20 21			· · · · · · ·					-					•••••
23													•••••
24			1 1								· · · · · · ·	• • • • • • •	· · · · · .
25 26													22 IO 3 IO
27			{				1				5	0 20	0 20
28 29				21 10									•••••
30	• • • • • • •							<b></b>					· · · · · · · ·
31	• • • • • • •			9 30		• • • • • • •	••••		•••••	(10, 20)		1	•••••
32	• • • • • • •		•••••			6 20		6 20	• • • • • • •	10 201 13 20	• • • • • • •		••••
34												· · · · · · · ·	• • • • • •
35 36					· · · · · · · · ·	29 10	· · · · · · · ·	29 20 27 50			· · · · · · · ·		 
37	••••					26 O				20 10			
39 42													• • • • • •
42 44					I			•••	· · · · · · · ·	· · · · · · · ·	•••••		• • • • • • • • • • • • •
45	••••	· · · · · · ·						[	1		1		
46 47	••••••••			• • • • • • • • •	••••••		•••••						 
49	• • • • • • •	<b></b>				21 40		21 40					
50 51	•••••	• • • • • • • •	••••		•••••	28 20	· · · · · · · ·	22 0	•••••	•••••	•••••	• • • • • • • •	• • • • • •
52					1		•••••		•••••				· · · · · · ·
56	••••		• • • • • • •	• • • • • • • •		· · · · · · · ·							
57 58	· · · · · · · ·	· · · · · · · ·	••••		F		 						• • • • • • •
59		26 30											
60 61		 		13 40	• • • • • •								
62							· · · · · · · ·						 
63	•••••		••••	•••••	• • • • • • • •	• • • • • • • •							
65			• • • • • • •		· · · · · · · · ·		• • • • • • • •			, i i i i i i i i i i i i i i i i i i i		•••••	• • • • • •
-5					•••••	•••••	•••••	• • • • • • • •	•••••	•••••	•••••	•••••	

# Collations of Manuscripts-Longitudes-continued.

aily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374-	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienn Trap 24.
	• •	• /	0 /	0 /	o /	0 /	o /	o /	0/	o /	01	o /	• /
I		)											
2	10 10						16 0					16 O	
	19 40	1	19 40					28 40					
5			1							2 40			
6													
7													
9 10													
II		27 20		27 20				1			1		
12		26 20			26 10		26 10	26 10	26 10	26 10	26 10		26 1
13	26 40		26 40	26 40				27 40				20 40	
14												1	
15 16		•										1	1
17													
18													
19			1					i					
20		1	1		1	1	1	1 2 .	F 20		· · · · · · · · ·		
21			1					0 20					
23 24											16 40		
25									22 10				22
26		3 10			3 10			3 10	3 10	3 10	3 10		3
27	0 20	9 20	0 20	9 20	0 15	3 0							
28		.			· • • • • • •							1	
29		.	•••••										
30 31		. 0 0								9 30			
•								1		1		1	1
32		.											1
34		.									13 0		
35		.		29 30			19 50	28 50		20 50	26 50	• • • • • • • •	
36				26 0	• • • • • • •	• • • • • • •		20 20		20 50	20 30		
37 39													
39 42													.
44				20 40	13 20			• • • • • • •	.	26 16		• ••••	. [
45				20 40		••••	• • • • • • •		.			•  •••••	
46					13 20		•  •••••	26 20	20 50		20 50	27 50	
47				.   .									
49 50		. 2 10				<b>TT T</b>							
51												• • • • • • •	• • • • •
52								. 29 30			•   • • • • • •	. 9 30	
<b>5</b> 6		.						•   • • • • • •		22 30		• • • • • • •	•   • • • •
57			• • • • • • •			•••••	• • • • • • •	• •••••					
58	•••••	• • • • • • • •		20 40									
59 60		1											
61												1	
62											. 11 55		
63								. 27 40			. 13 40		• • • • •
64		21 20		21 20		• • • • • • •	•		•   • • • • • • •				• • • • •
65				00									

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. I.	Laur. 47.	Vat. 1594.
	0 /	o /	o /	0 /	o /	o /	0 /	o /	o /	o /	o /	。 /	0 /
66													
67													
68				• • • • • •									••••••
69	10 20	10 20	10 20	10 20	10 20	13 40	10 20	•••	10 20	10 20	10 20	IO 20	IO 20
70 71				12 20		8 20				•••••		• • • • • • •	• • • • • • •
74													••••••
75	90	90	90	9 0	90	90	90	90	90	90	90	90	9 0
77												{ 7 40} { 7 20}	
78				16 20		16 20						L 7 20	
80						10 20					••••••		••••••
81													· · · · · · · · ·
82													
86	•••••										•••••		
88				• • • • • •					•••••	••••	• • • • • • •		
89		0.40											
90 92	9 40	9 40	9 40	9 20	9 <b>40</b>	9 20	9 <b>40</b>	940	9 40	940	9 40	9 40	9 40
94						1							••••••••
97													
99													
100													
102													
103			:										
104													
110		$27{20 \\ 40}$	• • • • • • • •										
114				• • • • • • • •									
115													
116													
117	• • • • • • •					· · · · · · ·				•••••		•••••	
120 121	• • • • • • •		• • • • • • •	••••		· · · · · ·							• • • • • • •
121		28 0		· · · · · · · ·	I3 40		22 0		• • • • • • •		••••		
125			1 1		1, 40			· · · · · · · · ·		20 0 20 40			20 0 20 40
126							+-					20 40	
129	6 40	6 40		6 40		6 30	6 40			3 50	6 40	6 40	640
130	16 0		16 O	16 O		16 O			16 O				
131		• • • • • • •	••••	••••••	• • • • • • •		[· · · · · ]	•••••	••••			•••••	• • • • • • •
133 134			· · · · · · · · ·	•••••	•••••	• • • • • • •	· • • • • • • • • •	• • • • • • • •		•••••	• • • • • • •	•••••	••••
134				•••••				••••••	• • • • • • •	•••••		•••••	•••••
136									• • • • • • •	•••••	6 20		
137			• • • • • • •										
139			• • • • • • •										
140													• • • • · · · ·
141	••••	•••••		o 40	•••••	•••••	••••		• • • • • • •			• • • • • • •	. <b></b>
143 144			· · · · · · · ·	• • • • • • • •	•••••	• • • • • • •	• • • • • • • •					•••••	••••
144		16 O	••••	16 0		16 0	16 0	16 0	• • • • • • • •		 16 o	16 0	16 o
146								10 0		••••	10 0	10 0	10 0
150						23 20		23 0					 
151				23 O		23 0		23 0					
						-		5					

Collations of Manuscripts-Longitudes-continued.

Collations	of	Manuscri	ts_I	maitaidas_	-continued.
Gouderons	vj.	111 01003010	pis Lo	ing waacs -	-continucu.

Baily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374·	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	o /	• /	o /	• /	o /	o /	o /	o /	a /	o /	• /	0 /	0 /
				0 20			9 30	9 30					
67		••••					5	8 30					
68 69	10 20	5 20	10 20	1		1			· · · · · · · ·				IO 20
70		5 20								1		1	1
71	-J <b>-</b> -							1					
74			1	16 10									
75	90	50	90	50	9 O	90	50	50		50	50	50	50
77							7 30	7 30		6 20			
78		16 20		16 20									
80			· · · · · · · ·	1		1	1		1				1
81		1											
82													
86										18 40			
88	••••	•••••							1				
89 90	9 40	· · · · · · · ·	1 1	5 20					<b>.</b>		1	1	1
90 92			940										
94		-		•		1		1					
97													7 30
99						<b></b>		8 35	8 30	8 30	8 30	8 30	
100			<b>.</b> .				{ 6 40}						
102		1		7 20			( 5 40)						
103			1 1	/ 20									
104			5 40										
110								26 0			26 0		
							i		1				
114													
115 116		1								1		1	1
117						[	1			1			
120										2 40			
121			30 40									4 40	
I 22			<b>.</b>								1	1	
125	-	ſ	20 40	1					1				1
126 129	6 40		6 40						3 50		3 50		
		16 0		16 O	16 0	16 0			16 0		16 0	16 O	<b>•</b> • • • •
131		1		1							1		
133													
134			•••• •										· • • • • •
135			•••••				ł						
136				(			1	•	25 10		25 10		
137	••••						1		25 10				1 .
139 140								1		-		1	
						0 40							0 50
143		15 20		15 20									
144										-	15 20	-	
145		16 O	1 1				1						1
146	• • • • • • •	<i>.</i> .	•••••						•				
									• • • • • • • •				
151				~ j U	· · · · · · ·			1		1			

Baily's No.	Par. 2389.	Par. 2390.		Par. Ven. 394. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	。 /	0 /	o / o	1 0 1	0 /	• •	0 /	0 /	o /	0 /	o /	o ,
152				••••								
155	1			•••••								•••••
156	-			o 30						••••••	• • • • • • •	•••••••
157				i O 21 C					1	2I O	2I 0	2I 0
160												
163											1	
164		19 40				19 40	19 40	• • • • • • •	19 40	19 40	19 40	19 40
167							20 40					
169				• • • • • • • • • • • • • • • • • • • •			17 20					· · · · · ·
172			•••••			1						•••••
			1	••••			· · · · · · · ·	• • • • • • •		i		•••••
175			(70	40)			• • • • • • •	· · · · · · ·		• • • • • • •		• • • • • • • •
176	•••••		·····{13	20	•		• • • • • • • •	• • • • • • •			•••••	· · · · · · ·
177		:		50			16 50					
179						1						
180	10 20	10 20		) 20 IO 20		IO 20			IO 20	10 20	10 20	IO 20
182			•••••	• • • • • • • • • • • • •	•	[····			• • • • • • • •	• • • • • • •	•••••	••••
183												
185												
186				••••	1			1		1		
187												
189	1			• • • • • • • • • • • • • • • • • • • •		I I						
190		~ •		• • • • • • • • • • • • •		3 40			3 40			3 40
191				• • • • • • • • • • • •								
193				••••							•••••	
194	1	· · · · · · · ·		••••					•••••		•••••	
204 206	· · ·	· · · · · · · ·	•••••						1	1		
207	1		10 20	10 20				· · · · · · · · · · · · · · · · · · ·	IO 20			• • • • • • •
211							16 40	10 20				•••••
212							· · · · · · · ·					
213			8	20								
214		• • • • • • •	8	40								
218	15 0	15 15				15 15	I2 O	15 15	15 15	15 15	15 15	15 15
219		•••••	•••••	••••		· · · · · · · ·	•••••	• • • • • • • •	•••••	•••••	.	• • • • • • •
221 226		• • • • • • • •		••••	. 3 30	•••••		• • • • • • • •	• • • • • •	•••••	•••• •	
228							-	· · · · · · · ·	• • • • • • •	•••••	••••• •	
229							. 1					
230							25 20					
231	· · · · · · ·	•••••										
233	•••••		23	0 26 40				26 40			<b></b> .[.	
234		{24 50} 21 50}		24 50		21 50	21 50				21 50	21 50
238		21 50		. 5-		5-	J-		30		30	30
-	f 18 20	8 201			• • • • • • • • •	•••••	•••••	••••	••••	•••••	••••••	••••
239	8 20	18 20	18 20 18	20 18 20	18 O	18 20	IO 20		18 20	18 20	18 20	18 20
243												
244												
245		•••••	21	30								
246	{26 40}		26 40 26	40			25 40			26 10	26 40 .	
a. –	l23 40			-T-   · · · · ·	·	•••••	20 40 °	•••••	•••••	20 40	20 40	• • • • • •

Collations of Manuscripts-Longitudes-continued.

# Collations of Manuscripts-Longitudes-continued.

Baily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374∙	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	o /	o /	0 /	o /	o /	o /	0 /	• /	0 /	o /	0 /	o /	o /
152							28 40	28 40		28 <b>40</b>	28 40		
55							1	1	••••		•	1	ł
156	1					l	1	1			1		1
157 158	21 0	1	21 0	21 10									
160													
	1										1	1	1
164	19 40			16 20			· · · · · · · ·		 16 0		16 O		
167 169													
172													
173											I 30		
175									•••••		• • • • • • •	2 10	• • • • • •
176		13 40		13 40					13 40		13 40	13 40	
177		13 30	i										
179				20 20									
180	10 20								IO 20				
182		20 20											
183							26 0	• • • • • • •			26 O		<i>.</i> .
185	1								17 40				
18Ğ								14 40		14 40	16 40		
187		2 30		2 30				4 20					
						• • • • • • •					7 30		
190 191	3 40		3 40		• • • • • • •	26 40	27 40	20 20	3 20	20 20		1	1
103		I 40			۱ <u></u>								
104											26 30		
204											20 40	· · · · · · ·	
			• • • • • • •	••••				24 50			• • • • • • •		10 20
207 211		[·····			10 20								10 20
212							1					16 50	
213							1			88			
214									•				
218	15 15		15 15						.	• • • • • • •	25 40		
219 221													
226													
228							-				.	1	
229			•••••							••••		. <b></b>	0
230			•••••	••••		25 40				27 0			25 50
23 I 222										1 '			
233						1				1			21 50
234	21 50		ł				1						21 50
238		14 20		14 20			• • • • • • •		.	<b>14 47</b>		• • • • • • •	
239	18 20		18 20		18 20	8 20							. 18 20
						6 20			.				
243 244											. 4 20		.
244 245									.			.	•  ••••••••
246	26 10	23 40	26 40					23 40	23 20	23 40	23 20	23 20	
240	26 40	1 4) 4∪	i <u>≁</u> ∪ 40	1		1 <b></b>		_ −J <b>T</b> *		1 5 1			

Collations of I	Manuscripts—Longita	udes—continued.
-----------------	---------------------	-----------------

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	0 /	0 /	0 /	o /		o /	o /	0 /	0 /	o /	0 /	o /	0 /
247 248	•••••			••••						1			• • • • • • •
240													
251		${27   10 \\ 26   10}$						27 30					
253		(26 10)											
256								12 40					
257	• • • • • • •			• • • • • • •		o 40		1 -		1	• • • • • • • •		
260		•••••	• • • • • • •	• • • • • •					•••••	1	• • • • • • •	• • • • • • •	• • • • • • •
261	$\begin{cases} 3 40 \\ 3 20 \end{cases}$					· · · · · · ·	• • • • • • •	3 20		•••••	• • • • • • •	<b></b>	• • • • • • •
263													
264	$\begin{cases} 31 & 40 \\ 21 & 40 \end{cases}$				31 40			21 20		31 40		<b></b>	31 40
265	21 20				21 20	21 20	21 20	24 20	1	_		21 20	21 20
268	$\begin{cases} 23 & 10 \\ 26 & 10 \end{cases}$			• • • • • • •		$\begin{cases} 23 & 10 \\ 26 & 10 \end{cases}$							
270													
273				•••••		• •		1					
275		• • • • • • •	• • • • • • •	• • • • • • •			1	F		• • • • • • • •		• • • • • • •	
276	• • • • • • •	•••••	• • • • • • •	•••••	· · · · · · · ·				F		· · · · · · ·		• • • • • • •
277 278	· · · · · · · ·						•••••	27 30			••••	• • • • • • • •	• • • • • • •
279													 
	{10 10}		16 O	16 O	16 O	16 O			16 O	10 10			
282													<b></b>
285													
288		••••	• • • • • • • •						•••••				• • • • • • • •
289 290	• • • • • • •	• • • • • • •	••••	•••••	• • • • • • • •	•••••				· · · · · · · ·		•••••	•••••
290					•••••						•••••		
292							ί Ι						<b>. .</b> .
294			• • • • • • •	• • • • • • •			• • • • • • •						
	· · · · · · · · ·		•••••		4						••••	•••••	
			•••••			i	· · · <b>· ·</b> · · ·	-	• • • • • • • •		•••••	•••••	• • • • • • •
298	•••••	•••••	•••••	•••••	•••••	• • • • • • •	• • • • • • • •	•••••		•••••	•••••	•••••	
299	• • • • • • •	•••••	•••••	• • • • • • •	• • • • • • •	• • • • • • •	•••••	• • • • • • •		•••••			
300	•••••	•••••	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • • • •	• • • • • • • •	•••••	•••••	•••••	
304												•••••	
305	26 O		26 O	26 O	26 O	26 O	26 O	23 O			26 O	26 O	
307	• • • • • • •	• • • • • • •						• • • • • • •	• • • • • • •	• • • • • • •			
308 309	•••••	•••••	•••••	•••••	•••••						• • • • • • • •	•••••	
					1				• • • • • • • •	1	(	•••••	• • • • • • •
310									• • • • • • •				
311	•••••	· · · · · · · ·	•••••	•••••	•••••	•••••	•••••		• • • • • • •	• • • • • • •	•••••	•••••	••••
312 315	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • •	•••••	• • • • • • •	•••••	
316									· · · · · · · ·				•••••
317			•••••										
318		·····		• • • • • • • •	• • • • • • • •								
												·	

Collations of	of	Manuscri	pts—Lor	igitudes-	-continued.
0.00000000000	ິ		r	0	•••••••••

Baily's No.	Laur. 48.	Vienna 14.	$\mathbf{Vat.}$	Vat.         Bod           geg.         3374		Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	• /		, , ,		• /	o /	o /	0 /	0 /	。,	。 ,
				• • • • •   • • • • •						28 0		
248 249												
							1					
251		1							1			1
253							1			II 20	II 20	
256 257	l	1						1				
260										0 20	0 20	0 20
261		3 20		3 20		3 20	3 20	3 20	3 20	3 20	3 20	
263	4			1	i i							
		1	31 40									
					)	1	1	1			1	
265	21 20											
268		• • • • • • • •			•••	. 28 10	28 10		•••••	28 10		
270								.		.		
273		28 40	2	8 <b>40</b>	•••	• ••••	28 40		28 40			
<b>27</b> 5 <b>27</b> 6										26 40		
277			2									
278			3 20									
279	1	i			1		1		1			• • • • • • • •
281				16	ο	• •••••		. 16 0		. 16 o	16 0	
288												
209												
291				0 10						. 50		
292												
294		29 20	26 10 2	9 20		. 8 40	8 40		2 40	• • • • • • • •		
295 296				50 1	;0?							
298		28 20	2	8 20		{27 IO	}					
		20 30				128 10						
299 300			29 0 21 0							21 40		
	8 00			8	20	18 30	ι –					. 8 30
304	8 30					118 40	,, <u>.</u>					
305			1	6 0 26	ſ	. 23 30	23 30	23 30	23 30	28 30	23 30	. 26 0
307 308		23 30		<u> </u>								
309			I	7 30		. 17 30	17 30	17 40	17 30	17 40	17 40	
310						. {19 0 18 0	}		. 59 0			
-		00.00		26	0 26 20							. 26 50
311 312		23 20			1							
315		× 20 50					-					• • • • • • •
316		## 12 IC				. 22 10	32 10			• • • • • • •	. 2 10	
317		)(1 10		6 20		• • • • • • •	•   • • • • • •	•••••	• • • • • • •	•		
318		26 20	· · · · · ·   2	6 20	• • • • • • • • •							

Collations of Manuscripts-Longitudes-continue	ed.
-----------------------------------------------	-----

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat 1594
	• /	0 /	• •	。,	o /	• /	• /	0 /	0 /	o /	• •	0 /	0 /
323								. <b></b>					
324	· · · · · · ·						1	F	1				
5 5		• • • • • • •	1 1					• • • • • • •		1		1	
-		1							i				••••
329 330	-	1	9 10				1		1		9 10	-	
							1	5			1	1	
333							1		l .	1	•		
334	• • • • • • •						[	12 40					
336	• • • • • • •			• • • • • • •						• • • • • • • •			· · · · <b>·</b>
337								-					
					1							• • • • • • •	••••
007	• • • • • • •						••••	• • • • • • • •	•••••	••••	••••	••••	••••
340	<i>{</i> <b>15</b> 40}	• • • • • • •	1 1					• • • • • • • •		••••	••••••	•••••	••••
341	$\{10, 40\}$	15 40	5 40	• • • • <b>• •</b> •	5 40	· · · · · · · ·	15 40	15 40	<b></b>	15 40	15 40	15 40	15 4
349								20 50					
350	• • • • • • •							17 30					
351	• • • • • • •							5 10					· · · · ·
	•••••	•••••							1				
356		•••••	•••••									(	-
360 364	10 20	•••••	••••			• • • • • • • •			•••••			• • • • • • • •	
369	•••••	•••••											
				• • • • • • • • •			1		ſ	1	 		
													•••••
	<b>(24 40)</b>		24 40							524 40Y		s24 40	21 40
1	121 405	24 40	24 40	24 20	24 40	l21 40	24 40	21 20		121 40J	24 40	21 40	24 40
378	• • • • • • •	••••			• • • • • • •	•••••		• • • • • • •	• • • • • • • •		••••••	• • • • • • • •	
379	•••••	••••		••••	• • • • • • •		• • • • • • • •	••••	•••••		•••••	••••••	• • • • •
382	24 20				24 20	24 20		25 40	24 20	24 20	24 20	24 20	
383	2I 2O	21 20	21 20	21 20	2I 2O	21 20	21 20	24 40		1			
												1	21 20
								<i>r</i>		-			
386	• • • • • • •												
387	•••••	• • • • • • •	•••••	• • • • • • • •		4	•••••		• • • • • • • • •			•••••	••••
388 389	•••••	••••	••••	• • • • • • •	•••••	•••••	• • • • • • •				· · · · · · · ·	•••••	
400		•••••	•••••	• • • • • • • •	•••••		•••••	1	• • • • • • •			•••••	
391							• • • • • • • • •			1	•••••	•••••	• • • •
000	• • • • • • • •					i			•••••	•••••	•••••	••••	
	<b>512</b> 501							1	•••••	• • • • • • •		•••••	
1	l11 50)			1				•••• ••	11 50	12 50	12 50	12 50	••••
395	• • • • • • •	• • • • • • • •		17 30	• • • • • • • •			17 10					
396	• • • • • • •		1		• • • • • • • •	• • • • • • •		•••••			23 0		
397	•••••		•••••	• • • • • • •	•••••	• • • • • • • •		20 0	•••••			.	
398	•••••	1	•••••	1	• • • • • • •	•••••		• • • • • • • •	• • • • • • • •	• • • • • • • •	•••••		• • • •
399 400		•••••	•••••						•••••		••••	•••••	• • • •
401							•••••				•••••		••••
402			•••••				•••••				••••	••••• •	· · · ·
404					•••••	1			•••••		•••••	••••• •	• • • •
406 .							· · · · · · · · ·	-	•••••	•••••	•••••	•••••	••••
									•••••	•••••	•••••	••••••	••••

Collations of	Manuscri	pts—Longiti	<i>ides</i> —continued.
		1	

Baily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374·	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	a /	0 /	o /	。 ,	0 /	0 /	0 /	0 /	0 /	o /	• /	0 /
323		26 20											
324	• • • • • • •								•••••		26 0		
325 328	· · · · · · · · ·	18 30									· · · · · · · · ·		
329	9 10	9 20	9 10	1	1					-	1	1 -	
55-	•••••	22 20		23 20	• • • • • • •		•••••		· · · · · · · · ·		28 40		
333		17 20		17 20							16 40		
334		····		· · <i>·</i> · · · · ·	• • • • • • •					• • • • • • •		<i>-</i> • • • • • •	
336	· · · · · · ·												
338			22 40								28 20		
339		24 20		24 20			• • • • • • •	• • • • • • •	25 40	•••••	25 40		
340	•••••				1								
341									.		1		
349		12 50		17 12					.   .				
350 351													
354							12 12			1			
356		16 20				11 10		16 10	16 20				
364	1	12 0			1								
369								22 50		23 50	28 50		
371					17 0	27 0			.   <i>.</i> .		20 0		1, 0
374 375													
376	24 40	21 20	24 40	21 20	24 40				.				24 40
378										59 40			
379									.			•	19 6
382		21 40	$\begin{bmatrix} 24 & 20 \\ 24 & 40 \end{bmatrix}$	21 40				24 40	24 40	26 40	24 40		
383	21 20		21 20										21 20
384			. <b></b>					• • • • • • • •	.				
385 386		10 40		6 20		· · · · · · · · ·	· · · · · · · · ·		.   .	1			
387								• • • • • • •	.	4 0	80		.
388	• • • • • • • •	· · <i>·</i> · · · ·			1		• • • • • •		 	_ 0 _	18 0		
389 390	· · · · · · · ·	12 40		10 20	1		1				1 0 10		
390 391									.				
392		23 0							.				
394	12 50	1 .	12 30			1			-				• • • • • • •
395		17 10	17 30			17 30		. 17 20	17 10	17 10	17 IO 28 O		
396					1	20 0			. 23 0				
397 398	· · · · · · · ·					27 40	1				. 26 40		
399									·   · · · · · · ·				
400	<i>.</i>			• • • • • • •		· · · · · · · ·	· · · · · · ·		 				
401 402	· · · · · · · ·	····											.
404					-					1		• • • • • • •	•   • • • • • • •
406							8 50	8 50				•	
			<u> </u>		1	<u> </u>	<u> </u>	<u> </u>	<u></u>			· · · · ·	

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. I.	Laur. 47•	Vat. 1594.
	o /	0 /	0 /	0 /	• /	0 /	o /	o /	0 /	0 /	0 /	0 /	0 /
408 409								11 20			· · · · <b>· ·</b> ·		• • • • • •
409 410	$ \left\{\begin{array}{ccc} 2 & 20\\ 2 & 30 \end{array}\right\} $		2 20	2 20		{ 2 30}			$ \left\{\begin{array}{cc} 2 & 30\\ 2 & 20 \end{array}\right\} $		2 20	2 20	•••••
411													
412									••••				
413	∫2I 0 <b>∖</b>		21 0	21 0		24 0		24 0					••••
415	[24 0]		21 0	21 0		-						21 0	21 0
416 419			· · · · · · · · · ·		1	l	1		ł		1		
422													
423 424			1					1					••••
425													· · · · · ·
426	• • • • • • •	• • • • • • •											
429		••••									• • • • • • •		{21 ( 24 (
432	•••••												· • • • •
433 434	18 15		18 15	18 15	18 15								• • • • •
435	21 40												
436 438	21 40	21 40	21 40 8 30	8 30	21 40	21 40	21 40	21 40				21 40	21 4
439	16 O	16 0	16 0	16 0	16 O	16 o	16 O		16 O		830 160	8 30 16 0	16
442	∫15 IO									[		· · <b>·</b> · · · · ·	
444	15 30	• • • • • • • •		{15 10} 15 30}	• • • • • • • •	{15 10} {15 30}	•	15 10	15 30				· · • • • •
445										••••			
446				[ 0 40]			•					•••••	••••
448	0 40	0 40	0 40	{ 0 40 { 0 20}	0 40	0 40	0 40		o 40	0 40	0 40	0 40	040
449 450	· · · · · · · ·							13 0	••••				••••
452	13 0				13 0		13 0	13 0		13 0		I3 0	 13 (
454													
455						8 40							
457	(19 10)									•••••			
45 ⁸	19 40		19 10	19 10		{19 10} {19 0}			{19 10} \19 40}			19 10	
459													
460						$\begin{cases} 13 & 0 \\ 14 & 0 \end{cases}$	·						
462													
463 464		•••••		2I 30 24 IO	• • • • • • •		· · · · · · ·	· · · · · ·				• • • • • • •	• • • • •
465				24 10			· · · · · · · · ·				• • • • • • • •	 21 IO	••••
466 467	•••••				• • • • • •						0 10		• • • • • • • • • • •
407 468					• • • • • • • •		· · · · · · · ·	•••••	•••••	••••			••••
472		• • • • • • • •	[· · · · · · ·						•••••••	•••••	0 40		• • • • • • • • • •
473													
474													

# Collations of Manuscripts-Longitudes-continued.

~ " "	~	1.4	• • •	r +	,	• 1
Collations	~t	Manauscan	#+c/	anastaid	ac cont	tinuad
Collations	UI.	wanustr	v u s - I	JONELLUU	$a_{s} - c_{0}$	LIIIUCU.
0.00000000000000	~,		r ·			

Baily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374∙	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	0 /	• /	o /	o /	• /	0 /	• /	0 /	o /	• /	o /	0 /
408 409											7 10		
410	2 20	2 30	2 10					3 30	2 30	2 30			
411			2 20										
412 413			· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			2 40		· · · · · · · ·	· · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	
415	21 0	26 0	21 0				$ \begin{cases} 2\mathbf{I} & 0 \\ 25 & 0 \end{cases} $	25 0	24 0	24 0	24 0		
416		24 0											   • • • • • • •
419						)					26 0		
422 423										2 20			
424										28 20			
425 426								26 40					
429													
432		23 10							23 10	23 10	1		
433			 18 15			i		55	 21 40	21 40	21 40	21 40	
434 435		21 20		21 20				28 15	18 15	18 15	18 15	18 15	
436 438	21 40 8 30	8 10	21 40 8 30		 				21 40		21 40 	21 40 8 30	21 40
43° 439			16 0										16 O
442			4 0							• • • • • •			
444		15 30		15 30					15 20		15 10		
445 446		26 40		26 40						••••••••••			21 20
44 ⁰ 448	0 40	3 0	0 40	3 0				5 40	0 40	0 40	0 40	0 40	0 40
449	- +-				13 0								
450								1			2 40		13 0
452	13 0	13 0	13 0	13 0	13 0		16 301						19 0
454			• • • • • • •				126 30J						
455 457	5 20		· · · · · · · ·						7 30		7 30		
458	19 10	19 40	19 10				{19 40} {29 40}		15 10	19 40	15 10	19 10	
459		21 30		21 30			21 40	21 40	21 40	21 40	21 40	21 40	
460										14 5			
462		18 O		18 O									
463		21 40		21 40						 	24 10		
464 465	 	21 20		21 20									
466									 2 40	2 10	0 40		
467 468			 <i>.</i>	· · · · · · · ·									
472							 ∫24 I0∖				26 20		
473		24 30		24 30			24 10		24 20				
474											26 20		

0 11	~	3.6	T	*. 7	. • •
Collations	nt.	1 amaiscra	At c 0	maitudes	-continued.
Gouaitons	$\boldsymbol{u}$	wuuusuu	$\nu \iota s^{-} L \upsilon$	11 z 11 u u c s —	-continucu.

Baily's No.	Par. 2389.	Par. 2390.	Раг. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. I.	Laur. 47•	Vat. 1594.
	o /	o /	o /	0 /	o /	0 /	0 /	o /	0 /	• /	0 /	o /	0 /
478 479 481			I2 I0	12 IO								I2 I0	•••••
484		23 0						1			13 0		•••••
485		24 40				· · · · · · ·							•••••
486	{24 40 {21 40	21 40) 24 40)		21 20		21 20			21 40		$\begin{cases} 24 & 40 \\ 24 & 30 \end{cases}$	21 40	•••••
4 ⁸ 7	• • • • • •										[21 30]		
488 489		•••••	••••		• • • • • •						$\begin{bmatrix} 21 & 30 \\ 24 & 30 \end{bmatrix}$		• • • • • •
409 491	$ \begin{bmatrix} 17 & 30 \\ 8 & 30 \end{bmatrix} $	17 30	•••••		••••								
49 <b>2</b>	1 8 30J												•••••
493 494			1								• • • • • • •		
495		• • • • • • •										•••••	· · · · · · ·
497 498			25 20 27 0	25 20 27 0			1	26 20			5	25 20	
499												·	•••••
500 501													•••••
503										•••••		 	•••••
504 505	• • • • • • • • • • •	· · · · · · · ·		· · · · · · · ·	· · · · · · · · ·	 			i		• • • • • • • •		
506 508	 16 o	 16 o	16 o	 16 o	 16 o	16 o	 16 o	 16 0	 16 o	 16 o	 16 o	16 0	16 0
511 513			27 15	• • • • • • •		24 30		24 10					
516											27 I5	27 I5	• • • • • • • •
518 520	· · · · · · · ·	•••••••	· · · · · · · ·		· · · · · · · · ·	••••		6 <b>40</b>	· · · · · · · ·		· · · · · · · ·		
522 523	·			••••							•••••		
524 525	• ••••						••••		· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	•••••
526							 		· · · · · · · ·	· · · · · · · · ·	· · · · · · · · ·		
527 528	5 0	50		· · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	••••		•••••	•••••	•••••	5 0
529 531								•••••			22 15		
532	1/ 40	1/40	• • • • • • •									1	 17 40
533 534			• • • • • • •	• • • • • • • •				 					20 15
339 I					•••••	 Т 20	•••••	· · · · · · · · ·	•••••	• • • • • • •	• • • • • • • •	• • • • • • • •	
51				••••••									
542					•••••	•••••		· · · · · · · · · · · · · · · · · · ·	•••••	•••••	•••••	• • • • • • • • • •	
543 544					•••••		•••••	· · · · · · · · · · · · · · · · · · ·	••••••	· · · · · · · ·	20 20	•••••	
545 546	2 0			••••••	• • • • • • • •	• • • • • • •							20
JT			•••••	• • • • • • • •	•••••	•••••	•••••	• • • • • • • •	•••••	•••••	•••••		

## Collations of Manuscripts-Longitudes-continued.

Baily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374·	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Viennx Trap. 24.
	• /	。 ,	o /	0 /	0 /	o /	o /	o /	0 /	o /	o /	o /	0 /
478		13 0											
479	I2 IO	12 30		-								12 10	••••
	• • • • • • •	14 30		14 30			1	1		· · · · · · · ·	••••		• • • • • • •
,		21 20											
485		21 20											
1	· · · · · · · ·						-	-	1			• • • • • • •	• • • • • •
487								-	••••••		26 30	• • • • • • • •	
488											• • • • • •	••••	
489				•••••					1			0 10	
491		8 30		-			16 30					· · · · ·	
492		18 O		18 O							<b></b>		
493		17 10		17 10	· · · · · · ·						••••		
494		l										• • • •	28 50
695 497	25 20	26 20	1 1				26 20		26 20	26 20	26 20	26 20	
498							(07 O)				26 O	27 0	
499						1							
		0 30		0 30								<b></b>	
501			<b>.</b>	<b>.</b>				19 0					
								8 10					
				17 30		• • • • • • •							
505 506			24 20										
508	16 O	12 10	16 0	12 10	16 O				16 O		16 O	16 O	16 O
5		24 40		24 40							26 O		
513	27 15	27 0	27 15			· · · · · · · ·		2/ 0	27 0	27 0	20 0		
516 518	· • • • • • • •	6 10		6 40				6 40	6 40	6 40	6 40		
-	· · · · · · · ·							1					
522					1	[			<b></b>				
523													
21		15 0		15 0								22 15	
	· · · · · · · ·	28 20		27 30									
-		5 0		28 30						28 0			
528					50				50	50	50	···· ·	
5 7											· · · · · · · ·		
50	• • • • • • •	2I IO			17 40		27 40	27 40	17 40	27 40	16 40		
532 533	20 15		20 15	21 0									
		21 0	1 1								24 20		
535							27 30	27 30		27 30	20 50	1	
539	••••			I 20	•••••		2 20	2 20	.	2 30			
				0 40									
541 542			1 1									1	
543									.	28 0	28 0		
544													
545		2 0							1				
546			· · · · · ·						.	1 5 20	1		1

o /	o /	0 /									<b>47</b> ∙	1594.
		1	• /	0 /	o /	o /	0 /	0 /	0 /	o /	• /	o /
						1					· · · · · · · ·	· · · · · · ·
	<i>.</i>								1			•••••
						{						
												• • • • • • •
						1	1		• • • • • • •	26 0	•••••	
· · · · · ·												••••
		.										
0.0											25 30	
							1				930	9 30
1	1	1		1		1		)				
1	1			1						25 20	25 20	
				1	1					1		
	1								••••		••••	
					1			1		1		
				1			-	1	1			· · · · · · · ·
		• • • • • • • •	•   • • • • • • •					1				
					1				1			
		• • • • • • • •	.				17 40					
		• • • • • • •	• ••••			•  ••••••			16 40			
23 50	23 50	23 50	23 50	23 50	2.2 50	22 50	22 50	10 50	22 50	22 50	22 50	 
27 20	1											
						· ·						
			· 740		· <b>  · · · · ·</b> · · ·	.						
				-	90			-	9.0	90	9.0	
		•										
6 10		· · · · · · · ·		•   • • • • • • •		• • • • • • • • • • •						
				• • • • • • • •			• • • • • • •			•		11 40 10 50
										10 50	10 50	16 40
26 O	26 0	26 0	26 0	26 O	26 O	26 O	26 O	26 O	26 O	26 O	26 O	26 0
			. 23 0		23 0		23 0	23 20		23 0	· · · · •	
		•										
		• •••••		• • • • • • • •	• • • • • •							
		• • • • • • • •		• • • • • • • •		• • • • • • • •	· · ····			.		
[23 30]							·  · · · · · ·		•   • • • • • • •			
123 20	23 50	20 50		20 50	23 50	23 50	22 20		23 50	23 50	23 50	23 50
(21 (0)			• • • • • • • •	• •••••		·   • • • • • • •	• • • • • • •			.		•••••
124 50	21 50	21 50	21 50	21 50	21 50	21 50	25 30	21 50	21 50	21 50	21 50	21 50
	9 30 {25 20 25 40  23 50 27 20  23 50 27 20  6 10 11 40 10 50  26 0  {23 30 23 20  {23 30 23 20  {23 20                                                                                                                                                                                                                                                                                                                 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Collations of Manuscripts-Longitudes-continued.

166

<u> </u>	~		• т	• •	
l'allata ana	~ <del>+</del>	1 amarca		na antaidan	continued
COLLATIONS	UI.	wanust	nn - L	menuues—	-continued.
Q 01111101110	~		· · · · · · · · · · · · · · · · · · ·		

Baily's No.		ur. 8.	Vier 12		V: 10	at. 38.		at. eg. o.	Bo 337		La 6	ur.	La 4				B. Reg	M. . 16.	В. 747			od. 69.	La 15	u <b>r.</b> 6.	Vier Tra 24	ap.
	٥	,	0	,	o	,	0	,	0	,	0	,	0	,	o	,	o	,	o	,	٥	,	0	,	o	,
547						• • • •														40	• • •		• • •			
				• • •	•••	••••	F		• • • •											0						•••
1 22	•••	• • • •		•••	• • •	••••	1		••••								· · · ·		7			• • • • • • • •				
551 552			10	50																						
560			26	0			26	0																		
561											1									10	1					
562																										
563		••••	1				•	30									· · · ·	1				 30				• • •
565 569	25			· · · ·	25	30	25	30																		
570	$\begin{bmatrix} -5 \\ 9 \end{bmatrix}$	30			9	30			9							· • · ·				• • • •						30
582						• • • •									1		22	40						-		
583		• • • •		• • • •		• • • •				••••			22	7	22	7	• • • •	• • • •	22	7	22	6	•••	• • • •		•••
584	25	20	25	40	-						1				1		-	40	-	40	25	40	· · ·			• • •
585	1		29	40		• • • •																				•••
586	1	 40	21	 40	22													20		20		•				
588	1	, 40 	24	20		<b>T</b>	24	20																		• • •
589	1		1												1											•••
590		• • • •											• • •		· · ·			••••		•••	10	40			••••	•••
591	1	• • • •			1							• • • •													· · · ·	•••
592							1								1											
593 594																									16	
595											1				1							20				
.596		50	28	50	23	50	28	50					26	50		50		50								
597	27	20	27	40	27	20		••••					28 ∫28	30		50	27	40	21	40	20	40				•••
598													120 127	40	27	40						••••				•••
599					1										28	30			28	30				. <b></b> .		
601	1		1											••••					· ·							
602														•••				••••			4	40				••
603	1	• • • •					7	40		· · · ·	• • • •	• • • •		•••		• • • •	···	• • • •			· · ·	• • • •		 5 0		
604		0		0		0 40		0				• • • •		••••	8											
605 606	· · ·	••••	1	0 		40				 					1											
608				40			6	40						10		10		· <b>·</b> · ·								•••
611		40		••••	10	50	II	40		. <i>.</i> .		40		••	•   • • •	•••		• • • •								•••
612	10	50	1		1	•••		20			10	-	• • •	•••	• • • •	• • •		• • • • • • • •							10	 50
613			1	· · · ·		40		40 10	1	 0		 		•••		•••		••••								0
614 615	20	0		10		 40			1 -								23				1 -	0	23	0		
						-	-0		1				<b>§18</b>	40	l I				1							
616		• • • •	18	30	20	0	18	30		• • •	•   • • •		119	40												
617						20		· • • ·		• • •	·   · · ·		• • •	•••			• • • •			• • •	•  ••••	••••	.   • • •	•••	• • • •	•••
618				• • • •		40		•••		•••		• • • •		•••	•  •••	•••	• •••			•••			:::			
619			· · ·			40		••••		 0		• • • •		•••											. 20	0
620	· • •	• • • •		••••		0		•••				••••	···								1 25	3 20			20	40
621	23	50			23	50		•••	. 20	50	23	50			• • • •					•••				•••		40
622						• • • •								•••	.  26	20		• • • •		0		• • •	• • • •	••	•   • • •	•••
623	21	50	21	50			21	50	21	50							.		26	i 50			. 21	50	21	50
	- 41	- <u>-</u>	1 41	24	1			5-	1	J-	1		1		1		1		1		1		1			

A 11 1	A 18		T	•	7	
Callations	4 Л.	a an ar a ama	4ta	OAA antas	daa	continued
COLLALIONS O	I /V	1 0.11.11. \(.TL	m - L	ONFILM	aes	commuea.
Collations o			<i>p 10</i> –	0.000000	~~~	comenta e da

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47·	Vat. 1594.
	o /	0 /	0 /	0 /	o /	0 /	0 /	o /	0 /	0 /	• 1	0 /	0 /
			 <b>.</b>										• • • • • • •
- (	-		20 40	28 20	20 40				27 40	28 40			
627		28 20		27 20			27 20		27 40	27 20	27 20	27 20	27 20
1		• • • • • • •						1					•••••
631		· · · · · · · ·									 		
~										1			
634										· · · · · · · ·		27 40	
~	 		· · · · · · · ·										•••••
638	• • • • • • • • • • • • • • • •						 	5			••••••	· · · · · · · ·	 II 20
639 640				I2 40							•••••		•••••
643			••••						 	· · · · · · · ·		· · · · · · · ·	· · · · · · · ·
													•••••
646						· ·	1			· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·
648 649	· · · · · · · ·		••••				1						•••••
650				· · · · · · · · ·	· · · · · · · ·	· · · · · · · ·		8 40		· · · · · · · · ·	· · · · · · · ·		· · · · · · · ·
651 652	••••							15 40					· · · · · · · ·
654	••••••					·····			••••				· · · · · · · ·
100					1					•••••			
658					 								· · · · · · ·
659 660										•••••	•••••		
	•••••	{II 50} {2I 40}				•••••	1	••••		••••	••••		• • • • • • •
662		21 40							• • • • • • •		-		
663						· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		••••				•••••
667													
669						· · · · · · · ·		· · · · · · · ·			• • • • • • • •		
670 672	••••	· · · · · · ·					1						
675	{21 IO}	1 2T TO	21 10			• • • • • • • •		1			• • • • • • •		
6 <b>7</b> 6	124 10	21 10	21 10				21 10			21 10	2I IO	21 10	21 10
678	••••••			· · · · · · · ·	· · · · · · · ·	 			· · · · · · ·				· · · · · · · ·
679 680	· · · · · · · ·	20 10	• • • • • • •	• • • • • • •							20 0	20 0	20 0
682				· · · · · ·		· · · · · · · ·	•••••••  •••••	· · · · · · · · ·					· · · · · · ·
683 684	•••••			· · · · · · ·	••••••	• • • • • •	· · · · · ·						
685	•••••	·····	20 10	20 IO	· · · · · · · · ·	26 o	· · · · · · ·					 20 IO	
686	(22 30)	•••••	•••••	•••••	· · · <b>· · ·</b> · · ·	• • • • • • •					23 0		
007	122 20J	•••••	22 30	22 30		22 50	••••••	17 40	$\begin{cases} 22 & 30 \\ 22 & 20 \end{cases}$		22 30	22 30	
	$\begin{cases} 23 & 0 \\ 23 & 20 \end{cases}$	•••••	23 20	23 20	•••••			22 40	23 20	23 20	23 20	23 20	

# Collations of Manuscripts-Longitudes-continued.

Baily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374-	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.		Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	o /	o /	o /	o /	o /	0 /	0 /	0 /	o /	0 /	• /	0 /
							1						
625									•••••				
626					-	1					-		
627	,			1	1			4	1	2		1	
628 630													
631		5 20		5 20									
632										27 30			
										2			
637											9 10		
638													
639 640			1		1								13 0
643													
		6 10											
									1				-
648													
649				.	.	. <b> </b>			• • • • • • • • •	3 20	6 50	.	
					·   · <i>·</i> · · · · · ·			10 0	• • • • • • • • • •				
652			1										
654		10 30								1 1			
655 65 <b>7</b>		.   .								20 20 . 19 30 .			
658								19 55					
659	1	21 40					-	-	22 40				
660		.							•   • • • • • • •		26 10		
661		.			• • • • • • • •	• • • • • • • •			•   • • • • • • •			•   • • • • • • •	
662													
663		.							. 23 15	1		23 15	1
667		12 40							12 40				-
669				16 10						1		• • • • • • • •	
670					•   • • • • • •	•	0 0				• • • •	•   • • • • • • •	
672						•	•						21 10
675	21 10		21 10		1							• • • • • • • •	
676	••••	.				.	1		1		••••	• • • • • • •	
678	20 0			•			1 I I I I I I I I I I I I I I I I I I I	· · · · · · · ·			 		
679 680	20 0		26 40										
682		14 0		. 14 0		• • • • • • •		•			• • • • •	•	•
683											 		
684 685	20 10	20 30	20 10							20 20	20 30	20 30	
686										. 23 20	28 0		• •••••
687	22 30		22 30	22 20			. 22 20	22 20	22 20		22 20	22 20	
											28 O	23 0	
688	23 20	20 20	23 20			•	• • • • • • •		. 23 0	23 40	20 U	U	
							1						J

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	• •	0 /	• /	o /	o /	o /	0 /	0 /	o /	o /	0 /	• /	0 /
689										22 30			• • • • • •
690	${28 \ 20 \ 28 \ 40}$		28 20	28 20							28 20	28 20	
691				0 20							0 20		
693	• • • • • • • •												• • • • • • •
695	••••		0 40	• • • • • • •		•••••	• • • • • • •				o 40	o 40	• • • • • •
696 699			••••			• • • • • • •		0 10	• • • • • • •		· · · · · · · ·	•••••	• • • • • •
700						· · · · · · · · · ·							• • • • • • • • • • • • • • •
, 701						· · · · · · · ·							
702		· • · · · · ·		· · · · · · ·		••••			• • • • • • •	· · · · · ·	• • • • • • •	• • • • • • • •	• • • • • •
703 704					· · · · · · ·	•••••	· · · · · · · ·	26 20	••••	••••	••••	• • • • • • • •	•••••
705	$\begin{cases} 2 & 30 \\ 2 & 10 \end{cases}$	2 40	2 40	$\left\{\begin{array}{cc} 2 & 10 \\ 2 & 30 \end{array}\right\}$		•••••				2 40	$\begin{cases} 2 & 10 \\ 2 & 30 \end{cases}$		2 40
706						29 30							
708	$\left\{\begin{array}{cc}I & IO\\I & 2O\end{array}\right\}$				· · · · · · · · ·	$\left\{\begin{array}{cc}I&20\\I&I0\end{array}\right\}$						•••••	
709		· · • • · · · ·		••••		•••••	• • • • • • •				· · · · · · •	• • • • • • • •	• • • • • •
710 711	· · · · · · · ·		•••••	• • • • • • •	•••••	••••	•••••	0 20	•••••	• • • • • • •	•••••	•••••	• • • • • •
714						· · · · · · · ·							 
715					<i>.</i>								
716	$\begin{cases} 10 & 10 \\ 16 & 0 \end{cases}$	16 20	16 O	16 O	16 O	16 O	16 20		16 O	16 20	16 20	16 20	16 20
717					<b>.</b>		• • • • • • • •						
718	$\left\{\begin{array}{c} 7 & 20\\ 7 & 40 \end{array}\right\}$	7 40	7 20	7 20			••••••	•••••	$\left\{\begin{array}{c} 7 & 40\\ 7 & 20 \end{array}\right\}$	· · · · · · ·	7 40	{ 7 40 7 20	7 40 7 20
719		· · · <b>· · ·</b>				• • • • • • •	• • • • • • •						(320) (30)
720													
721				• • • • • • •		•••••	• • • • • • •		• • • • • • • •		••••	• • • • • • • •	
722 723			••••		• • • • • • •		· · · · · · · ·	••••	•••••	• • • • • • • •	•••••	•••••	••••
724												· · · · · · · · ·	
728		• • • • • • •			•••••			• • • • • • • •	• • • • • • • •				· · · · · ·
730 732		••••	• • • • • •	•••••		• • • • • • •		•••••	•••••	•••••	•••••	•••••	• • • • •
733									••••	· · · · · · · ·	5 0	5 0	5 0
734												, ,	
736													
738							· · · · · · · · ·			•••••	6 20	· · · · · · · · · · · ·	
739	• • • • • •				• • • • • • • •		• • • • • • • •	•••••					
741 743		•••••						• • • • • • • •				· • • • • • • •  •	• • • • •
745			4 40					· · · · · · · · ·				4 40	••••
746											4 40	4 4º .	
74 ⁸	(21 10)		• • • • • • •	• • • • • • •	•••••	• • • • • • •			• • • • • • • •		•••••	.	· · · · ·
749	$\begin{cases} 21 & 10 \\ 24 & 10 \end{cases}$	21 10		21 10				•••••			21 10	21 10	2I IO
750 751											• • • • • • • •		••••
752		1		1				•••••	· · · · · · · ·		· · · · · · · ·		

Collations of Manuscripts-Longitudes-continued.

Collations of Manuscripts-Longitudes-continued.

Baily's No.	La 4 ⁸			nna 4.		at. 38.	Re	at. eg. o.	Bo 337			u <b>r.</b> 5.		aur. 150		B. I S. 279	.		M. 5. 16.		М. 75•		od. 59.		aur. 56.	Tı	enna rap. 24.
	0	,	٥	,	0	,	0	,	0	,	0	,	0	,		0	,	0	,	0	,	0	,	0	,	0	,
689		•••	• • • •			• • • •		• • • •		•••				•••			• • •			26	40	•••			• • • •		
690	28	20	28	40			• • •							•••	. :	28	40	28	40	28	30	28	40		• • • •		
691	· · · ·		• • •			• • • •									. .						30						
693 695	••••	40		 20					· · · ·				1						20		30 20				••••		
		•	ł		1						1		1								30					1	
699	· · · ·	• • • •				••••				•••									• • • •				 40		••••	• • •	
700 701	••••	• • • • • • • •	· · ·	 		 		· · · ·	· · · ·			••••		 					••••		• • <i>•</i> • • • • •				•••	···	
702							1.1.1														••••						
703	•••						26	20 	1	•••		 	1				20		 		20 				· · · · ·		
704	∫ 2	10)				• • • •					1	 	1						10		 10						2 40
705	l 2	30)				• • • •			2						ł.							1					
706	• • •			• • • •									1	•			-				30						••••
708																									• • • •		• • • •
709	· • •		2	15																				1	• • • • • • • •		
710 711		••••		 20	···		4	20																			
714						• • • •				•••									• • • •						• • • •		
715			•••					• • • •	1			••••	1				•		• • • •			•••		•••	••••		
716	16	20	16	0	16	20	16	0				• • • •			•	10	30	10	10	10	10	10	10		• • • •	10	) 0
717		••••					12	0				•••		• • • •	•	12	10				• • • •					• • •	
718			7	40	{ 7	40) 20)	7	40				•••		7 40		7	40	7	40	7	40	7	40	7	' 40		• • • •
719													. 2	2 0		2	40			2	0						• • • •
720													. 2	2 20			о			2	20						
721															·		20		· · · · · · · · · · · · · · · · · · ·				40				
722				 0	1		1	 0				 . <i>.</i> .					40 	1 .									
724		 	-		1																0	28	0			. <b> </b>	
728						•••						•••		•			40 20			• • • •		   0		·   • • •	· · · · ·		 
730 732				 20			4			• • • • • • • •		· · ·	1	 			20	4	20 J	4	20		•	4	<b>f</b> 20		
733	5	-				0		• • • •				• • •			. .	•••			• • •	• •••	• • •		• • •	• • • •	••••	• •••	
734							.	••••		•••					>	32	0			. 26	i o		• • •	• • • •		·   · · ·	• • • •
736													. 20	0 20		20	20			. 20	20					·   · ·	
738		• • • •		• • • •		•••		• • • •		•••		•••	• • •		•	•••		•   • • •		•  • • •	• • • • • •	20	· · · 20	•  •••	••••		••••
739		• • • •		••••		• • • •	•   • • •	• • • •		••••		•••		· · · ·		•••	 		• • • • • • • •	1	 . o						
741 743		 												• • • •		••		.			40			1			7 40
745	4	40		20		40		20				· · ·		4 20			20 30		220 730	4	1 20 7 30		720 530		220 730		· · · 
74 ⁶ 748			27	30		• • •	27	30		• • • • • • • •		• • •		/ 3C		•			· · · ·		t o						
749	21	 10	21	10	21	10	21	10	21	10								.		. 24	ļ 20					. 2	1 10
							. 21								1					. 20	0 10						
750 751	•••	 														•••	• • •				30				• • • •		• • • •
752						•••	.	•••		•••	.	• • •	•  •••	•••	•	•••	•••	•   • •	••••		3 50 5 20	1	 		 		• • • •
754						• • • •				• • •	.	•••	·   · ·	•••	•• •	•••	•••	•   • •	••••	1 *	, 20						

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	0 /	o /	o /	• /	o /	o /	0 /	0 /	o /	o /	0 /	• /	• /
755				· • • • • • • •								•••••	• • • • • • • •
756						· · · · · · ·			• • • • • • • •		· · · · · · · ·		· · · · · · · · · ·
758													• • • • • • • •
759	• • • • • •			••••••								• • • • • • •	• • • • • • • •
760 761	• • • • • • • • •												· · · · · · · · ·
762													
763							• • • • • • •						•••••
764	${26 20}{26 40}$	1		23 20	26 20			26 20				26 20	26 20
765 766			•••••					· · · · · · · ·				•••••	•••
767			1			27 IO			· · · · · · · ·			26 30	
768	{20 50} {19 50}	20 50					20 50					20 50	20 50
770	1 2												
772	1							• • • • • • •			• • • • • • • •	• • • • • • • •	•••••
773	∫II 40 <u>\</u>									• • • • • • •		•••••	
775	114 40	11 40	11 40	14 40	11 40		II 40	• • • • • • • •	• • • • • • •	11 40	II 40	11 40	11 40
776	 IO IO						 	 16 o					
777				10 0	10 10	10 0	10 0	10 0		10 0	16 0	16 O	16 O
779	5 30	5 30											5 30
780 781	· · · · · · · ·	• • • • • • •	(					• • • • • • •	• • • • • • • •	• • • • • • •			
782				· · · · · · · ·		· · · · · · · ·	· · · · · · · ·	• • • • • • • •	•••••	•••••		•••••	•••••
783						21 10			21 10				
784 785						•••••				1	· · · · · · · •	•••••	
786		11 50	· · · · · · ·		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	11 50		 11 50			11 50	11 50
787										-	-		-
788							• • • • • • •	3 30					
789 791						• • • • • • •				• • • • • • •	• • • • • • •	•••••	••••
792											· · · · · · · ·	· · · · · · · · · ·	
793				•••••		• • • • • • • •	· · <i>·</i> · · · · <i>·</i>						
796 797			· · · · · · · · ·			2I 40	· · · · · · · · ·	21 20	•••••	•••••		••••••	
798													
800 802		•••••		•••••		•••••	• • • • • • •	•••••	•••••				
802				· · · · · · · ·	••••			•••••••	• • • • • • •	•••••	•••••	•••••	
804		{11 50}						14 50		· · · · · · · · ·	TA 50	•••••	
805	{ 7 30} { 0 10}	۱ <u>14</u> 50	7 20	60 40	7 20			-+ 30		•••••	*4 50	•••••	
805					7 30	• • • • • •	•••••	•••••	•••••	• • • • • • •	•••••	•••••	
800	19 40	19 40 	19 0		•••••		19 40	19 20	• • • • • • • •	•••••	•••••	• • • • • • •	19 40
809		24 20				20 20	29 20	21 40	•••••	29 20	29 20	29 20	29 20
810	• • • • • •	• • • • • • •	• • • • • •		•••••			•••••					
811 812	· · · · · · ·	25 20	•••••		•••••	• • • • • • •		• • • • • • •	• • • • • • • •		•••••	.	
813				· · · · · · · ·			25 20			25 20	• • • • • •		25 20

Collations of Manuscripts-Longitudes-continued.

Collations of Manuscripts—Longitudes—continued	Collations of	Manuscripts	-Longitudes-	-continued.
------------------------------------------------	---------------	-------------	--------------	-------------

aily's No.	Laur. 4 ⁸ .	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374∙	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienn Trap 24.
	0 /	o /	0 /	0 /	o /	• /	o /	o /	0 /	• /	o /	。,	• /
755								14 30		14 20			
										14 20			
151		l					1		• • • • • • •	15 10			
15									· · · · · · · ·	16 50			
131							1			25 50 27 40			
·										28 0			
762								1		23 40	•		
763	26 50						26 50	26 50		27 10			
764	-		26 20							26 50			26 2
765											26 O		
766											26 40		
767	26 30	26 10	26 30					26 10	26 10	26 10	26 10	27 10	
768	20 50		20 50	12 50	20 50								20
770													
772													
773		18 30		18 20									
775	11 40	11 40		11 40	11 40								II
776											13 40		
777	16 0	16 0	16 0	16 0					10 10	IO IO	10 10		
778													
		5 30							5 30	5 30			I
· _											26 0		
									24 40	24 40			
783		21 40		21 40						· · · · · · ·			
784							22 10	22 IO					
785								12 10		<b></b>			
786	11 50	11 30	11 50	11 30									
787	•	1	1							· • · · • •			15
788												10 30	
789				5 30							3 50		
791													
792 793										17 50			
796								12 10		22 0			
797		21 40		21 40			J		. 24 20		24 20	24 20	
798										0 10			• • • • •
800		28 20								20 10			
802		10 20					• • • • • •		•   • • • • • • • • •   • • • • • • • •		1		
803		11 45		11 45									
804							41 50			• • • • • • •			• ••••
805		7 10		7 10	7 30								.
806									19 40				
807		19 40			1								·   · · ·
809	29 20		29 20					. 29 20				•	·   · · ·
810								29 10			a6		
811								1					• • • •
812	25 20		25 20										
813		21 50		21 50					. 24 20	24 50	24 20	-+ 20	

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
814 816	°' {I 0 4 0	o /	o /	°, 40	• /	° ' { I 0 { 4 0}	• /	• /	• /	• /	• /	• /	
817				· · · · · · · · ·			1						• • • • • • •
822 824	-	25 20	25 20	25 20	25 20	-	25 20	-	25 20	25 20	25 20	25 20 	25 20
826													· · · · · · · ·
827											21 40	• • • • • • • •	•••••
829 832	1		· · · · · · · ·			6						· · · · · · · ·	· · · · · · · · ·
833				•••••						••••	20 20		• • • • •
840 842					· · · · · · · ·		· · · · · · ·			· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	••••••••
844	1	20 0									20 0	20 0	20 0
848 849	1						1	22 IO I3 O		· · · · · · ·		29 30	
850		11 20	1 1				1				II 20		
851		i							1 1	· · · · · · · ·		• • • • • • •	• • • • • • • •
852 856				· · · · · · · ·			· · <b>· ·</b> · · ·	8 20		· · · · · · · ·	• • • • • • • • •		• • • • • • • • •
860		<b></b>		· · · · · · ·									
861	10 IO		16 10		16 10			16 10					• • • • • • • •
864													
865				· · · · · · · ·		1		• • • • • • • •		• • • • • • •		•••••	
867	[23 10]			· · · · · · · ·				•••••	•••••		•••••	•••••	· · · · · · · ·
868	123 0)						-			-	•••••	•••••	23 0
869 870					· · · · · · ·		24 IO		· • · · · · · ·	•	•••••	24 10	24 IO
871												· · · · · · · · ·	 
873		••••							• • • • • • •		• • • • • • •		
⁸ 74 877			· · · · · · · ·	· · · · · · · · ·	· · · · · · · ·				•••••	1			
878											29 0		 
879 886	14 10	14 10	· · · · · · · ·	•••••	• • • • • •	••••	•••••			I		1	14 10
889								o -		· · · · · · · · ·		· · · · · · · ·	
890 891	• • • • • • •		•••••	· · · · · · ·		· · · · <b>· ·</b> · ·		ΙO			••••••••		
892				· · · · · · · ·		26 o		26 O			26 10	26 10	26 10
893				· <b>· · · · ·</b> ·									
894 895			· · · · · · · ·	• • • • • • •	•••••	•••••	•••••	•••••	· · · · · · · ·	•••••	•••••	• • • • • • • •	
896					· · · · · <i>·</i> ·							· · · · · · · ·	 
898 800	22 0	17 30					17 30			17 30	17 30	17 20	
899 900			23 O	∠ <u>5</u> 0		23 0	23 20	•••••	23 0	23 20	23 20	23 20	23 20
901		•••••	• • • • • •	• • • • • •	• •••••								
902 903			••••••••••••••••••••••••••••••••••••••										
904			• • • • • • •					22 10					
906 007	• • • • • • •							6 40					
907 909	• • • • • • •	•••••	•••••					8 20					
								•••••	•••••	•••••	• • • • • • •	•••••	

Collations of Manuscripts-Longitudes-continued.

A 11 . 1	^	1 /		F •.	, , ,
( all at a nac a	<b>.</b> +	1 1 amais com	Atc .	na antaic	les—continued.
$\cup OLLOID U \cup U$		<i>wianustr</i>	ms = -1	Joneriuo	wscontinued.
	· J		r		eonemaeur

Baily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374-	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	0 /	0 /	0 /	0 /	• •	• /	0 /	o /	0 /	• /	• /	o /
814		4 0		4 °						I 10			
I									1	50			
817 822	25 20	25 20	25 20	25 20				25 20	25 20	25 20	25 20	25 20	25 20
	5	1 5				1		-		-	-	-	-
826													
827 829													
832		23 20	]								28 40		
833													
1 1							]		.			•	14 0
842 844			20 0										
848	29 30	29 10	29 30						29 10	29 10	29 10		
849									. 13 0				
851			18 50						•				
852									.				• • • • • • • •
												-	
860		•	1	ļ					. 4 10				
861		<b>16 0</b>				. 16 o						16 O	
864	· · · · · ·			16 O					•  ••••••			1	16 40
865 867	21 0	21 20		21 20						21 0	1		
	1			1									
868		-	1				1		23 0	-	1		
869	24 10		24 10			• • • • • • •		. 23 20					
870 871		5 20						5 10					
873										.]			
874		• • • • • • • •				• • • • • • •	<i></i> .				22 0	.	22 0
877 878		• • • • • • •											
879		. 14 10						. 15 10	14 10	14 10	14 10		
886							. 21 25	21 25			.	•   • • • • • •	
889		•   • • • • • •	• • • • • • •			.				2 0	• • • • • • •		
890	26 10		26 10							. 4 10			
892													·  · · · · ·
893	22 0						• • • • • • •						
894		•   • • • • • •	. 14 20		• • • • • •		. 15 20			1			
896	·····						. 15 30	15 30					
898	17 30		17 30	17 30			. 17 30	17 30			. 16 35		i
899	23 20			23 0	23 0		• • • • • • •	•				•   • • • • • • •	. 23 C
900		1 -0									1		
901			1			1						1	
903					• • • • • • •								
904		.	. [			• • • • • • •							
906		•   • • • • • •											
907													
1 1-9		1											

A 11 1			• •	• 7	• •
Collationa	~+	A amarcan	A+c 1	na gataldar	continued
COLLOUT	<i>U</i>	- IVI ATLUNCT	$m_{1} - m_{2}$	my wuues-	-continuet.
00000000000	<i>u</i>	111 001000001	Pro		-continued.

aily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat 1594
	o /	0 /	0 /	o /	o /	o /	o /	0 /	0 /	0 /	0 /	0 /	• /
910													
911											· <b>· ·</b> · · · ·	· · · · · · · ·	• • • • •
912	$ \left\{\begin{array}{c} 4 & 20 \\ I & 30 \end{array}\right\} $												• • • • •
913	2 20										4 20	4 20	4 2
914					l 6								
915	11 30		11 30		•	•		[	11 30	••••			••••
919 921	· · · · ·			· · · · · · · ·			· · · · · · · ·		· · · · · · ·		••••••	• • • • • • •	
922								2 10					· · · · · ·
924								7 4 ⁰				• • • • •	
926	· · · · ·								• • • • • • •			•••••	••••
927	$\left\{\begin{array}{c} I & IO \\ I & 2O \end{array}\right\}$	I 40	$ \left\{\begin{array}{cc} I & IO \\ I & 2O \end{array}\right\} $	13 10			I 40		140	I 40	1 40		I 4
928													
929													
931	• • • • • •		i	• • • • • • • •						• • • • • • •			•••••
932 933							· · · · · · · ·				· · · · · · · ·		• • • • •
934 934						21 0							· · · · · ·
936													• • • • •
939		····						· · · · · · ·	• • • • • • •	• • • • • • • •			••••
941 942					••••		••••••	· · · · · · · ·	· · · · · · · ·				••••
9 <b>42</b> 943													• • • • • • • • • • • •
944	[							22 40					
946								13 40		• • • • • •			••••
947 951						· · · · · · · ·	••••••		· · · <i>·</i> · · · ·	• • • • • •	• • • • • •		••••
954						· · · · · · · · ·	· · · · · · · ·			· · · · · · ·			· · · · · ·
955													
956									• • • • • • • •			<i>.</i>	
959 960	· · · · · ·	· · · · · · · ·		2 20		•••••	• • • • • • •			••••••	• • • • • • •		
962				2 20		• • • • • • • •	· · · · · · · ·	· · · · · · · ·				•••••	
963													
964 066			••••••	• • • • • •						• • • • • • • •			
966 967			• • • • • • •		• • • • • • •	•••••	• • • • • • •	•••••	• • • • • • • •	• • • • • • • • •			
969			8 20	8 20				t i	. <i>.</i>		8 20	8 20	
970													
971			•••••					· · · · · · · ·					
972	••••			•••••	(25 20)	•••••	•••••		• • • • • • • •	•••••	•••••	•••••	
973				· · · · · ·	$\begin{cases} 25 & 30 \\ 25 & 10 \end{cases}$						25 20		
974													
975		•••••	•••••	• • • • • • •	• • • • • •								
976 978	0 40				3 10	3 10		• •	• • • • • •				
970 979			0 40	0 40	0 40	•••••	• • • • • • •	· · · · · · · ·		o 40	•	o 40	040
980						· · · · · · · · ·					· · · · · · · ·		 . <i></i>
982													
983		21 50				21 50	21 50	21 50	21 50	21 50			21 50
984 985	· · · · · · · ·	•••••			i		•••••	• • • • • • •	1	•••••			
2~3		••••	•••••	• • • • • • •	• • • • • • •	20 O	• • • • • • •	• • • • • • •				8 30	

<u> </u>	r	7 4	•	<b>T</b> •. 7	
( ollations	nt	Nanus	<i>こかれ</i> すで―	-longitudes-	-continued
Gouditons	<i>v</i> _j	11101000	crepes	–Longitudes–	continucu.

Baily's No.	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374-	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	• /	0 /	0 /	0 /	0 /	0 /	o /	0 /	0 /	0 /	o /	0 /
910 911				1			1				28 O	•••••	
911 912		4 30		1							· · · · · · ·		
913													
914					• • • • • • • •			22 10					
915 919	 	1 -		1				1		14 50			<i>.</i>
921									• • • • •				
922 924	· · · · · ·			· · · · · · · ·				 30 0	· · · · · · · ·		·· ·	· · · · · · ·	· · · · · · · · ·
926							9 20	••••					
927		I 30	I 40	1 30				50 40	-	-			
928 020		 11 20					15 30 	•••••					
929 931								18 30		18 50			
932								-					
933 934	· · · · · · · ·												
936							· · · · ·			7 10		· · · · ·	· · · · · · ·
939 941								19 10					
				 						· · · · · · · · ·			· · · · · · · ·
943 944										22 20			
946 047				<i>.</i> 									· · · · · · ·
947 951		17 20		17 30						2	6 30		
954			· · · · · · · ·				16 30	16 30	••••	16 30		•••••	 16 IO
o56													
				6 40				<i>.</i>		· · · · · · · · · · · · · · ·	••••		· · · · · · ·
961					· · · <i>· · ·</i> ·					8 30			•••••
963	· · · · · · · ·					••••	<b></b>	 17 O		16 40  . <i>.</i>			
964 966	 	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·				- <i>,</i> -				5 20	
967 969	· · · · · · · · · · · · · · · · · · ·	8 20	16 20 8 20	 8 20	· · · · · · · ·		· · · · · · · ·	· · · · · · · ·		·		8 20	 
909 970	· · · · · · · · ·	21 10	21 10	21 10						24 20	• • • • •		••••
971		11 40	28 20	11 40		· · · · · · · ·	1 1	 		14 IO     I		· · · · · · · ·	· · · · · · · ·
972					25 20								25 30
973	•••••	29 50	25 30		25 30			50 0					
974 975	· · · · · · · ·	· · · · · · · ·										4 O	
976			-		- 1		1	•••	0 30	5 30	0 30		3 IO
978 979	• 40 • • • • • •	030 140		 I 40		• • • • • • • • • • •		30 40	3 40	3 40			
980	· · · <b>· · · ·</b>	10 40	· · · · · · · ·			•••••	 		20 0	1	 20 0	20 0	
20.	 	22 50				• • • • • • • •	21 7	21 7	21 50	21 50 2	21 50		-
984			23 0			. <b></b>				28 O 2	28 O		· · · · · · ·
985	•••••	• • • • • • •	8 50		•••••	•••••	• • • • • •						

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	0 /	0 /	o /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	o /	0 /
986		10 20	1 1								••••••		• • • • • • •
989			27 10	27 10				27 20		27 10	27 10	27 10	• • • • • •
99 <b>0</b>				<b></b> . <b></b>									• • • • • •
992	5										3 10	3 10	• • • • • •
993	{26 I0} {26 20}			26 20							26 20	26 20	• • • • • • •
994													• • • • • •
995								25 40					• • • • • • •
997													· · · · · · ·
998			{ 0 10} { 0 10}										
999								14 40					
1000													
1002					0 40								
1004		16 50	16 20	16 20						16 50			16 50
1005													
1007													
1008		14 50					14 50			14 50	14 50	14 50	14 50
1009													
1010													
1011													
1012													
1013	• • • • • •												
1014								5 40					· · · ·
1015									· · · · <i>·</i> · · ·				
1019	• • • • • • •												
1020	21 50												
1022 1025	$ \begin{cases} 14 & 0 \\ 11 & 0 \end{cases} $	 4 °				26 O			• • • • • • • • •	20 IO	26 0 4 0	4 0	 4 0
1026												•	•
1020				•••••		• • • • • • • •	•••••		•••••	••••	•••••	•••••	• • • • • • •
1020		••••		••••		• • • • • • • •		• • • • • • •	• • • • • • •	•••••		· • · · · • •	· · <i>·</i> · · · ·

Collations of Manuscripts-Longitudes-continued.

	Collations of Manuscripts-Longitudes-continued.													
	Laur. 48.	Vienna 14.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374-		Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475•	Bod. 369.	Laur. 156.		
									o /			0 /		
	27 10	20 20	27 10	27 10		• • • • • • • •		27 20	· <i>·</i> · · · · · · ·	27 20	26 10	27 10		
		1	3 10		3 0		0 20	0 20		0 20	0 20	0 20		
ł		1	1	1	1				26 10 					
										25 45				
l												0.40		

Baily's No.

					1				-	•		•	·		'	1		'	Ŭ	'	0	'	0	'	0	'	0	'
986			20	20			. 20	20								1 8	R	50										
989	27 10							10										20									1	••••
	~/ IC	1	•••	•••	/	10	/	10	[· · ·	• • •	•   • •	•••	•••		• • •	·   2	( ·	20	• • •	• • • •		20	20	01.0	27	10		• • • •
990		•	•••	••••		• • •	•   • • •	• • • •		• • •	· · · ·	•••	• • •	•••	• • •	•   • • •	•••	•••		• • • •	27	30		• • • •				
992	3 10	>	' 3	0	3	10		• • • •	3	0	1.	• • •		C	20		<b>)</b> :	20	0	20	0	20	C	20	C	20		
007	26 20	、 I			1 26	20	26	5 20	06	10									- (		1.0							
993	20 20	1	• • •	• • •	20	20	20	20	20	10	· ·	• • •	•••		•••	· · · ·	•••	•••	20	10	20	10	20	10	1			
994			20	30	1		. 20	30													27	40						
995		Ì		5																			(		1			
		· •	20	30	· · · ·	•••															5	45			1	• • • •		
997		•	20	30		•••	•   • • •	••••	25	50		•••	•••		• • • •		•	• •	· • •	• • • •		• • • •		• • • •	· · ·		25	50
998									0	10	1.																0	10
													•••										1			••••	Ŭ	10
999		•					.										•••								9	40		
1000							.					• •				1		[							-	•	13	6
1002							17	' <b>IO</b>								TC	: 1	10										
1004			τ6	50																50							1	
																				-								••••
1005																1 -		<b>,</b> 1	•••	• • • •	10	50	• • •			••••	• • •	••••
1007	· · · · · ·		•••		1			••••							••••					• • • •	•••	• • • •					• • •	
1008	14 50	<b>)</b>	• • •		14	50	1	• • • •				•••				9	) 5	50										
1009			0	40			. c	40			1					1									1	ⁱ		
1010			0	io			l c	io			I					16	5 1	ιο										
1011	0 40															1				 				••••				
1012										· · · ·										• • • • • • • •				••••		••••	• • • •	
1			4	40		• • •	F	40			1			•••	• • • •		• •	•••	•••	• • • •	••••	• • • •	0	10		••••		••••
1013		- 1		• • • •	· · ·	•••		10		• • •		•••		•••	• • • •	•••	•••	•••	•••	• • • •	• • • •	• • • •	•••	• • • •		••••	•••	••••
1014		•	- 5	40	• • •	• • •		40		• • • •	· ·		•••	- 5	40	5	4	to	- 5	40	5	40	5	40	5	40	• • • /	• • • •
1015		•				• • • •	30	20									• •											
1019			29	10			29	10																				
1020					1																							
1022			26	0			26	0						26	0	26	5	0	26	0	27	0	26	0	26	0	26	0
			-0	Ŭ	1		1 -0	Ŭ			1		•••		0			~	20	Ŭ		Ŭ				v		-
1025	4 0		II	0	1		II	0															16	0				
							1																					
1026		•	II	0				• • • •	• • •		· •	• • •	••				• •	•••	• • •	• • • •		• • •			•••		• • • •	$\cdots$
1028		•	13	30					• • •				• •															• • • • [
			-																									
				_	1											<u> </u>		1										

Vienna Trap. 24.

• •

Collations	of	Manuscra	ipts—	Latitudes.
------------	----	----------	-------	------------

aily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47•	Vat. 1594.
	o /	0 /	0 /	o /	o /	0 /	0 /	• /	0 /	• /	0 /	o /	o /
I		60 10					60 10	60 10		60 10	60 10		60 10
2		∫74 20∖					70 15			••••		••••	• • • • • •
3		(70 20)					70 20						70 20
4								75 20					
5					1	77 20							•••••
7				1					F 1	1			
8								· • • • • •					•••••
9 12						• • • • • • • • •							• • • • • • •
14				1									
15				1		1							•••••
16 18	44 0	44 0				44 O		44 0 44 0		 44 0	44 0	· · · · · · · · ·	44 0
19										39 O	·· ···	1	· · · · · ·
20 2 I						1			•••••				•••••
22	30 10		30 10						••••••••••••••••••••••••••••••••••••••				30 10
23	30 20	30 20	30 20		30 20		30 20			30 20		30 20	30 20
25 26						44 IO		44 10	· · · · · · · .   ·	• • • • • •	• • • • • • •	•••••	• • • • • •
27		1									· · · · · · · ·		· · · · · · · ·
28								•••••		• • • • • • •			
30 32													••••
33											•••••	· · · · · · · ·	23 30
34		.								• • • • • • •			
35 36			····						· · · · · · · · ·	• • • • • •	• • • • • • • •	• • • • • • •	•••••
37													
38									•••• •				
40				••••		••••	••••	•••••	-	•••••			
41	22 ⁴⁰ 30			1		1	1		•••••	22 30	22 30	22 30	22 30
42	23 0		23 0							20 20			20 20
43 44				· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·		22 I	· · · · · · · · · · · ·		· · · · · · · ·		••••
45													· · · · · · ·
40			••••										• • • • • •
47 48			85 30		85 30			•••••	· · · · · · · · · · · ·	•••••	•••••		• • • • • •
49													· · · · · · ·
51 52		••••		83 0		83 15		83 O					
53						••••••		o <u>4</u> 10	· · · · · · · · · ·	•••••	•••••	• • • • • • • •	••••
55 56						77 50							 
56 58			81 20	• • • • • • •	•••••	78 50	• • • • • • • •	•••••		•••••			
59 59						· · · · · · · · ·	· · · · · · · ·	•••••	· · · · · · · · · · ·	•••••	81 20		• • • • • •
60	•••••			• • • • • • •	• • • • • • •	• • • • • • •							
61 62			•••••								80 00 1		
63	87 30	87 30		87 30	· · · · · · · ·		•••••	°4 30	•••••		•••••	••••	
64				86 20		86 o		86 30	· · · · · · · · · ·				 
65 66	80 20	80.20	 80 20	 80 20	80.00							84 15	
	00 20	00 20	00 20	00 20	00 20	• • • • • • • •	ou 20	· • • • • •	80 20	80 20	80 20	80 20	80 20

Collations of	of	Manuscri	pts—1	Latitudes—	continued.
---------------	----	----------	-------	------------	------------

Baily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374.	Laur. 6.	Laur. 45•	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475.	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	0 /	o /	0 /	0 /	0 /	o ,	o /	0 /	0 /	0 /	0 /
I	60 10	60 10			· · · · · · · · ·		300 0					60 10
2	70 15		• • • • • • •	· · · · · · · ·				• • • • • • • •	• • • • • • • • •			015
3	70 20	70 20					74 O	74 0	74 O	74 O	74 0	0 20
4	· · · · · · · ·	<b></b>		••••								74 40
5	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·		· · · · · · · · ·	• • • • • • • • •			72 30			• • • • • • •
7	•••••								74 30			
8	••••		39 20		· · · · · · · · · ·		•••••		39 30		· · · · · · · ·	
9 12	· · · · · · · ·									•••••••		47 6
I4	· · · • • · · ·			30 10								
15 16	· · · · · · · ·	 		30 20	· · · · · · · · ·			· · · · · · · · · ·	44 24	· · · · · · · ·		
18		44 0	44 O			44 O	44 0	45 0	44 0	45 O	44 O	44 O
19 20	· · · · · · ·			56 20	• • • • • • •		• • • • • • • • • •		34 O 29 6	• • • <i>•</i> • • • • •		
20	· · · · · · · ·			1								
22	30 10									36 20		30 10
23 25	30 20	30 20	· · · · · · · ·	30 20	· · · · · · · · ·	· · · · · · · · · ·	33 30	30 20	30 0	30 20	··· ·	30 20
26				· · · · · · · · ·	<i></i>	II O	<b>.</b>					
27 28	· · · · • • · •			56 30	••••••••••	29 30	20.20	· · · · · · · · ·	47 30	• • • • • • • • •	<i>.</i>	
30							39 15					
32	• • • • • • •							35 0				
33 34	· · · · · · · ·	23 30				13 30 15 40	13 30 15 40					· · · · · · · · ·
35						14 0	14 0					
36 37	••••	••••	•••••		<b></b>	· · · · · · · · ·			39 35 41 22	39 44	· · · · · · · ·	
38	· · · · · · · · ·						17 35		····	• • • • • • • • •		
40	· · · · · · · ·				• • • • • • • • •	• • • • • • • • •			22 0			· · · · · · · · ·
41	22 30	22 30	· · · • • • • •	$25{40}{30}$	22 40	22 45	22 45	22 45	22 45	22 45		22 30
42	. <i>.</i>	<b></b> .			<i></i>		1		20 20		23 0	20 20
43	•••••			••••	· · · · · · · · ·		23 15			· · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
44	•••••								78 50			
46	••••		75 20			75 20					····	
47	· · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	85 30					· · · · · · · ·			
49												
51 52	•••••		83 0									
53	· · · · · · · ·		81 20									·····
55 56	••••			<b></b>					· · · · · · · · ·		· · · · · · · · ·	
50 58	81 20	· · · · · · · ·						-	81 40	81 40		
59				•••••								
60 61	••••••	· · · · · · · ·			• • • • • • • • •	83 30	83 30		83 30	<b>.</b> 		
62	· · · · · · · ·			· · · · · · · ·	· · · · · · · · ·				84 30			
63	•••••			· · · · · · ·					87 50	87 50	1	
64 65	•••••	· · · · · · · ·	••••			81 55	81 55					
66	80 20	80 20	80 20					1	53 0			80 20

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2 <u>3</u> 94.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. I.	Laur. 47·	Vat. 1594.
	o /	o /	• /	0 /	• /	o /	• /	• •	• /	• /	• /	• /	0 /
				81 50		81 50		81 50					
68					• • • • • • •	78 20			[				• • • • • •
69												1	
-													
71						61 40		61 40					• • • • • •
73				1		. <b></b> .	[. <b></b>	61 30					
74		<i>.</i>											•••••
76								-	••••			••••	•••••
80	• • • • • • •				••••						6	••••	•••••
81 82											61 0		
83													•••••
84					1	1 ·		· ·					
85													• • • • • •
86	••••												• • • • • • •
87									· · · · · · ·		•••••		• • • • • •
88		• • • • • • •		• • • • • • •		· · · · · · · ·						58 20	• • • • • • •
89 90	•••••				••••			 66 o				• • • • • • •	•••••
90 91						· · · · · · · · ·					· · · · · · · ·	••••	•••••
92						1							
93		53 50											
94													
95							54 15						
96											• • • • • • •		• • • • • • • •
97	46 30				46 30		46 30		46 30	57 30	••••	46 30	46 30
98 99							· · · · · · · · ·	47.20	•••••	••••	•••••	• • • • • • • •	• • • • • • •
99 101						•••••		41 20	• • • • • • • •	••••	• • • • • • •		• • • • • • •
102	43 0		43 0	43 0	43 0	43 0	43 0	43 0	43 0	43 0	43 O	43 0	43 0
103	44 0		44 0		44 0			44 0				44 0	44 0
104									-				
106				····							43 O	<i>.</i>	
109					•••••						• • • • • • •		
110		21 30 31 30											
III						41 20							
112			46 30		1						46 30	• • • • • • • •	• • • • • • •
114								45 0			40 30	• • • • • • •	• • • • • • • •
115								44 30					
116	· · · · ·	· • • • • • •				• • • • • •		44 30					
117		· • • • • • • •				• • • • • •	• • • • •	46 50	• • • • • • •		· · · · · · · ·		
118	· · · · <i>·</i> · ·			•••••		• • • • • •	• • • • • •	49 40	• • • • • • •				
119 121	• • • • • • •			46 0	• • • • • • •				•••••	• • • • • • •	•••••	•••••	
I21 I22				40 0		40 O	· · · · · ·	46 O	•••••	•••••	•••••	••••	•••••
124							42 30		•••••	•••••	•••••	••••	
125							T- J~					•••••	• • • • • • • •
126		• • • • • •											
127	•••••	• • • • • • •											
128				••••									
I29	50 40	50 40	50 40		50 40	50 40	50 40	56 10	50 40	50 4 <b>0</b>	50 40	50 40	50 40
130 131	• • • • • • •	•••••	56 20	•••••	56 30	 r6 ac		•••••	 56 30		• • • • • • •		
132			56 30		50 30	56 30	56 30	• • • • • •	56 30	56 30	•••••	•••••	• • • • • • •
- 5-				• • • • • •		• • • • • • •						ı •1	

Collations of Manuscripts-Latitudes-continued.

Collations	of	Manuscripts	–Latitudes–	-continued.
------------	----	-------------	-------------	-------------

laily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374•	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475	Bod. 369.	Laur. 156.	Vienna Trap. 2.
	o /	o /	• /	• /	o /	• /	0 /	0 /	0 /	0 /	0 /	0 /
67									54 50			
68				••••	• • • • • • • •	• • • • • • • • •						
69						{ 74 4°}	70 40					
~ 7						1 79 40	/* +*			••••	• • • • • • • • •	
71						$\begin{cases} 64 & 40 \\ 69 & 40 \end{cases}$	305 40					
			6			( 09 40)						
73	· · · · · · · ·					61 35 86 55	301 35	• • • • • • •				
74 76						00 55	306 55 304 15		· · · · · · · · ·			••••
80							79 0	· · · · · · · · · ·				
81							305 30					
82							302 30					
83			64 0				300 55					
84		• • • • • •				61 55	301 55					
85		• • • • • •				61 30	301 30	}				
86		• • • • • • •	1 5				304 0		• • • • • • • •	• • • • • • • • •		
87								••••				
88		••••							• • • • • • • • •			
89						••••	58 10		· · · · · · · · ·			1
90					(		· ·	-	•••••	47 10		
91		51 40		• • • • • • •	1	•••••		• • • • • • • •				
92	<i></i>	••••	1	1	1					49 31		••••
93		••••	1			13 50 18 40	13 50 	•••••			53 30	
94							53 50				E2 1E	
95 96		• • • • • • •					47 30					
97	46 30	46 30			56 30		<b></b>					48 3
<u>98</u>	<b>T</b> ^o J ^o	+- J-		····								
99			41 20			41 20		4I 20	41 20	41 20	41 20	41 3
IOI									42 50			
102	43 0	43 O	43 0	43 0			••••					43
103	44 0	44 O	44 0	44 O								
104		44 4 ⁰								• • • • • •		
106	• • • • • • •		• • • • • • • •	• • • • • • •								
109		••••	25 15	· · · · · · · ·		•••••	• • • • • • • •			25 30		
110												
					17.00							
	1	••••			41 30		46 10	46 10	46 10	46 10		47 3
	40 30	•••••		• • • • • • •			40 10	40 10	40 10	+****		τ, σ
114	• • • • • • • •	•••••									45 45	
115 116	• • • • • • •							44 45			44 45	
117		•••••										
118		••••••										
119								30 30				
121			46 O									.
122		36 10										.
124	42 30											•  •••••
125						12 0			42 0			• • • • • •
126						12 50						•   • • • • •
127						34 0		· · · · · · ·				• • • • • •
128					<i>.</i>	13 0						
129	50 40	50 40		50 40		16 10	54 10	53 10	56 10	53 30		. 50 4
130						13 30		-6	58 30	 		• • • • • •
131						16 20	16 10	56 10	59 14	56 10		
132						18 30	18 30		60 30		• • • • • • • • •	

O 11 1	~		• •
['all at a a a	~+	Manuscripts—Latitudes—	continued
$C_{A}$	111		
<i>aouwwwww</i>	<i>v</i> ,	LIL GIT WSCI TPTS DOTTINGUES	contra da.

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	o /	o /	o /	• /	0 /	• /	o /	o /	0 /	• •	• /	• /	• /
133		59 20					59 20	59 30		59 20		59 20	59 20
134	63 O	63 0	63 0	63 0	63 O	63 0	63 0	63 0	63 0	63 0	63 O	63 0	63 O
135 136		· · · · · · · ·			· · · · · · · ·						· · · · · · · · ·		· · · · · · ·
138	70 15			74 0									• • • • • •
139 140	72 15		72 15									••••	•••••
140	64 0	64 0	64 0	64 0	64 O	64 0	64 0	64 0		64 0	64 0	64 O	64 O
142													
145 154				63 0		63 0		63 0	63 0				· · · · · · ·
155													
158												•••••	• • • • • •
159		49 20		(10)							• • • • • •		49 20
160	50{30}	50 30		⁵⁰ {30}	••••					56 30	• • • • • • •	56 30	56 30
161										· · · · · · · ·			
162						1			1 1			1	• • • • • • •
166								74 30					· · · · · · · ·
167 168												• • • • • • • •	• • • • • •
169												•••••	••••
171		56 O											
172	• • • • • • •	60.10											
173 174	64 30							•••••		· · · · · · ·			
175	63 45				63 45			63 30	63 45	63 45			
177											59 40		
178 180	· · · · · · ·						• • • • • •			46 50			
183								47 30					• • • • • • • •
184 185			• • • • • • •										<i>.</i> .
185			.			•••••	•••••	41 20	• • • • • •			•••••	••••
188													• • • • • • • • • • • • • • • • • • •
189		· · · · ·						51 10					
191 192	37 30			47 30			•••••	40 10			•••••		••••
193				·····									 
195 196					• • • • •		• • • • •	• • • • • • •		••••		•••••	
190					• • • • • • •			27 30	• • • • • •	•••••		• • • • • • •	
199								-, ,0					 
200 201				· · · · · ·	••••••		· · · · · ·	27 O					
201					••••	• • • • • •	· · · · · · · ·	•••••	• • • • • • •	•••••			
205													 
206 208		•••••		· · · · · · · ·				· · · · · ·					
208							• • • • • •	••••••	•••••		•••••	•••••	
211								••••••	•••••		•••••	•••••	
	(24 50)				•••••	••••	• ••••	••••••	•••••	••••	•••••	•••••	
212	$\binom{24}{21} \stackrel{50}{50}$	24 50	24 50	24 50	24 50	24 50	24 50	24 50	$ \begin{cases} 24 & 50 \\ 21 & 50 \end{cases} $	24 50	24 50		
213								-	(21 50)				

Collations of Manuscripts-Latitudes-continued.

Baily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374•	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	o /	0 /	o /	o /	0 /	0 /	0/	0 /	0 /	o /	o /	o /
133 134	59 20 63 0	59 20 63 0		63 O						• • • • • • • • • •		63 o
135 136	 	<b>.</b>	<i>.</i>		 . <i>.</i>		301 15 301 0					60 O
138 139	 		74 °						75 o	· · · · · · · · · ·	· · · · · · · · · · ·	70 15
140 141	64 O	 64 o	 64 o				300 15			72 0		64 O
142 145		<i>.</i>					304 15			53 0	 	· · · · · · · · ·
154 155				55 10	· · · · · · · · ·	16 13	16 IO	· · · · · · · · ·	57 10		· · · · · · · · ·	55 10
158 159					54 50 · · · · · · · ·		49 20	54 20 49 20	57 IO 49 20	49 20		54 44 · · · · · · ·
160	56 30	-							7 30			
161 162					· · · · · · · · ·	56 20	56 20				1	
166	 		· · · · · · · · ·	1	· · · · · · · ·					· · · · · · · · · · · ·		
167 168						1	59 30	1				
169 171	· · · · · · ·	• • • • • • • • • • • • • • • • • • •					1		37 0			
172 173		·····										
174 175			1					63 45				41 40
177												
180			1 -				1		-	.		
184	·····	· · · · · · · · ·	.						50 20			
186 188					· · · · · · · · · ·	.					.	
189 191	·····		51 10						1			.
192 193			31 30		3I 30 3I 30			37 30	37 30			.   .
195 196 198							. 27 30		27 30			
198 199 200										. 26 40 . 26 20		.   .
200 201 202							. 24 0	27 0		. 26 0 . 28 0		
202 205 206							. 28 15		. 20 15 . 28 15	1	• • • • • • • • •	. 28 40
208							. 25 IO . 26 35	•••••				
209 211			. <b></b> .			$\begin{cases} 23 & 45 \\ 28 & 45 \end{cases}$						
212	24 50	24 50		24 50								. 24 50
213			.				. 19 55					. 19 4

activities of all control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a control of a	Collations	of	Manuscri	pts	Latitude	s—continued.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------	----	----------	-----	----------	--------------

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	o /	o /	o /	0 /	o /	o /	o /	o /	• /	o /	0 /	o /	0 /
215	<b>.</b> .							]					
217										• • • • • • •		••••	• • • • • •
218 221		21 503		1		ſ			•••••		31 50?	· · · · · · · · · · · · · · · · · · ·	 31 50
223													
224													• • • • • •
225 226										• • • • • • •			
220	20 40		· · · · · · · ·	 16 o							8 30		
230										, ,	12 10	F	
231	50 30		50 30						50 30		· • · · • • •		
232	(16 20)		· • • • • • •		• • • • • • •						••••	• • • • • • •	••••••
233	{16 20} {10 20}		IO 10		10 10	16 O	16 O	13 0	16 O	16 O	7 15	16 O	16 O
234	36 0	1									36 10		• • • • • • • •
235							1						• • • • • • •
236 220	22 50												•••••
239 240									33 50			• • • • • • • •	• • • • • • • •
241													
243		[							· · · · · ·		• • • • • • • •		
244 245			· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·		· · · · · · ·			1	• • • • • • • •	
<b>24</b> 6						· · · · · · · ·							 
247	±2 I5			+		-	-						-2 15
248	-	-4 30	• • • • • •			±	—	÷	• • • • • • • •	•••••	-4 30	• • • • • • • •	-1 30
<b>24</b> 9{	±3 40 ±0 20		3 40	1					-0 20		-	•	•
250	±0 I5	-0 15							-o 15				
251 252		+1 0					· · · · · · ·		•••••		•••••	· · · · · · ·	+1 0
254											•••••	•••••	
255	1 { 20 }	I 20	I 20					• • • • • • • •		I 20		I 20	1 20
258													
259 260	• • • • • • • •		• • • • • • • •	• • • • • • •					• • • • • • • •				
		· · · · · · · ·				· · · · · · · ·	•••••		· · · · · · · ·	•••••		•••••	• • • • • • •
202	•••••												· · · · · · · ·
265	· · · · · · · ·	• • • • • • • •		•••••	• • • • • • •		• • • • • • • •			•••••	•••••		
266	$   \left\{  \begin{array}{c}     31 & 151 \\     34 & 15   \end{array} \right\} $	31 15	31 15		31 15	$   \left\{             31 \ 15 \\              34 \ 15                                   $	31 15		$\binom{31 \ 15}{34 \ 15}$	31 15	31 15	31 15	31 15
267 268	• • • • • • •	•••••	•••••		•••••		· · · · · · ·	• • • • • • • •	•••••	•••••	•••••		
208 269			• • • • • • • •					•••••	•••••	•••••	•••••		• • • • • • •
270													
271	• • • • •	• • • • • • •	• • • • • • •	• • • • • • •	•••••	• • • • • • • •							
27 <b>2</b> 277				•••••	• • • • • • •	• • • • • • •	•••••		•••••	•••••	••••	•••••	
279						· · · · · · · ·	· · · · · · · · ·	23 O 21 20		•••••	•••••	•••• •	
279 280				· · · · · · ·									
281	$35 \ 40 \ 39 \ 20$	35 40	35 40		35 40	$39 \ 20$ $35 \ 40$	35 40	· · · · · · · · ·	{35 40} 39 20}	35 40	35 40	35 40	35 40
283 284	•••••	•••••	• • • • • •		• • • • • • •	· · · · · ·	• • • • • • • •						
204	• • • • • • • •	· · · · · · · ·			• • • • • • •								

Collations of Manuscripts-Latitudes-continued.

Baily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374·	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475·	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	0 /	0 /	o /	0 /	0 /	0 /	• /	0 /	o /	o /	• /
215			1			• • • • • • • • •						
217			····						•••••••••			
218 221												}
223									22 0			
224	ſ			1								
225 226	1	· · · · · · · ·							13 50 9 40		<i></i>	1
229	1	1										
230	1	1	1							1		
231		····	I2 20		····							5 30
232												10.10
233	10 0	16 0		10 10				13 0	10 20	13 0	13 0	10 10
234			1				16 0			26 17		• • • • • • • •
235								26 45	26 45		26 45	
239							34 30	23 45	24 50	28 45	23 45	
240			13 20					1				· · · · · · · · · ·
241												
243 244	1					1			34 20			
245												
246			· · · · · · · ·				2 20	  +		· · · · · · · · ·		+
247 248	····			1	-			1.				
249	3 20	3 20		-3 40	+ 0 20		0 30	+ 0 20	- 0 20	0 15	+ 0 20	+ 3 40
250	0 15			-0 15				+ 0 15	- o 45		+ 0 15	+-
251								.   <del>-   -</del> 	-			
252 254												
255	I 20	I 20			140		I 40	I 40	I 40	I 40		I 20
258			28 12				20 12		28 12			.
259												.
260												.   · · · · · · · · · · ·
261 262		30 0						• • • • • • • • •				
265							26 O					.
266	31 15	31 15							37 15			. 31 4
267										1 .		
268								• • • • • • • •	32 30		• • • • • • • • •	. 22 30
269									29 20			
270 271									25 15			· [· • • • • • •
272								• • • • • • •	. 24 30	26 0		•
277			10 30				10 30	21 20	-	21 20		
279 280					· · · · · · · · · ·					. 26 0		
										35 20		. 35 40
281	35 40	35 40			$\begin{cases} 39 20 \\ 35 40 \end{cases}$		•					
283 284			39 30	••••••					. 39 30 			
~~4												

Collations	of	Manuscri	ots1	Latitud	es-continued.
0.00000000000	~		P	200000000000	00 00110110000

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	o /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /
285								38 20				37 20	
287													
<b>2</b> 88	· · · · ·												
290 201					• • • • •		1				· · · · · ·		
291 292						• • • • • •		<b>.</b>	1				
	$26 {20 \\ 40}$												
293	²⁰ 140					20 40	•••••		20140J		• • • • • • •		• • • • • •
294								••••		· · · <i>· · · ·</i>	• • • • • • •		
295 296							1				 19 20		
297													
300													
301											• • • • • • •		<b></b>
302 303	•••••		••••	••••		-					•••••	•••••	•••••
303								 		· · · · · · · ·	••••		• • • • • •
305													· · · · · · ·
306													
308			••••										••••
309 313		••••	• • • • • • •	•••••		· · · · · · · ·				 			•••••
315				· · · · · · · ·	<b>.</b>	26 30							· · · · · · ·
316					<b></b>							19 30	
319	• • • • • • •	····			· · <i>·</i> · · · ·	· <i>· ·</i> · · · ·							• • • • • • •
322 327	••••				• • • • • • • •			••••	· · <i>·</i> · · · · ·		• • • • • • •	•••••	••••
329							•••••	 	• • • • • • •	· · · · · · · ·	•••••	•••••	••••
331			2 30		2 30		2 30			2 30		2 30	2 30
00													
				· · · · · · · ·	· • • • • • • •		· · · · · · · ·	• • • • • • • •	,	44 I 5			44 I5
335 336			· · · · · · · ·	• • • • • • •	• • • • • • •	•••••	• • • • • • •	- 1	1		•••••		•••••
337											· · · · · · · ·		· · · · · · ·
339	•••••					· · · · <i>·</i> · · ·		33 0					
341	•••••	• • • • • •	• • • • • •	• • • • • •			• • • • • • •		• • • • • • • •		•••••	· · · · · · /	
345		(25 20)	••••	•••••	Ì		•••••	•••••		•••••	••••	· · <i>·</i> · <i>·</i>	• • • • • •
346	•••••	{25 20} {26 20}	• • • • • • • •	•••••	• • • • • • • •	•••••	26 20		•••••	26 20	• • • • • • • •		26 20
349			•••••	· · · · <b>· · ·</b> ·	• • • • • • • •		• • • • • • • •						
350				• • • • • • •	• • • • • • •	• • • • • • •		•••••	• • • • • • • •	• • • • • • • •	•••••	· · · · · · · ·	
351 353				•••••				•••••	••••••	• • • • • • • • •	•••••	•••••	•••••
356								· · · · · · · ·					 <b>.</b> .
357	{41 0} {44 0}		41 O	4I 0	41 O		41 O				41 0	4I 0	41 0
358								27 O					
360	· · · · ·		• • • • • • • •		• • • • • • •	• • • • • • •	• • • • • • • •		• • • • • • • •	•••••			
365 368	· · · · · · · ·	•••••	•••••	•••••	•••••	1		••••••	•••••	• • • • • • • •	•••••		
369				I 30	· · · · · · · ·	•••••	· · · · · · · · · · ·	4 30	•••••	•••••	•••••	•••••	• • • • • •
370				I 50				4 40					• • • • • • •
371		• • • • • • • •	•••••			• • • • • • •		I 30					
	• I	•••••	•••••	• • • • • • • •	· · · · · · ·	- 1	-	I 20	I 30	I 30	· · · · · ·		
373   · 374   ·	-1 30				•••••	•••••		•••••	•••••	••••••	· · · · ·		
J/T						•••••	· · · · · ·	•••••	•••••	• • • • • • • •	•••••		

Collations of Manuscripts-Latitudes-continued.

Baily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374-	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475.	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	0 /	o /	0 /	o /	o /	0 /	0 /	0 /	o /	0 /	0 /	0 /
285							38 40	38 40	38 40	38 40		
287					• • • • • • • •				1	26 10		• • • • • • • •
288												
					· · · · · · · · ·					31 IO 31 IO		· · · · · · · ·
291 292										38 40		
			26 40					26 40	26 40		26 10	
293								<del>-</del> -			· ·	1
294 205		24 40	30 40	• • • • • •	 			1				1
295 296		24 40					30 10					
297												
300											••••	••••
										-		
302	<i>.</i>	1	27 15			1	-					
303 304		36 0	-, -,									
305									• • • • • • •	· · · · · ·		· · · · · ·
306		33 0									1	
308			31 0		31 0						····	1
309												
315												
316							22 30			12 10		• • • • • • • •
319	1	1			····				17 20	27 20		
322					- <i>-</i>				1/ 30	J	16 O	
327 329			16 30									
331	2 30	2 30		2 30			41 30					-
332										. 44 0		24 50
333	44 15		.									
335 336												
337					1							.
339			. 33 20							38 30		• • • • • • • • •
341			. 44 0				• • • • • • •	• • • • • • • •			•	
345			•   • • • • • • •				. 15 7		1			
346							. 26 20		26 20			
349			.				. 33 0			. 16 20	• • • • • • • • •	
350						• • • • • • • •		35 20		l		
351			35 20									
353 356								1				
357	41 0	41 0		41 0					· · · · · · ·			
358										1		
360												1
365			.   <b></b>						4 30	· · · · · · · · · · · ·		
368									. 4 30			
369			4 40					. 2 39				
370			• • • • • • • •			· [ · · ·						
372							. I IO					
373									• • • • • • •			
374	1	1						·  4 ¹ 5				

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47·	Vat. 1594.
	• /	0 /	0 /	0 /	0 /	U /	o /	0 /	o /	o /	0 /	• •	• /
375	10{30 0}												
376	16 O	10 0		16 O				10 30		10 0	10 0	10 0	IO 0
377	${12 \ 40 \ 11 \ 10}$		• • • • • • • •						<b></b>				I2 40
378	• • • • • • • •		1	1	1	l l	1						
379 381			1		i i			· · · · · · · · · · · · · · · · · · ·		1		· · · · · · · · ·	• • • • • • • • •
382				1									
384 386	· · • · · · · ·	· · · · · · ·	· · · · · · · · ·	· · · · · · · ·	1			 I2 20				19 40	
387								- 1		(		· · · · · ·	
389 390	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·			· · · · · · · · ·			 	· · · · · · · ·   .	• • • • • • • • •
391	• • • • • • •	· ····	• • • • • • •				1 1				I	•••• .	
392 394	· · · · · · · · ·	· · · · · · · ·		· · · · · · · ·		· · · · · · ·		· · · · · · · ·	· · · · · · · ·	· · · · · ·		· · · · · · · ·	• • • • • • • •
395	0 15 0 12											••••• .	•••••
396 398			••••			· · · · · · · ·	· · · · · · · ·			 		· · · · · · · · / ·	
399	-4 °	-4 o	4 °			•	•	-4 0					-4 0
400 401					· · · · · · · ·	· · · · · · · ·	· · · · · · ·	5	1				
402	4 0	4 0	4 0	4 0	4 0	4 0	4 0	4 0	• • • • • • •	•••••			4 0
403 404	+1 0	-1 0	+1 0		+1 0	+1 0	-1 O	+1 20	+1 0	-I 0		· · · · · · ·   · · · · · · · · / -	-1 0
405 406	•••••			1 1	 			 7 IO	••••			<i></i>	
407			• • • • • • •				• • • • • • • •	<u> </u>					
408 410		•••••		• • • • • • •	1		· · · · · · · ·		• • • • • • •	• • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••
411	3 20	3 20	3 20		3 20		3 20	3 20	3 20	3 20	3 20	3 20	3 20
412 413		••••••••	· · · · · · · ·					• • • • • • • •				· · · · · · · ·	• • • • • •
415	· · · · · · · ·		· · · · · · · ·					· · · · · ·				· · · · · · · · ·	
416 417	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	6 40			••••••	•••••	• • • • • • • •		
418	• • • • • • •						· • • • • • •	· · · · ·					
419	+0 40	· · · · · · · · ·	FU 40	· · · · · · · ·		-0 40	· · · · · · · ·	· · · · · · · •		• • • • • • • •	•••••		• • • • • •
424 426	•••••	•••••	•••••••		9 30	9 30	9 30	· · · · · · · ·		9 30			
420 427			•••••		•••••	· · · · · · · · ·	•••••	· · · · · · · · ·	· · · · · · · ·	•••••	· · · · · · · · ·		
429	$\left\{\begin{array}{cc} \mathbf{I} & 50 \\ 4 & 50 \end{array}\right\}$	I 50	I 50		I 50		1 50		{ 1 50} { 4 50}	1 50	I 50	1 50	1 50
430	т у <b>с</b> ,	•••••	••••		· • • • • • • • •								
431	( 0 20)		•••••	•••••	••••	•••••	•••••	•••••	•••••	••••••			
432	$\begin{bmatrix} 3 & -0 \end{bmatrix}$	0 20	0 20	0 20	0 20	•••••	•••••	•••••	0 20	0 20	0 20	•••• •	
433 434	• • • • • • • •	· · · · · · · ·			•••••	•••••	• • • • • • • •	•••••	•••••	•••••	· · · · · · · .	•••••	
434 435					••••••			•••••	· · · · · · · · ·	· · · · · · · · ·	· · · · / · · · ·		· · · · · ·
436	{   0   30} {   6   0}	o 40	• • • • • • •	0{10 30}	•••••	•••••	•••••	• • • • • • •	6 10	0 40			0 30}
438						· • • • • • • •	•••••					· · · ·	o 40)
440	•••••	•••••	••••	•••••	•••••	•••••	•••••	• • • • • • • • • •	••••••			· · · · · ·	

Collations of Manuscripts-Latitudes-continued.

Collations of Manuscripts-Latitudes-continued.

Baily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374-	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475.	Bod. 369.	Laur. 156.	Vienna Trap. 24
	0 /	• /	0 /	• /	o /	• /	• •	0 /	0 /	0 /	0 /	0 /
<b>37</b> 5	. <b></b> .		• • • • • • •	10 0	•••••		10 0	10 0	10 0	10 0		
376	10 0	10 0	16 O	IO 30	•••••							10 30
377		•••••									2 40	
378		14 10	• • • • • • •				10 40				-	
379 381		• • • • • • • •	13 40	• • • • • • • •				• • • • • • •				
							 	· · · · · · · · ·	•••••••••	• • • • • • • • •	•••••	7 4
J-T		•••••							1			1
386 387						• • • • • • • • •	· · · · · · · · ·	••• ••••			• • • • • • • •	• • • • • • •
389					•••••••••	· · · · · · · · ·	13 20	IO 20	 IO O	IO 20	 IO 20	
390	•••••	• • • • • • • •	9 50		5 15					E TE		
391 392	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	•••••	•••••	· · · · · · · · ·	4 35		• • • • • • • • • •	• • • • • • • • •		
394		· · · · · · · ·	· · · <i>· ·</i> · · ·		· · <b>· ·</b> · · ·							
							•••••					
396 398	· · · · · · · ·	· · · · · · · ·	• • • • • • • • •	· · · · · · · · ·	• • • • • <i>• •</i>	· · · · · · · · ·	· · · · · · · · ·			6 30		•••••
399	4 0	4 °		• •		<b></b>	4 0	- 4 30	+ 4 0	4 0	4 0	4 C
	í		5 20		•••••••	1				1	••••	
401 402					, o		4 30	0 15	530 40		· · · · · · · · ·	
403	· · <i>·</i> · · ·						I 40				· · · · · · · · · ·	
	1		· · · · · · · ·				• • • • • • • •	+ I 0	+ 1 0		+ 1 0	
								7 IO	···· ···	6 0 7 10	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·
1 2 1	• • • • • • • •											
											• • • • • • • •	•••••
410 411					· · · · · · · · ·		4 40 5 20	· · · · · · · · · ·		8 20		
412		· <i>•</i> · · · ·					5 5					
		1	1	1	•••••	I	16 30	•••••				
		· · · · · · · · ·	,		• • • • • • • • • •			· · · · · · · · · ·		· · · · · · · · · ·		
417	• • • • • • • •					I						
	• • • • • • • •	••••	7 20	•••••	•••••	•••••	• • • • • • • • •	 + 0 40				
419 420	•••••	· · · · · · · ·	2 40		• • • <i>• •</i> • • • •	· · · · · · · · ·		+ 0 40	<b>2</b> 40	· · · · · · · · · ·	o 40	· · · · · · · ·
424 .	•••••	• • • • • • • •	•••••		•••••		9 40	9 40	9 40	9 40		
426	•••••	• • • • • • • •	• • • • • • • •	••••••	•••••	•••••	• • • • • • • • •	•••••	· · · · · · · · · · · · · · · · · · ·	II O	• • • • • • • • •	
427				•••••	•••••	•••••	•••••	•••••	50 20	4 20		17 20
429	I 50	•••••	•••••	•••••	• • • • • • • •	•••••	··· ····	•••••	• • • • • • • •	•••••	•••••	I 50
430	6 10	•••••		•••••	•••••	•••••	3 40	•••••		• • • • • • • • •	• • • • • • • •	•••••
431	6 40	•••••	•••••	•••••	•••••		•••••	•••••	3 40	•••••		•••••
432 .	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • •	• • • • • • •	3 0	3 0	30	• ••••
433 .	•••••	•••••	•••••		•••••	•••••		•••••	•••••		— I 30	
434  · 435  ·	•••••	•••••		•••••	•••••	•••••	5 30 2 30	• • • • • • • • •	• • • • • • • • •		· · · · · · · · · ·	· · · · · · · ·
106 5	6 101	0.40					- 50	6 0	6 0	6 0		0 30
	0 40 ³	0 40	•••••		•••••	•••••	•••••	0.0	0.0			0 30
438	••••• •	•••••		•••••	•••••	•••••	•••••	•••••	••••••	4 30		• • • • • • •
440  .	•••••	•••••	•••• •	•••••	•••••	•••••	•••••	•••••	•••••	+ 30		

Collations of	Manuscripts-	-Latitudes–	-continued.
		210000000	•••••••••••••

aily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47·	Vat. 1594.
	• /	。 /	o /	o /	o /	0 /	0 /	o /	0/	o /	o /	0 /	0 /
44I													
	• • • • • • •			• • • • •				-5 50			· · · · · ·		
446		1				1 1				1 1	· · • · • • •		•••••
447 448			· · · · · · · ·		r	1 1				I 30	1 30	I 30	I 30
	2 40	1				3 0	3 0	2 20 3 0	0 20	0 20	3 0	3 0	3 0
					ł		- 1	Ű		1	-		-
451													
452	· · · · · · ·	-2 40						2 20			$\left\{ \begin{array}{cc} 2 & 40 \\ I & 0 \end{array} \right\}$		•••••
453		-0 10											
454	· · · ·	-5 30							· · · ·				
455		+11 50						1	. <i>.</i>				
456		+1 0										· • · · · · · /	
457 460	4 50		· · · · · ·				4.50						
461	7 15	7 15			4 50 7 45	4 50 7 15		· · · · · · ·	4 50 7 15				
466											1	· · · · · · · ·	
467	• • • • • •												
					· · · · · ·						[	•••••	
469	• • • • • •		••••						•••••	• • • • • •	• • • • • • •	• • • • • • • • •	
470 471	4 0		· · · · · · · ·	• • • • • • •	4 0	1						••••	• • • • • • •
474	<i></i>	· · · · · · · ·			4 0	4 0	4 0	4 0	4 0	4 °	4 0	4 0	4 °
476	6 o	6 o		6 o	6 o	6 o	6 o	6 o		6 o	6 0	6 o .	•••••
477	015	3				••••••							
478	•••••					i							
1121	• • • • • • •		• • • • • • •			•••••	• • • • • • •	•••••	• • • • • • •	•••••			· · <i>·</i> · · · ·
481	· · · · · · · ·		•••••		•••••	••••	•••••	•••••	•••••	· · · · · · · ·   ·			
						12 10					••••	· • · · · • • • •	••••
485													
486	-		1	• • • • • • •	• • • • • •		••••••		· · · · · .				
487	3 12	3 12	3 12	3 12		3 12	3 12		3 12	3 12	3 12	3 12	3 1 2
			• • • • • •						•••• •	••• •••	· · · · · ·   ·	•••••	• • • • • •
				25 30					•••••	•••••	•••••		••••
496		1										····	•••••
497	• • • • • • •	• • • • • • •		I I 5		· · · <b>· ·</b> ·  .	•••••						
498	•••••	••••	••••••	•••••	•••••	· · · · ·  ·		• • • • • • •		• • • • • •	•••••		
501	6 o	60	6 o	6 o	• • • • • •	.		6 20 {	0 10		6 0 .		
502													
503		{ 2 50}							•••••••	· · · · · · · · · · · · · · · · · · ·	2 501	•••••	•••
3~3  ·		1 40	•••••	•••••	•••• •	• • • • • • • • • • • •	•••••	•••••	• •••• •	$\cdots $	I 40	•••••	• • • • •
504 .		$\left\{\begin{array}{cc}2&50\\8&30\end{array}\right\}$						2 30 .		ſ	2 501		
506		C 0 301							•••••	·· ··· ì	2 50] 8 30]	••••	••••
507						•••••		18 30 .	•••••	· · · · ·	· · · ·  .		· · · · •
508 .								13 30 . 11 10 .	•••••	· · · · ·   ·	· · · · ·  .	• • • • • •	••••
509	20 10	20 10	20 10	20 10	20 10	26 O		1	20 10	20 10	20 10	20 10	20 10
510 .	•••••	· · · <i>· · ·</i>  ·	· · · ·  .					+2 40					20 10
511 .	•••••	•••••	••••••	· · · · · ·  ·	· · · · · /·	· · · · · .	· · · ·	8 20 .					
512  . 513  .		6 0	• • • • •  •				•••••	13 0	· · · ·				
514  .			• • • • •	6 0	6 <b>o</b>	6 0 .	•••••	60.	• • • • • •	27 15 .	· · · · ·	· · · · · .	· • • • • · ·
5° F  '				•••••	•••••	•••••	••••	4 10	•••••	•••••	• • • • • • • • •	•••••	· • • • • • •

Collations of Manuscripts-Latitudes-continued.

Baily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374·	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24
	o /	o /	0 /	0 /	o /	• /	0 /	o /	• /	o /	• /	• /
44I			20 0					1				
443				1	1			1				
T T	· · · · · · · ·	30										
447	1 30	1 50										
448 449	3 0	3 0										
		-		1			-	-	1			
451			I 30							I 30		
			2 20									
		1										
453 454												
454					. <i>.</i>							
456									20			
457									2 0	• • • • • • • •		· · · · · · · ·
- T - '		•			1		47					<i></i> .
466 467										3 30		
1 1 / 1		1							4 10			
			-						0 50			
471		• • • • • • •	4 0	4 0						• • • • • • • •		
474				6 0		· · · · · · · · · ·						
476												
477 478			5 15									
479	1					.						
	1		12 20			.						
481			13 10						11 30	II 20	11 20	
482		[•••••		.   · · · · · · ·	• • • • • • •			11 20				
485										1		
486 487	3 12	1	3 10	3 12			30	0 20				
489	3 12	, 12							-			
401			140								•	
495							. 35 0	-			• • • • • • • •	
	· <b>·</b> · · · · · ·				1		. 35 30					
497	••••	1					4 ~ 5					
49 ⁸	•••••						6 -					
501			. 3 0	6 0		.						
502			. 1 30								•	• • • • • • • •
503												.
503											0.10	
504			. 2 30					2 10				
506									· .			
507										1		
508			1	1								20 10
509	20 10	20 0	15 10	20 10					_			
510		2 10			. + 2 0		• • • • • • • •			·   · · · · · · · · · ·		1
511						• • • • • • • •			1			
512	••••				1							. 6 10
513	•••••	•••••	-				. 0 20			1		
514	1	1							1	1		

Collations of M	Manuscripts—1	Latıtudes—	continued.
-----------------	---------------	------------	------------

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. I.	Laur. 47.	Vat. 1594.
	• /	。,	0 /	o /	• /	• /	0 /	0 /	o /	o /	o /	0 /	0 /
515											· • · ·		
516						· · · · · · ·		ΙΙΟ	1				
518								7 10					1
519													1
520					1						· · · · · ·		
522	o 50	9 50		0 50									• • • • • •
524	• • • •								1				•••••
525				• • • •			1						
526				1						· · · · · · ·			
527		1	1	1			1						
528		1											
		1	1			1							
531		1		••••	1	1		1					••••
533													
534 535	· · · · · · · ·	1							1				
536		14 45	1								-4 45		
537													
538					1		1		1				
540							1						
541			1				1	1				30	30
544										1		U.	
545					0 40	1			1				
546		-I 20											
549													
551													
552	3 45												
553	• • • • • • •	.					· · <b>· ·</b> · · · ·	4 I 2					
555					1								
556	• • • • • • •	• • • • • • •	• • • • • • • •	• • • • • • • •				8 40					
557				• • • • • • • •									
558			• • • • • • • •		1								
559				¦·····		1	1						
564	1	1	1	••••••	1	1							
569			1					•••••		• • • • • • •		/	· · · · · · ·
570 571	•••••	• • • • • • •		•••••		•••••	• • • • • • •	•••••			• • • • • •		
0.					· · · · · · · · ·	•••••					• • • • • • •		(70 70)
572	20 20	20 20	20 20	20 20	20 20	23 0	20 20	20 20		20 20	23 0	20 20	10 50
573			{ I 30} { IO 50}			1		1	1				
		· · · · · · · · · ·			-			5					
576										••••			· · · · · · ·
577								3 45					
582										· · · · · · · ·			
585													
587			1		1	5							
592												•••••	
594							1					•••••	
595													
596	26 O	26 0	26 O		26 -	26 O			-		~		(20 20)
	20 0	20 0	20 0							1		26 O	26 0
597													
601	• • • • • • •	¦											
602	• • • • • • • •	•••••											
603													
									1	1			

Collatio	ons of	Manuscripts—.	Latitua	les—continued.
----------	--------	---------------	---------	----------------

	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374.	Laur. 6.	Laur. 45·	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.		Vienna Trap. 24.
	o /	• /	0 /	• /	0 /	0 /	o /	o /	0 /	0 /	o /	0 /
			1		<b>.</b> <i></i>							
												1
-		••••									1	
519			1				• • <i>•</i> • • • • • • • • • •		•••••	· · · · · · · · ·		5
												0 50
5		1	1 1	5					2 30			- J-
					• • • • • • • • •		3 30		2 30			
5 <b>2</b> 6	<b></b> . <b>.</b> .		•••••	•••••	•••••		7 20		7 20		7 10	
5-1			••••••							0	1	
		1 -	•••••						7 30			
55		1	1			· · · · · · · · · ·	8 20	••••••••••••••••••••••••••••••••••••••				
55												
535												
			· • • • • • • •			• • • • • • • • •	3 45					
536		· · · <b>· · ·</b> · ·	••••	• • • • • • •						3 15		
551	· · · · · · · ·		• • • • • • •									
55			1	1			· · · · · · · · · · · · · · · · · · ·	1			· · · · · · · · · ·	
					· · · · · · · · · · ·		2 0	0 20	2 0			
541 544	3 0						8 10		8 10			
				0 40								0 40
546						· · · · · · · ·						
549					• • • • • • • • •							
551	· · <i>·</i> · <b>·</b> · ·	• • • • • • •	1 1			• • • • • •	-	• • • • • • •	-			
55	• • • • • • •											
550					· · · · · · · · · ·		6 IO		3 O 6 IO			1
335									5 40			
557	10 30											
558	····			. <b></b>	· · · <b>· · ·</b> · · ·					• • • • • • • •		
559	<i>.</i>		· • • • • • • •	<b></b>				· · · · · · ·				
564								15 20				
569							4 10	4 IO	4 10	4 10		
570	• • • • • •		4 1	1				· · · · · · ·		· · · · · · · · ·		
571	•••••					•••••	5 30				1	}
572	20 20	20 20		20 20	<b></b>			10 10		· · <i>·</i> · · · ·	• • • • • • • • • •	20 20
573	• • • • • • •	•••••	I 10	I 50								
574												
576			5 45		· · · · · · · · ·		2 50	3 45	3 50		3 45	0 40
		· · · · · · · ·								-		<b>.</b>
5	•••••						5 30					
585	•••••	• • • • • • •		<i>.</i>			5 30					
587	•••••								28 O			.   <b></b>
592 594										18 0		. <b></b> .
595									13 50			. 3 30
596	26 O	26 O		26 O		<b></b>	<b></b> .	26 O	20 10	26 O	26 O	26 0
											4 40	
597 601				1			2 20		<i>.</i>			
1										• • • • • • •		
603										• • • • •		• • • • • • • •
5										1	1	1

C-H-C-	- f	Manual I start a section	
Collations	OT	Manuscripts—Latitudes—continued	
	- J		

Baily's	Par.	Par.	Par.	Par.	Ven.	Ven.	Ven.	Ven.	Ven.	Ven.	Laur.	Laur.	Vat.
No.	2389.	2390.	2391.	2394.	302.	303.	310.	311.	312.	313.	I.	47•	1594.
	o /	0 /	o /	o /	0 /	o /	0 /	。,	0 /	o /	0 /	0 /	0 /
606						4 45							
607													
608													• • • • • • •
609 610	0 40	0 40	0 40							1			•••••
611											8 40	8 40	8 40
612	6 30									6 30		6 30	6 30
613				-		{							7 40
				7 50	1		•••••••					· · · · · · · ·	
621							1	1			1 .		
623													
624 625				1				(		1	• • • • • • • •	1	•••••
625			1							1		, i i i i i i i i i i i i i i i i i i i	3 O
628				1		(							
629			1	1			t	\$		1			
631 635				-								• • • • • • •	
636					1	· · · · · · · · · · · · · · · · · · ·					•••••		
637													
638											• • • • • • • •		10 45
640 641						• • • • • • • • • • • • • • • • • • •	1	· · · · · · · ·			1 1		
642	3 10	3 10		1			1						3 10
643													
644		+4 0						I 20				•••••	
645 646					4 0				-	÷	· · · · · · · ·		+4 °
647	1					1	1						
648	t		1			1	1	1 5					• • • • • • • •
653 656			1		• • • • • • • •							•••••	•••••
659													
661													
662		[14 45]					11 45			11 45		II 45	11 45
663		111 45											15 20
										-			
666		.									15 O	15 0	
667		•   • • • • • • •			<b>14 45</b>				14 45				• • • • • • •
669						- <i>-</i>		15 10	16 0	· · · · · · · ·			• • • • • • • •
670					23 0			23 0		1			
671		.						I5 45					
672 673	• • • • • • •											1	• • • • • • •
675		4 15						-	····	1		• • • • • • •	
680													
681		.											
682 683	• • • • • • •		• • • • • • •	• • • • • • •				• • • • • • •	••••				· • • • • • • •
684		4 15						· · · · · · · · · · · · · · · · · · ·			4 15	4 15	4 15
686			6 0		6 0						<b></b>		
			1					ļ				00	6 0
691 692		+7 45				1		1 12				· · · · · · · ·	+8 30
		1 3 30		1	1			l					F0 30

Collations	of	Manuscripts—.	Latitudes—continued.
------------	----	---------------	----------------------

Baily's No.	Laur. 4 ^{8.}	Vat. 1038.	Vat. Reg. 90.	Bod. 3374.	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24.
	o /	0 /	0 /	0 /	0 /	o /	o /	• /	0 /	o /	• /	o /
606 607			·····		• • • • • • • • • •			· · · · · · · · · ·		•••••••••	· · · · · · · · ·	4 45
608												
609												
610 611	8 40					· · · · · · · · · ·		0 50 6 30	0 50 6 30			0 40 
612							4 40	8 40	8 40	8 40		
						· · · · · · · · · · · ·						
						· · · · · · · · · ·						
623			· · · · · · · ·		0 10							
624												
625 626		U U	1	1	-				· · · · · · · · · ·			
628												
629						• • • • • • • • •						
631 635		· · · · · · · ·		1	· · · · · · · · · ·			1				
636				1			-					1
637							8 40				•	
				1		· · · · · · · · ·	10 40	· · · · · · · · · · · · · · · · · · ·	8 60	· · · · · · · · ·		
	<b>.</b>	3 40	1				9 0 3 30			1		-
								3 10	2 10	3 10		-
643		0 30		1	1					)	1	
644 645	4 0	I 0 4 0	4 40		1		I 50 4 40		+ 4 0		+ 4 0	
	4 0	7 0					7 0					
1			1	1	1				• • • • • • • • • •			
648 653									• • • • • • • • • •		1	
							8 30		1			
659							12 0		1	• • • • • • • • •		1
661			•••••		• • • • • • • • •							
662	11 45	11 45								1		
663	15 20	15 20							¹⁵ 45	 15 15	15 15	
665 666	15 15	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · ·						
667	15 0	15 15		1	1		14 50	14 50	14 50	14 50	14 50	
668												
669	• • • • • • • •		II O				23 0		23 0		23 0	21 20
670 671	••••		23 0		· · · · · · · · ·						-	
672			II 20				14 20		I4 20	14 20	14 20	
673			18 0					0 IF			9 15	
675 680		• • • • • • • •			· · · · · · · · ·			9 15				
681	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					-		-			. 6 30
682							1		1			5 50
683	• • • • • • • •				<i>.</i>				2 45			
684	4 15	• • • • • • •								6 0	6 0	6 0
686	6 0	60		60				6 0	I 20	1		
691	•••••								. 7 O	1	.   .	
692	• • • • • • •	• • • • • • •	• • • • • • •						· · · · · · · · · · · · · · · · · · ·			

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47•	Vat. 1594
	0 /	0 /	0 /	o /	0 /	0 /	0 /	0 /	o /	。 /	0 /	。,	• /
693				· · · • • • • •		  ·····	••••••	1 30					
694 695	I 50	I 50	1				• • • • • • •	)		1 50	1	• • • • • • •	1 50
698			i	· · · · · · · ·		 			· · · · · · · ·	<b></b> .		••••	• • • • •
700													
701	23 0	23 0	23 0		23 0	23 0	23 0	23 0		23 0	23 0	23 0	23 (
702				••••				• • • • • • •				••••	
703 705				• • • • • • •	13 15	1	1			13 0			13
707													
708	• • • • • • •				· · • • • •	•••••							• • • • •
709	1			1	1		1		1			· · · · · · ·	••••
710 · 711 ·		,	1		1						· · · · · · · ·		••••
			1		1								
714			1									•••••	
715		по	10 15	10 15	· <b></b>				14 15		$ \begin{cases} \mathbf{I4} & 0 \\ \mathbf{II} & 0 \end{cases} $	11 0	∫ <b>1</b> 4 (
716				4		t							
717													
720	•••••				1	1						• • • • • • • • •	
72I 722	• • • • • •			• • • • •		•••••			• • • • • •			•••••	••••
723		· · · · · · ·	1			1	• • • • • • • •		· · · · · · · ·	· · · · · · · ·		••••	••••
724					1			21 50	i i				
725	• • • • • • •									. <b></b> .	• • • • • • • •	.	• • • •
726	• • • • • • •			· · · · · · ·				• • • • • •				•••••	• • • •
727 728		· · · · · · · ·							· · · · · · · ·			· · · · · · · · / ·	
			r i i i i i i i i i i i i i i i i i i i	1	(								
								13 30			· · · · · · · ·	· · · · · · · · ·	
733	$\begin{cases} 20 & 20 \\ 23 & 0 \end{cases}$		20 20					23 0					
	(16 30)		(23 20)		(				(16 30)	-			16 10
734	(13 30)	· · · · · · ·	• • • • •	• • • • • • •	16 30	13 30	16 30	•••••	$\{13, 30\}$	16 30	•••••		16 30
737	• • • • •	· · · · · ·						18 15	••••				
													••••
				· · · · · ·				1	· · · · ·		• • • • • • • •		
742													
745						•••••		1 15	••••	••••••	•••••		· • · • ·
746	$\begin{cases} 12 & 40 \\ 19 & 40 \\ \end{cases}$	19 50	12 40		12 40	12 40	12 40		19 40 .	2 40	19 50	2 40	2 40
		•								1		,	
74 ⁸ ·	[23 o]	20 20	•••••	• • • • • • •	• • • • •	23 0	••••••	23 0	•••••		••••	•••••	20 20
752				· · · · ·		•		14 0		• • • • • • •		· · · · · · · · · · ·	
755 756				••••			• • • • • • •	19 50	• • • • • •	••••••	••••••	••••••	••••
757	••••			····		23 0		· · · · · · · · ·				· · · · · · ·	••••
758		24 30			· · · · · · · ·						24 30		
759	• • • • • • •				• • • • • •			21 10					
760 762	· · · · ·				••••••	1		21 50		· · · · <b>· · ·</b>	• • • • • • •	• • • • • •	••••
763	• • • • •		· · · · · · ·	· · · · · · · · ·		28 20				28 20		•••••	
	30 40											· · · · · · ·	
767													

Collations of Manuscripts-Latitudes-continued.

Collations	of	Manuscripts—.	Latitua	les—continued.
------------	----	---------------	---------	----------------

aily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374∙	Laur. 6.	Laur. 45•	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 2
	• /	o /	0 /	o /	0 /	0 /	0 /	0 /	، ۵	o /	0 /	0 /
693			I 20				I 20	I 20	I 20	I 20	I 20	
				-			I 55	1 50	1 50	I 50		
- /5		i					0 20	• • • • • •	••••••	· · ·	• • • • • • • •	
698			24 40			•••••		••••	•••••	• • • • • • • • •	••••	
700	23 0	23 0	23 0	23 0	22 227		19 55 23 0	··· ·		· · · · · · · · · ·		23 0
7 <b>01</b> 702		-	. 11 20	-					~j 0			1 3
703				1			13 0	13 0	13 0	13 0		
705										16 O		
707			.	• <i>•</i> • • • • • •					ΙΙΟ			
708			-					· · · · · · · · ·		· · · · · · · · ·		
709				1	••••			1			• • • • • • • • •	
710		1	• • • • • • • •						5 50			
711					· · · · · · · · · ·	• • • • • • • • •	ſ		5 50	· · · · · · · · · ·		
713			• • • • • • • •				· ·		11 45			
714			•				{					
715	II O	11 0	· · · · · ·	10 15	••••		• • • • • • • •	···	12 25	· · · · · · · · · ·	•••••	10 1
716									8 30			
717									6 o			
720			• • • • • • • • •			•••••	1		28 10		1	
72I			•  • • • • • • •			1		1	29 30			
722	<b></b>	· · · · · · ·	• • • • • • • •			1			27 0	26 30		
723			•   • • • • • • •			1			25 IO 30 30			
724	<b>.</b> .		•   • • • • • • •					1	20 20		1	
725	····	1			1				15 50			
726									15 0	-		1
727 728			• • • • • • • •						II 20			
729	1	1							13 40			
730		1										• • • • • •
. s 733			. 23 0	23 20								23
734			13 30				28 50	13 50	18 50	13 50		.
	í						1	1				
737	1											
739	14 50		•				10 40					
		1	6 30									· · · ·
741 742			51 0							• • • • • • •		· · · · ·
745							3 15		3 15	1		•j• •••
746	2 40	2 40		12 40								I 2
748			23 10	20 20			20 20	20 20	20 20	20 20		
			5									
752	•••••										•¦· • • • • • •	
755 756												
757										• • • • • • • •	• • • • • • • •	• • • • • •
758			. 24 30						• • • • • • •		•	
759			. 21 10		· · · · ·							
								•	1			
76 <b>0</b>								-	0	28 40	·   · · · · · · · · ·	
760 762												
760 762 763			· [• • • • • • •		•		. 28 40	28 40				
76 <b>0</b>	· · · · · · · · ·		.			.						

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	o /	0 /	0 /	o /	o /	o /	o /	01	• /	o /	• /	0 /	。,
768 769		 34 O		 34 O	• • • • • • • • •	<b></b> .	· · · · · · · ·	34 0	 	· · · · · · · ·	 34 0		 
770				· · · · · · · ·					 				
771 772	· · · · · · ·					· · · · · · · ·	• • • • • • • • • • • • • • • • • • •						
774													
775				••••				1		• • • • • • •			
776 777													
778													
779	27 0	27 O											27 0
780						· · · · · · · ·	····		<i></i>	· · · · · · · ·	31 50		•••••
781 786			· · · · · · · · ·					<u> </u>					
787	23 30	23 30	23 20	1	23 30	23 30	23 30		23 30	23 30	23 30	23 30	23 30
789	••••						• • • • • • •			••••	24 20		• • • • • • • •
790 792		···				····	····	· · · · · · · · ·	· · · · · · · · ·	•••••••	<u> </u>	 	
792													
796								••••	• • • • • • •				
797 798	53 20	52 20	53 20	52 20	53 20	53 20	53 20	53 0	53 20	53 20	52 20	53 20	53 20
790							1						
800										<i>.</i>			
801													• • • • • • • •
802 803			· · · · · ·					 13 30		· · · · · · · ·		• • • • • • • •	
804					ł		1						
805					· · · · · · ·		1		· · · · · · · ·				
806 807						· · · · · · · ·		• • • • • • •	····				• • • • • • • •
807											· · · · · · · · ·	· · · · · · · ·	
809													
810											••••		
812	44 20		41 20	43 15	41 20	• • • • • • • • •		· · · · · · · ·					
814			41 20	+5 -5									
815								45 20					
816		••••		· · · · · · ·	• • • • • • •	•••••						••••	
818 819								36 10					
821		· · · · · · ·											
823		• • • • • •			• • • • • •	42 20							
826 829			· · · · · · · ·			· · · · · · · ·					••••		
830													
832	•••••		· • • • • • • •		· · · · ·	· · · <i>· ·</i> · · ·							
833		• • • • • • •	· · · · · · · ·		• • • • • •	• • • • • • •	· · · · ·	· <i>·</i> · · · ·	• • • • • • •	• • • • • • •			· · <i>•</i> · · · · ·
834 836	••••					· · · · · · · ·	····			· · · · · · · ·			
837													
838		58 O					15			58 O	58 O	58 O	58 O
840 847				•••••		• • • • • • •			• • • • • • •	• • • • • • •		••••	
841 842						· · · · · ·		· · · · · · ·		· · · · · · · ·			
843					59 50	59 50			59 50	59 50			59 45
												<u> </u>	

Collations of Manuscripts-Latitudes-continued.

# Collations of Manuscripts—Latitudes—continued.

aily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374·	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475-	Bod. 369.	Laur. 156.	Vienna Trap. 2
(0)	• /	0 /	• /	• /	• •	• •	• •	• /	o /	o ,	0 /	0 /
768 760		••••	••••	• • • • • • • •		•••••	30 30		• • • • • • • • •	31 10		
770			1						• • • • • • • • •		1	
771				· • · • • • •					22 50	• • • • • • • •		
772				J÷ 50	••••••				31 30			21 20
774	• • • • • • •			•••••			1950	• • • • · · ·			1	1
775 776				· · · · · · · ·	• • • • • • • • •	•••••			1 1			
777					· · · · · · · · · · ·		29 10	••••••	20 50	• • • • • • • • •	· · · · · · · ·	• • • • • • •
778		• • • • • • •							• • • • • • • •	· · · · · · · · · · ·	· · · · · · · · ·	
779 780			· · · · · · · ·	27 O	••••		27 O	27 O	27 O			
781					· · · · · · · · · ·	••••••	•••••	• • • • • • • • •	•••••	26 50	•••••	· · <i>·</i> · • • •
786			28 50								•••••	•••••
/0/	<i>23 30</i>	23 30	23 30	23 30			23 30	23 50	23 50	23 50	23 50	23 30
789		•••••	····	* * * * * * *			33 10		· · · · · ·			
					31 50 	•••••	•••••	•••••	•••••		•••••••	• • • • • •
·94							41 30	· · · · · · · · · · ·		30 44	•••••	
90			43 30	• • • • • • • •	• • • • • • • • •	• • • • • • • •	• • • • • • • •					
'97   208			••••		•• ••••	•••••	• • • • • • • •	•••••		• • • • • • • • •		
798 199	53 20	51 30		53 20	•••••	•••••					• • • • • • • •	• • • • • •
							11 45 13 50	•••••		11 45	· · · · · · · · ·	
DI										13 10		
			1		•••••		- 1	• • • • • • • • •	• • • • • • • • •	I3 0		
		• • • • • • •			· · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	1	13 30		
55						· · · · · · · · · · ·	I2 0 I3 30			I 3 30	52 30	
<b>5</b> 6			15 0						· · · · · · · · · · · · · · ·			
07 08	•••••	• • • • • • • •	•••••	• • • • • • • •	• • • • • • • • •				36 50		• • • • • • • • •	
	••••••	•••••	••••	•••••	· · · · · · · · · · · · · · · · · · ·	•••••						
-								· · · · · · · · · ·		•••••	••••	
12  .	•••••		41 50		• • • • • • • • •	1			······			
		· · · · · · •			••••••••••				•••••••••••••••••••••••••••••••••••••••		•••••	4I 20
•	•••••	•••••	41 10 .	••••		•••••	••••	45 15	•••••	45 15	45 15	••••••
16  .							· · · · · · · · · · ·			•••••		32 20
<b>18</b>  .	•••••	· • • • • • • • •										
19 <i>.</i>	••••	•••••	35 30 .	• • • • • •	•••••••••••••••••••••••••••••••••••••••	••••••	•••••	••••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • • •	•••••	
21 . 23 .	•••••	•••••	35 <b>4</b> 5 ·	•••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • •	•••••	37 50
6		•••••	· · · · · · · · · · · ·		••••••	••••••	•••••	••••	45 20	•••••	•••••	• • • • • • •
9.							46 o .		+5 <b>20</b>			 
ο.							•••••	•••••		46 o		
2.	•••••		•••••	•••••			••••••	• • • • • • • •		• • • • • • • •	• • • • • • • • •	
5 · 4		•••••	•••••	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•••••	••••••	•••••		55 30		
30     .       32     .       33     .       34     .       46     .       7     .       8     .				54 45	• • • • • • • • • • • •					25 10		54 45 
7							41 30 .		61 30			
8	58 o .				· · · · · · / ·			•••••	•••••••••••••••••••••••••••••••••••••••	••••	•••••	51 45
0. I.	•••••	•••••	· · · · · /·	•••••	· · · · · · ·  ·		55 30	•••••	•••••	· · · · · · · · ·	•••••	
.2			57 10	•••••	••••••	•••••	•••••		59 30 .	55 10		 
3 .								59 30	59 30	59 30		
-								57 5		57 5		

Collations of Manuscripts—Latitudes—continued.	Collations	of Manuscri	ipts—Latitudes–	-continued.
------------------------------------------------	------------	-------------	-----------------	-------------

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47•	Vat. 1594.
	o /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	o /	o /	• /	• /
844			l										
845													
846		· · · · · · · ·		• • • • • •									• • • • • • •
847 857	• • • • • •			4 °									
851 852	••••	44 O			• • • • • • •		•••••		••••••		44 O	44 O	44 0
853													
855	$\begin{cases} 49 & 45 \\ 49 & 30 \end{cases}$	· · · · · · · ·		49 45	49 45	••••	49 15		49 45	49 15		••••	
856		· · · · · · · ·	49 45			· · · · <b>·</b> · · ·						· · · · · · ·	
858	· · · · · · ·			· · · · · · ·		· · · · · · ·	· · · · · · · · ·		• • • • • • •		· · <b>· · · ·</b> · ·	• • • • • • •	
859		$\begin{cases} 43 & 0 \\ 53 & 0 \end{cases}$			53 O		43 O		53 0	43 0			43 O
					55		15		55	1.5			
86 <b>0</b>	••••	$\begin{cases} 48 & 40 \\ 58 & 0 \end{cases}$		· · · · · · · ·				<i>.</i>				• • • • • • •	48 4 <b>0</b>
861	55 30	$\begin{cases} 45 & 30 \\ 55 & 30 \end{cases}$	••••			• • • • • • •	45 30	56 15	55 30	45 30		•••••	45 30
862		J48 401											48 40
		رهه 158										•••••	40 40
				• • • • • • •		• • • • <i>•</i> • • •	• • • • • • •	5° 45		• • • • • • • •		· · · · · · ·	• • • • • • •
864	••••	• • • • •	••••	• • • • • • •		• • • • • • •	••••	• • • • • • •	••••	•••••	•••••	• • • • • • •	•••••
865 866		· · · · · ·	••••	•••••	· · · · · · · ·	• • • • • • •	• • • • • •	•••••	••••		• • • • • • • •	•••••	• • • • • • •
	(20)				}			•••••					
868	5 ⁶ (40)	56 20	56 20	• • • • • •	56 20	56 15	56 20	• • • • • •	56 20	56 20	56 20	56 20	56 <b>20</b>
869	· · · · · · · · · · · · · · · · · · ·	i											
871													
873	· · · · · ·		1 1				• • • • • • •				•••••		
874										• • • • • • •	•••••		• • • • • • •
875	51 40	• • • • • • •				• • • • • • •			• • • • • • •	• • • • • • • •	51 40	• • • • • • •	51 40
876 877		••••	•••••				•••••		•••••	•••••	•••••	•••••	•••••
879	51 30	51 30	51 30	51 30	51 30	51 30	51 30	51 30	51 30	51 30	51 20	51 30	51 30
881							·····			-		<u> </u>	·····
882													
883	••••						• • • • • • •				· • • • • • • •		
886				• • • • • •	· · · · · · · ·	• • • • • • •	···· .	• • • • • •			•••••		
887	60	60	60	• ••••	• • • • • •		•••••	• • • • • • •	• • • • • • •	6		• • • • • • •	
889 801	02 15	62 15	02 15	••••••	· · · · · · ·			65 20		62 15	• • • • •	•••••	62 15
891 89 <b>2</b>					· · · · · · ·		••••	65 2 <b>0</b>	• • • • •	•••••	•••••		
893								· · · · · · · ·					
894								15 10					
895	13 40	13 10		13 40	13 40	13 40			13 40	13 10			13 10
896					· · · · · · · · ·								
897	¹ 4 45	· · · · · · ·	· · · · · · ·	· · · <b>· ·</b> · · ·	•••••	• • • • • •	• • • • • • •			• • • • • • •		• • • • • • •	
898	• • • • • •	• • • • • • •	•••••	•••••	•••••	•••••	•••••	• • • • • • •	• • • • • • •	• • • • • • •	•••••	••••••	
900		•••••	•••••	•••••	•••••		•••••	• • • • • • • •	• • • • • • •	• • • • • •	•••••	•••••	•••••
901 9 <b>02</b> .							•••••		• • • • • • •	• • • • • •	•••••		•••••
902			· · · · · · · · · · · · · · · · · · ·									• • • • • • •	
	of	a6	a6 1	a6	a6	26	-6				(24 40)		
9 <b>0</b> 8	20 15	20 15	26 15	20 15	20 15	20 15	20 15		20 15	20 15	$\{26 \ 15\}$	26 15	26 15
9 <b>0</b> 9 ,	{ <b>45 3</b> ० <b>ो</b>	{45 <b>3</b> ०โ	45 30		15 20		45 20		{24 40 <u>}</u>	40.20	15 20	45 00	15
707	124 40	124 40	+) )°	•••••	+J J~		+5 50		l49 30∫	49 30	45 50	45 30	45 30
910									i				

Collations of Manuscripts-Latitudes-continued.

ily's No.	Laur. 48.		Vat. Reg. 90.	Bod. 3374·	Laur. 6.	Laur. 45•	B. M. S. 2795.		B. M. 7475∙			Vienna Trap. 2
	0 /	0 /	0 /	0 /	0 /	0 /	o /	0 /	0 /	0 /	0 /	0 /
844									1	4		
- <b>T</b> J			57 50								i	
846	• • • • • •	59 50								17 0		
847 851		14 0	45 30									
852	44 °		46 10									
								40 30	· · · · · · · · · ·	40 30	47 30	1
855			45 30	49 45	49 30		49 30	49 30	49 30	49 30		49 5
856							49 30	49 30	49 30	49 30		
858							<b>.</b>					
859	43 O	43 O	50 20				 			· · · · · · · · · · · ·		
860	48 40	48 40							· · · · · ·			
861	45 30	45 30			: 		55 30	55 30	55 30	55 30		
			1									
862	48 40	т° т°			.   			• • • • • • • • •				
863 864					. !							. 57 5
804 865					.   · · · · · · · ·		58 20	58 20				
866							40 0					
868	56 20	56 20		56 20								
869			. 57 0				57 0		57 10	57 0	5 <b>7</b> 0	
					• • • • • • • •		40 0	1				
874 875	51 40						51 30					
875 876	51 40	51 40	49 20								1	
877							. 53 20					
879				51 30	· · · · · ·	• • • • • • •	54 30		. 54 30			
881			· · · · · · · · ·		•		43 0		65 30		./ 	1
882	¦				·!··· ··		44 30 43 50		. 05 30			
	• • • • • •			• • • • •			45 50		62 50			
886 887								1		1 /		
889		. j • • • • • • • . [		62 15			. 42 15			. 62 15		
891												
~							20 0					
~				.+			. 21 50		. 75 50		• • • • • • •	
~~~								-			• • • • • •	
895		j				. · · · · · ·	. 11 30			. 13 10		
		14 30	· · · · · · · ·									
			. 11 45								 	
898				<i></i>	• · · · · · ·		. 12 0	12 0	12 0			
900		· · · · · ·		. l <i></i> .			i i		• • • • • • •			
-	1				1		. 20 20		• • • • • • • •	•		
· .				1				. 11 50				26
907				. 26 15	•;•••••			• • • • • • • •				1
908	26 15	26 15		26 15	26 15		23 35	23 15	23 15	28 15	;	••
)		28 0	.	
							24 0)				I

Collations of M	lanuscripts—Latitudes—continued.
-----------------	----------------------------------

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47.	Vat. 1594.
	o /	o /	o /	o /	o /	o /	o /	o /	o /	0 /	o /	0 /	0 /
913	36 O	36 O	36 O	36 O	• • • • • • • •	36 O	36 O		36 O	36 O	36 O	36 O	36 O
914 915		· · · · · · · ·	· · · · · · · ·			· · · <i>· · ·</i> · ·			· • • • • • • •		· · · · · · · ·	· · · · · · · ·	•••••••
916													
917	33 40	33 40	33 40	33 40	33 40	33 40	33 40	13 20	33 40	33 40	33 40	33 40	33 40
918	$\{ \begin{array}{c} 17 & 20 \\ 17 & 40 \end{array} \}$	37 20	17 20		17 20		37 20		17 20	37 20	37 20	37 20	37 20
919	- /												
920	1	• • • • • • •	· · · · · · ·		• • • • • • •								
921 922			· · · · · · · ·										
923													
925 926			 										
920			· • • • • • • •	· · · · · · · ·									
928													• • • • • • •
929 930										· · · · · · · ·			
931	14 50												
933													
935 936				•								· · · · · · · · ·	.
937		i		1									
939					1							•••••	
940	$ \left\{ $		20 30		20 30	$\begin{cases} 20 & 30 \\ 22 & 30 \end{cases}$	20 30		20 30	20 30	20 30	20 30	20 30
941													
942										21 20			
943 944		· · · · · · · ·		23 30			••••	18 50					
946											•		
947													<i>.</i>
948 949								· · · · · · · ·					
950	(
951								22 0		••••			
952 954	33 0	33 0	33 0	33 0	33 0	33 0	33 0	33 IO 33 O	33 0	33 0	33 0	33 0	33 0
955		31 50			31 50	31 50	31 50			31 50			31 50
956													
958 959	43 0 41 0		43 0	43 O	43 0	43 0	43 O	43 O		43 0	43 °	· · · · · · · ·	43 0
960													
962	$\{42 \ 45\}$	42 45	42 45		42 45	42 45	42 45	43 45	42 45	42 45	42 45	4 ² 45	42 45
963	140 45							43 20					
964								41 40					
965	51 10							55 10		• • • • • • •			
	51 40 ∫44 10∖							51 20					
969	(41 IO)	44 10	•••••	· · • · • • •	44 10	44 10	44 10	••••	44 10	44 10			44 10
971	• • • • • • •				••••••			45 10		••••			
972 974													
975								21 15					
977					• • • • • • •			•••••		• • • • • • •		••••	
		I				I	1	1	1			!	

Baily's No.	Laur. 48.	Vat. 1038.	Vat. Reg. 90.	Bod. 3374∙	Laur. 6.	Laur. 45.	B. M. S. 2795.	B. M. Reg. 16.	B. M. 7475∙	Bod. 369.	Laur. 156.	Vienna Trap. 24 <i>.</i>
	0 /	0 /	0 /	0 /	0 /	0 /	• /	• /	۰ ،	• /	o ,	o /
913	36 O	36 O	36 O	36 0								
914 915				-			14 10		· · · · · · · · ·			•••••••
916							II 20					
917	33 40			33 40			o 40		33 40	33 40		33 40
918	37 20			17 20			13 40		17 40	36 4 0		
919				>	1					28 15		
920 921							· · · · · · · · · · · · · · · · · · ·		-	28 0		• • • • • • • • •
921							1				· · · · · · · · · · · · · · · · · · ·	
923									-			
925	1		1			1	1				-	
926												• • • • • • •
927 928			5									· · · · · · · ·
929												
930						1				-		
931											•	
933 935	1		1					1		1		1 5
936					1			•	13 50			
937				1							• • • • • • • • •	
939							25 25	22 40				
940	20 30	20 30		20 30			1					20 30
941												
942	1		. .							•••••		•••••••
943												
946	1						IO 20					
947	1									1		
948			26 45							23 0		
949 950												
951	1	1									• • • • • • • • •	
952	1 5 5					. . .		• • • • • • • • •				
954	33 0	33 0		33 O 31 O			34 50	34 50	34 50	34 50		33 0 31 50
955 956	31 50	31 50	31 40				36 40		36 40	36 40		
958	43 0	43 0	43 0	43 0		.			.			43 0
959					44 0				• • • • • • • • •		•	• • • • • • • • •
960	· · · · · · ·		. 46 12		• • • • • • • • • •			• • • • • • • • •				
962	42 45	42 45		42 45					• • • • • • • • •			42 45
963			. 43 30									• • • • • • • • •
964			• • • • • • • •	• • • • • • •		• • • • • • • •	• • • • • • • •					
965 966	••••		• • • • • • •									
960				44 10					41 10	41 10	41 10	44 10
909												
972			. 21 50	24 45								. 24 45
974								• • • • • • • •	. 21 0			
975							· · · · · · · ·	•		. 26 0	· · · · · · · · · · · · · · · · · · ·	
977			• • • • • • • •			• • • • • • • •	•					
					1		!			. I		I

Baily's No.	Par. 2389.	Par. 2390.	Par. 2391.	Par. 2394.	Ven. 302.	Ven. 303.	Ven. 310.	Ven. 311.	Ven. 312.	Ven. 313.	Laur. 1.	Laur. 47·	Vat. 1594.
	0 /	0 /	0 /	o /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /	0 /
98 0	36 O	36 O	36 o	36 O	36 o	36 O	36 o	36 10	$\begin{cases} 30 & 10 \\ 36 & 0 \end{cases}$	36 o	36 O		36 o
981				1									
982		31 45											· · · · · ·
- 983						3I O	<i>.</i> .	• • • • •	· · · · · · ·				· · · · · ·
985				¦				17 30		••••••		• • • • • • • • †	
- 986 -		IO 20	· · · · · · · · ·							• • • • • •	10 20	10 20	10 20
987	• • •								• • • • • • •	· · · · ·			· · · · · · · ·
988	· · · ·				• • • • • • •	• • • • • • •		10 50	• • • • •	•••••	· · · · ·	• • • • • •	• • • • • •
989	• • • •	· · · · · ·					• • • • • •			•••••	•••••	•••••	
991	••••	••••••		· · · · · ·	• • • • • • • •			22 20	· · · · ·	••••		•••••	
992 993		••••••		• • • • • • • •	••••			25 50 23 30		••••	••••		
993		••••••			• • • • • •		••••			•••••	(0)		
994	I 20	I 20	I 20	I 20	I 20	I 20		33 0	<i></i> .		31 ²⁰	I 20	I 20
996		· · · · · · · ·							· · · · · · · · · ·	••••			
997		$\begin{cases} 34 & 15 \\ 31 & 15 \end{cases}$	•					34 O	· · · · · ·	31 15		31 15	31 15
998	[24 30]				24 30		24 30	24 30	24 30	24 45	34 30	24 30	24 30
	121 30)				-т Ј-					1 15	51 5	• •	• •
999								24 30				23 0	23 0
1000 1006	23 0		23 0	23 0	23 0	23 0				23 0	23 0	23 0	23 0
1000						•••••					•••••	•••••	
1007				1				14 20		14 40			14 40
												1	
1012		••••				23 O		23 0	$\begin{cases} 20 & 20 \\ 23 & 0 \end{cases}$	23 0			
1014							1						
1015													
1016													
1017													
1018								14 20			• • • • • • • •		
1019										· · · · .			
1022			¦· · · · · · ·									•••••	•••••
1023			•••••	•••••	•••••					• • • • • • • • • •	· ··· '	• • • • • • • • • •	
1025				· · · · · ·	• • • • • • •			2I O	••• ••••				
1027		••••	• • • • • •	• • • •	• • • • • •	· · · · · · ·	• • • •		•••••		••••		
1028		•••••	· · · · ·							· · · · · ·	· · · · ·:	• • • • • • • • •	· · · · · ·

Collations of Manuscripts-Latitudes-continued.

Collations	of	Manuscripts—Latitudes—continued.	
------------	----	----------------------------------	--

No.	48.	Vat. 1038.	Reg. 90.	3374.	6.	Laur. 45∙		B. M. Reg. 16.		Bod. 369.		Vienna Trap. 24
1	• /	0 /	o /	0 /	o /	0 /	0 /	0 /	• /	0 /	0 /	0 /
980	36 o	36 o	I 10	36 o.	••••••		30 O	• • • • • • • • •	30 O	•••••••	• • • • • • • •	36 o
981												1 1
982			· · · · · · · ·		· · · · ·			• • • • • • • •				
		• • • • •	1	• • • •		· · · · · ·	I 30	30 30	I 30	30 30		
				••••••	• • • • • •	• • • • • • •				16 O		
· · · ·		10 20	1	•••••		• • • • •		· · · · ·				
			· · · · · · · ·				18 30	Í	18 30			
				•••••		· · · ·	• • • • • • •					
				•••••		••••••	II 30	11 30	11 30	II 30	· • • • • • •	
//				•••••	• • • • • • • •	• • • • • • • •	•••••	•••••	• • • • • • • •		••••••	
992 993	••••			••••••	••••••	••••••	20 45	• • • • • • • • •	• • • • • •	• • • • • • • •	• • • • • • • •	· · · · · ·
				••••••	•••••	• • • • • • • • •	• • • • • • • •	•••••	••••••	• • • • • • • • •	• • • • • • •	•••••
994			1 1	I 20	33 0		30 20	30 20	30 20	30 20		I 20
996	· • · · • • •		33 50	••••	•••••	• • • • • • • • •	• • • • • • • • •					
997		31 15	31 15	••••••	•••••	• • • • • • • • •	34 0	34 0	34 O	37 0		
998	24 30	24 30	••••	24 30 .			••••		• • • • • • • • •			24 30
999												
1000	23 0	23 0	23 0	23 0.		.	20 20	20 20	20 20	20 20		23 0
										I4 55		
1008			14 40 .			14 40	14 40	14 40			14 40
1012	• • • • • • • •											
1014	22 45											
							16 5		56 15	36 15		
										49 30		
							14 40			····		
1018 .										17 40		
1019							· · · · · · · · · · ·		0 0			
1022					· · · · · · ·							
1023 .									20 20			
5		1		••• •••								
				· · • • • · · ·								
1028 .			11 50 .				19 50	17 50	· · · · · ·	17 50		

